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Agenda: Deep Neural Networks Motivated By ODEs

I Deep Learning meets Optimal Control
I discretize→ differentiate (or vice versa?)

I Stability and Generalization
I when is deep learning well-posed?
I stabilizing the forward propagation

I Numerical Methods
I symplectic, reversible neural networks
I layer-parallel training using multigrid in time

I DNNs motivated by PDEs (tomorrow)
I parabolic/hyberbolic CNNs, IMEX-Net, Lean ResNets,. . .

Goals: Theoretical insight, mathematically sound
architectures, competitive results.

E Haber, LR
Stable Architectures
for DNNs.
Inverse Problems,
2017.

E Holtham et al.
Learning Across
Scales.
AAAI, 2018.

B Chang et al.,
Reversible
Architectures for
Deep ResNNs.
AAAI, 2018.

LR, E Haber
Deep Neural
Networks motivated
by PDEs.
arXiv, 2018.
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Deep Learning meets Optimal
Control
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Deep Learning Revolution (?)
Yj+1 = σ(KjYj + bj)
Yj+1 = Yj + σ(KjYj + bj)
Yj+1 = Yj + σ (Kj,2σ(Kj,1Yj + bj,1) + bj,2)

...

(Notation: Yj : features, Kj, bj: weights, σ : activation)

I deep learning: use neural networks (from ≈ 1950’s) with many hidden
layers

I able to ”learn” complicated patterns from data
I applications: image classification, face recognition, segmentation,

driverless cars, . . .
I recent success fueled by: massive data sets, computing power
I A few recent references:
I A radical new neural network design could overcome big challenges in

AI, MIT Tech Review ’18
I Data Scientist: Sexiest Job of the 21st Century, Harvard Business Rev ’17
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Supervised Learning using Deep Neural Networks

training data, Y0,C propagated features, YN ,C classification result

Supervised Deep Learning Problem

Given input features, Y0, and labels, C, find network weights (K, b) and
classification weights (W, µ) such that the DNN predicts the data-label
relationship (and generalizes to new data), by solving

minimizeK,b,W,µ loss[g(WYN + µ),C] + regularizer[K,b,W,µ]

subject to Yj+1 = activation(KjYj + bj), ∀j = 0, . . . ,N − 1.
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Deep Residual Neural Networks (simplified)

Award-winning forward propagation

Yj+1 = Yj + hKj,2σ(Kj,1Yj + bj), ∀ j = 0, 1, . . . ,N − 1.

ResNet is forward Euler discretization of

∂ty(t) = K2(t)σ (K1(t)y(t) + b(t)) , y(0) = y0.

Notation: θ(t) = (K1(t),K2(t),b(t)) and

∂ty(t) = f (y,θ(t)), y(0) = y0

where f (y,θ) = K2(t)σ (K1(t)y(t) + b(t)) .

K. He, X. Zhang, S. Ren, and J. Sun
Deep residual learning for image recognition.
IEEE Conf. on CVPR, 770–778, 2016.

input features, Y0

propagated features, YN
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Blessing of Dimensionality (or Width)

Setup: ResNN, 9 fully connected single layers, σ = tanh .
Motivated by: E Celledoni, M Erhardt, M Benning(Cambridge)

input features + labels propagated features classification result1

increase the dimension (width) no need to change topology!

1≈ 100% validation accuracy
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Optimal Control Approaches to Deep Learning

control 1
control 2

control 3
control 4

control 5

input features
output features←− time −→

Deep Learning meets optimal control / parameter estimation.
I new ways to analyze and design neural networks
I expose similarities to trajectory problem, optimal transport, image

registration, . . .
I training algorithms motivated by (robust) optimal control
I discrete ResNet continuous problem discrete architecture
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(Some) Related Work

DNNs as (stochastic) Dynamical Systems
I Weinan E, Proposal on ML via Dynamical

Systems, Commun. Math. Stat., 5(1), 2017.
I E Haber, LR, Stable Architectures for DNNs,

Inverse Problems, 2017.
I Q. Li, L. Chen, C. Tai, Weinan E, Maximum

Principle Based Algorithms, arXiv, 2017.
I B. Wang, B. Yuan, Z. Shi, S. Osher, ResNets

Ensemble via the Feynman-Kac Formalism, arXiv,
2018.

Numerical Time Integrators
I Y. Lu, A. Zhong, Q. Li, B. Dong, Beyond Finite

Layer DNNs, arXiv, 2017.
I B. Chang, L. Meng, E. Haber, LR, D. Begert, E.

Holtham, Reversible architectures for DNNs,
AAAI, 2018.

I T. Chen, Y. Rubanova, J. Bettencourt, D.
Duvenaud, Neural ODEs, NeurIPS, 2018.

I E. Haber, K. Lensink, E. Treister, LR, IMEXnet:
Forward Stable DNN. ICML, 2019.

Optimal Control
I S. Günther, LR, J.B. Schroder,

E.C. Cyr, N.R. Gauger,
Layer-parallel training of ResNets,
arXiv, 2018.

I A. Gholami, K. Keutzer, G. Biros,
ANODE: Unconditionally Accurate
Memory-Efficient Gradients for
Neural ODEs, arXiv, 2019.

I T. Zhang, Z. Yao, A. Gholami, K.
Keutzer, J. Gonzalez, G. Biros, M.
Mahoney, ANODEV2: A Coupled
Neural ODE Evolution Framework,
arXiv, 2019.

PDE-motivated Approaches
I E. Haber, LR, E. Holtham,

Learning across scales - Multiscale
CNNs, AAAI, 2018.

I LR, E. Haber, DNNs motivated by
PDEs, arXiv, 2018.
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Optimal Control
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Optimal Control Framework for Deep Learning

training data, Y0,C prop. features, Y(T),C classification result

Supervised Deep Learning Problem

Given training data, Y0, and labels, C, find network parameters θ and
classification weights W, µ such that the DNN predicts the data-label
relationship (and generalizes to new data), i.e., solve

minimizeθ,W,µ loss[g(W + µ),C] + regularizer[θ,W,µ]
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Optimal Control Background: Diff→Disc vs. Disc→Diff

minimizeθ,W,µ loss[g(WY(T) