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Agenda: Deep Neural Networks Motivated By ODEs

» Deep Learning meets Optimal Control
> discretize — differentiate (or vice versa?)

» Stability and Generalization
» when is deep learning well-posed?
> stabilizing the forward propagation
» Numerical Methods
» symplectic, reversible neural networks
> layer-parallel training using multigrid in time
» DNNs motivated by PDEs (tomorrow)
» parabolic’/hyberbolic CNNs, IMEX-Net, Lean ResNets,. ..

Goals: Theoretical insight, mathematically sound
architectures, competitive results.
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E Haber, LR B Chang et al., LR, E Haber

@ Stable Architectures ﬁ E Holtham etal. ﬁ Ffeversi?)le ﬁ Deep Neural
for DNNs. éii;g’sng Across Architectures for Networks motivated
Inverse Problems, AAAI 2'01 8 Deep ResNNs. by PDEs.
2017. ’ i AAAI, 2018. arXiv, 2018.
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Deep Learning meets Optimal
Control
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Deep Learning Revolution (?)

Yir = o(KY;+b))
Yiii = Y +0(KY;+b))
Yiir = Yj+0(Kjpo(K;1Y;+bj1) +bjo)

input layer

hidden layer 1 hidden layer 2

(Notation: Y; : features, K;, b;: weights, o : activation)

» deep learning: use neural networks (from ~ 1950’s) with many hidden
layers

» able to "learn” complicated patterns from data

> applications: image classification, face recognition, segmentation,
driverless cars, ...

» recent success fueled by: massive data sets, computing power
> A few recent references:

» A radical new neural network design could overcome big challenges in
Al, MIT Tech Review '18

> Data Scientist: Sexiest Job of the 21st Century, Harvard Business Rev ’17
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Supervised Learning using Deep Neural Networks
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tralmng data Yy, C propagated features, Yy, C classification result

Supervised Deep Learning Problem

Given input features, Yy, and labels, C, find network weights (K, b) and
classification weights (W, p) such that the DNN predicts the data-label
relationship (and generalizes to new data), by solving

minimizex b w,u loss[g(WYny + p), C] + regularizer[K, b, W, ]
subjectto  Y;y; = activation(K;Y; +b;), Vj=0,...,N—1.
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Deep Residual Neural Networks (simplified)

Award-winning forward propagation
Yj+1 =Yj+th720‘(Kj,1Yj—|—bj), vVj=0,1,...,N—1.
ResNet is forward Euler discretization of

Oy (1) = Ka(t)o (Ki (0)y (1) +b(1)),  ¥(0) = yo.

input features, Yy
Notation: 0(¢r) = (K, (z), K»(¢),b(z)) and

9y(1) = f(y,0(1)), ¥(0) =yo

where  £(y,8) = Ka(1)o (K (1)y(1) +b(1))

[@ K. He, X. Zhang, S. Ren, and J. Sun
Deep residual learning for image recognition.
IEEE Conf. on CVPR, 770-778, 2016. propagated features, Yy
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Blessing of Dimensionality (or Width)

Setup: ResNN, 9 fully connected single layers, o = tanh.
Motivated by: E Celledoni, M Erhardt, M Benning(Cambridge)

input features + labels  propagated features  classification result!

2 100% validation accuracy
OoC
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Optimal Control Approaches to Deep Learning
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Deep Learning meets optimal control / parameter estimation.
> new ways to analyze and design neural networks

> expose similarities to trajectory problem, optimal transport, image
registration, ...

» training algorithms motivated by (robust) optimal control
» discrete ResNet ~~ continuous problem ~~ discrete architecture

Parallel
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(Some) Related Work

DNNs as (stochastic) Dynamical Systems Optimal Control

> Weinan E, Proposal on ML via Dynamical > S. Glnther, LR, J.B. Schroder,
Systems, Commun. Math. Stat., 5(1), 2017. E.C. Cyr, N.R. Gauger,

> E Haber, LR, Stable Architectures for DNN, Layer-parallel training of ResNets,
Inverse Problems, 2017. arXiv, 2018.

> Q. Li, L. Chen, C. Tai, Weinan E, Maximum > A. Gholami, K. Keutzer, G. Biros,
Principle Based Algorithms, arXiv, 2017. ANODE: Unconditionally Accurate

> B. Wang, B. Yuan, Z. Shi, S. Osher, ResNets Memory-Efficient Gradients for
Ensemble via the Feynman-Kac Formalism, arXiv, Neural ODEs, arXiv, 2019.
2018. > T. Zhang, Z. Yao, A. Gholami, K.

Keutzer, J. Gonzalez, G. Biros, M.
Mahoney, ANODEV2: A Coupled
Neural ODE Evolution Framework,

Numerical Time Integrators

> Y. Lu, A. Zhong, Q. Li, B. Dong, Beyond Finite
Layer DNNs, arXiv, 2017.

arXiv, 2019.

» B. Chang, L. Meng, E. Haber, LR, D. Begert, E.
Holtham, Reversible architectures for DNNs, PDE-motivated Approaches
AAAI, 2018. » E. Haber, LR, E. Holtham,

> T. Chen, Y. Rubanova, J. Bettencourt, D. Learning across scales - Multiscale
Duvenaud, Neural ODEs, NeurlPS, 2018. CNNs, AAAI, 2018.

» E. Haber, K. Lensink, E. Treister, LR, IMEXnet: > LR, E. Haber, DNNs motivated by
Forward Stable DNN. ICML, 2019. PDEs, arXiv, 2018.
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Optimal Control Framework for Deep Learning

tralnmg data Yy, C prop. features, Y(T),C classification result

Supervised Deep Learning Problem

Given training data, Yo, and labels, C, find network parameters 6 and
classification weights W, . such that the DNN predicts the data-label
relationship (and generalizes to new data), i.e., solve

minimizeg w ., loss[g(W + w), C] + regularizer[0, W, u]

Parallel
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Optimal Control Background: Diff—Disc vs. Disc— Diff

minimizeg,w. . loss[g(WY(T) + ), C] + regularizer[6, W, p]
subject to oY (t) =f(Y(2),6(1)), Y(0) = Y.

» First-Differentiate-then-Discretize ( Diff—Disc)
> Keep 6,b,Y continuous in time
» Euler-Lagrange-Equations ~~ adjoint equation (=~ backprop)
» O flexible choice of ODE solver in forward and adjoint
» €= gradients only useful if fwd and adjoint solved well
> use optimization to obtain discrete solution of ELE

» First-Discretize-then-Differentiate (Disc— Diff)
> Discretize 0,b,Y in time (could use different grids)
> Differentiate objective (e.g., use automatic differentiation)
» <0 gradients related to adjoints but no choice of solver
> © gradients useful even if discretization is inaccurate
> use nonlinear optimization tools to approximate minimizer

@ MD Gunzburger ﬁ TQ Chenetal., ﬁ zﬁgglgm& K Kedu't‘zer, /? Biros
Perspectives in flow control Neural Ordinary Accur. t' Mn(;znr ! {’Z_?f? iy -
and optimization. Differential Equations. Giggi:nis f:r I\‘I)ei ral g De Es
SIAM, 2013. NeurlIPS, 2018. :

arXiv:1902.10298

»
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Example: The Adjoint Equation

Simplified learning problem: one example (yo, ¢), no weights for classifier, no
regularizer

Hbin IOSS(y(l, 0)7 C) SUbjeCt to 8l‘y(l‘a 0) :f(y(t)a 0(1‘)), Y(O, 0) =Yo.
Use adjoint method to compute gradient of objective w.r.t. 6

-
20 = (560.0.00)) 2l

where z satisfies the adjoint method (-9, ~» backward in time)

]
0(1.0) = (L +(1.0).60)) 2l 2(1.6) = "5 (x(1,6).0).

note: y() needed for solve adjoint equation ©:memory%:

[ G.A Biiss [3 D.E. Rumelhart, G.E. Hinton, R.J. Williams
The use of adjoint systems in the problem of Learning representations by back-propagating
differential corrections for trajectories. errors.

JUS Artillery, 51:296-311, 1919 Nature, 533-536, 1986.
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Multilevel Training of ResNets

Note: Training result depends on initial guess for optimization.

Multi-level learning

ResNet with n layers — h = T/n
0°, WO, 1 « random initialization
for/=1:3do
train ResNet with initial weights 8°, W°, 1.0
obtain 8%, W* u*
(n,h) < (2n,h/2)
refine ResNet
0° + prolongate 6*
(WO, u0)  W*, p*

ﬁ FA Bornemann, P Deuflhard @ B Chang et al.
The cascadic multigrid method for elliptic Multi-level Residual Networks from Dynamical
problems. Systems View.
Numerische Mathematik, 1996. ICLR, 2018.
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Stability and Well-Posedness

»
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Stability of Deep Neural Networks: Motivation

Goal in learning: Build model that generalizes.

Todo list:
1. model forward dynamic

2. discretize forward dynamic (~~
architecture)

3. train network by minimizing
regularized loss

Expectation: tasks are related

Analogy: Recall the ingredients of a
well-posed inverse problem

1. well-posed forward problem
2. bounded inverse

Next: study properties o forward
propagation

Modeling

well-defined continuous
forward propagation

Optimization

new algorithms inspired
by optimal control

Discretization

new architectures through
consistent discretization
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Impact of Network Architecture on Optimization - 1

1 10
min [ Yn(6) = Cl[F  Ypa(6) = Y,(0) + 5 tanh (KY,(0))

where C = Yzoo(l, 1), Yy ~ N(O, 1), and
—01 — 0, 0 )
K(Q) = 92 —‘91 - 02 91
0, 0, -0, — 6,

loss, N = 100

Next: Compare examples for different inputs ~ generalization

Intro OoC Stab Parallel
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Impact of Network Architecture on Optimization - 2

objective, Y{ain objective, Y abs. diff

unstable, N

=100

stable, N

Intro Parallel
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Stability of Continuous Forward Propagation

Interpret ResNet as discretization of initial value

problem
8ty(t7 0, yO) :f(y(ta 0, y0)7 O(I))
¥(0,6,¥0) = yo. unstable IVP
IVP is stable if for any v € R” .

HY(Tv 07 yO) - Y(Tv 07y0 =+ CV)HZ = O(G”VH)

stable IVP

idea: ensure stability by design / constraints on f and 6

Intro Parallel
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Stability of Forward Propagation
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Fact: The ODE 0,y(r) = f(y) is stable if the real parts of the eigenvalues of
the Jacobian J are non-positive.

Example: Consider ResNet with stationary weights
oy(t) = o (Ky(t) +b) = J(¢) = diag(o’(Ky(z) + b))K
In general, one cannot assume that forward propagation is stable.

Networks with non-stationary weights require additional arguments (e.g.,
kinematic eigenvalues) or assumptions (J changes slowly).

»
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Enforcing Stability: Antisymmetric Transformation

Two examples of more stable networks.

ResNet with antisymmetric transformation matrix

Oy (1) = o ((K(r) = K(1) ")y + b(1)).

Hamiltonian-like ResNet

SO

NN

SOUNANNNAN Y
WA

£(2)0-e (i )(2) )

How about the stability of the discrete system?

Intro Parallel
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Stability of Discrete Forward Problem

15

s
1.5

1.0

0.5

a

0.0
—bE BT R IR AR ST TPSTPR U, R SRy
-1.0
-1.5

. 15 H L H
B L -
2‘0—3 =2 -1 0 1 -2.5 -2 -1.5 1 -0.5 a 0.5

forward Euler Bashforth family

ResNet not stable for layer fynisym(Y, Kj, bj) = o ((Kj -K"Y + bj>.
Need to replace fwd Euler by, e.g.,

h
Yj+l = Y]‘I' E (23fantisym(Yja 0]) - 16fantisym(Yj—la aj—l) + 5fantisym(Yj—27 0j—2)) .

Intro Parallel
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Verlet Integration for Hamiltonian-inspired NNs

Forward propagation: ForZ_, =0and;j=0,...,N —1do

Nl—

Z

Jt+ Z

1
J72

Yji1 = Y+ ho (K[ Z;, 1 +1y)

— ho (Kij + bj)

=

Note that this is reversible. Given Yy andZ, : andj=N—1,...,1do
2

7. :Zj+%+hU(Kij+bj)

=
Notes:

> reversibility often exploited in hyperbolic PDE-constrained optimization
» this network is a special (in particular, stable) case of 'RevNet’

ﬁ A. Gomez, M. Ren, R. Urtasun, R. Grosse @ B. Chang, L. Meng, E. Haber, LR, D. Begert,
. o - C E. Holtham
The Reversible Residual Network: ; . .
Backpropagation Without Storing Activations Reversible architectures for arbitrarily deep
arXiv 1707.04585. 2017 residual neural networks

32nd AAAI, 1-8, 2018.

Intro
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Limitations of Reversibility

Q: Is any algebraically reversible network reversible in practice?
For «, 5 € R consider original RevNet with F(Y) = oY and G(Z) = 5Z, i.e.,

Z, ! :Zj_

i — an and Yj+1 = Yj + ﬁZj-f—% .

i
1
Combining two time steps in Y

Vi1 —Y;=pZ,1, and ;- Y =pZ_,
Subtracting those two gives

i1 =2Y; + Y = (21 —Z; 1) = aBY,

<Y —24+aB)Y;+Yj_1 =0

There is a solution Y; = ¢, i.e., witha = (2 + «3)/2

€ -2a€+1=0 = E=a+Vat-1

|€]> = 1 (stable) if a*> < 1. Otherwise ¢ growing!

»
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Example: Impact of Discretization on Training
classification problem generated from peaks in MATLAB®

data setup
» 2,000 points in 2D, 5 classes
» Residual Neural Network
» tanh activation, softmax classifier
» multilevel: 32 layers — 64 layers

features and labels

compare three configurations
1. "unstable”: T = 10 (3rd order multistep)
2. "medium”: T =5 (1st order Verlet)
3. “stable”: T = 0.2 (3rd order multistep)

Q: how does learning performance compare?

Parallel
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Example: Impact of ODE Solver - Convergence

objective function

validation accuracy

unstable, ab3 (T = 10)

medium, Verlet (T =5)

4 T 4 T
32layers y 64 layers 32layers | 64 layers
3 1 3 | -
|
2 1 2 ! .
|
1 - 1 l |
0
1 300 300 01 100
1 1 Ir_*
0.8 — 0.8 i
|
‘ |
0.6 l 1 o6l l .
| |
| |
32 layers i 64 layers 32 layers i 64 layers
0.4 0.4
1 300 300 100 100

Intro

Parallel

stable, ab3 (T = 0.2)
4

32 layers 64 layers

T
I
I
I
I
I
I
I
I
I
I
I
I
I
)
100 100

|

0.6

32 layers 64 layers

-
Ol - o=
o

0.4
1

100
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Example: Impact of ODE Solver - Dynamics

unstable, ab3 (T = 10) medium, Verlet (T =5) stable, ab3 (T =0.2)

2639

Intro Parallel
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Example (Ellipses): Hamitonian-like network with Verlet

labeled training data propagated training data
; -‘\5‘ -

» 2D feature space,
concentric ellipses

> 1Kk training, 2k validation

» multilevel: 2 — 1024 layers

> optimization: block

multilevel convergence
1 et a_n

coordinate descent with > - )
Newton-PCG £ R

» weight decay (Tikhonov) B s 0.95 o ResNN
regularization . K- 0.9 -&- antiSym ||

< Verlet
> tanh activation, width 2 : I e e e T

level

Parallel
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Example (Swiss Roll): Hamitonian-like network with Verlet

labeled training data propagated training data

2D feature space, swiss roll
256 training, 256 validation

multilevel: 2 — 1024 layers ..........

vV v. vy

optimization: block

coordinate descent with prediction + validation data multilevel convergence
b

Newton-PCG

..... o,

> weight decay (Tikhonov) /
regularization C

aeseeene

» tanh activation, width 4

Parallel
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Layer-Parallel Training
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Layer-Parallel Training of Deep Residual Neural Networks

» with S. Gunther, J. B. Schroder, E. C. Cyr, N. R. Gauger

Full-space version of the optimal control formulation of supervised learning
inimi loss[g(WYy), C] + regularizer[@, W
e On 1 WYV lg(WYw), €]+ reg 6 W]

Y, = Yo+~ (Yo,60)

. Y = Y +#(Y1,60)
subject to .

Yv = Yy_i1+hf(Yn_1,0n1)

Recall: Constraints can be eliminated (explicit Euler, sequential).
Goal: Stay in full-space and create parallelism in time

Intro Parallel
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Example: Elimination vs. lterative Solve

Ty T, ... Tyye @ : C-point
B e (fine and coarse grid)
foh by ™ L 3 <+ : F-point
(fine grid only)
/’lA =ch

Consider linear dynamics 9,y = Ay. Forward Euler discretization is

| Yy Yo

—(I+ hA) I Y2 0
—(I+hA) | Y3 = 0

—(I+hA) 1 YN 0

» Option 1: forward substitution (& optimal complexity but©: sequential)
» Option 2: use iterative solver (3= higher complexity but @ parallel)
» Option 3: multigrid in time (MGRIT)

oC
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Scalability for Forward and Simultaneous Optimization

zzZzz]

training loss

strong scaling (fwd + gradient)

Simultaneous layer-parallel
Layer-serial reference ———

0 I I I I 0
0 1000 2000 3000 4000
compute time (sec)

simultaneous optimization

» MGRIT provides a new form of parallelism (in addition to data parallelism)

» Use-case 1: Replace forward and backward propagation in SGD
» Use-case 2: simultaneous optimization (more intrusive)

@ S. Giinther, LR, J. B. Schroder, E. C. Cyr, N. R. Gauger
Layer-Parallel Training of Deep Residual Neural Networks.

in revision, SIMODS, 2019.

N = Y o =
OOOO%

validation accuracy (%
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Conclusion
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>J: Deep Neural Networks motivated by ODEs

Optimal control formulation
> new insights, theory, algorithms
Stability and well-posedness
> differentiate-then-discretize vs. discrete-then-differentiate
> examples: impact on optimization/generalization
Numerical Methods: Discretize-Optimize

> Verlet: reversible and stable networks (memory-free)
> Parallel-in-Layer: additional option for parallelism

DNNs motivated by PDEs (tomorrow)

» parabolic CNNs, hyberbolic CNNs, IMEX-Net, Lean ResNets

Lots to do/explore/contribute for computational and
applied mathematicians...

[@ EHaber, LR
Stable Architectures
for DNNs.
Inverse Problems,
2017.

Intro

@ EHoltham et al.
Learning Across
Scales.

AAAI 2018.

Parallel

ﬁ B Chang et al.,
Reversible
Architectures for
Deep ResNNss.
AAAI, 2018.
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[@ LR, E Haber

Deep Neural
Networks motivated
by PDEs.

arXiv, 2018.
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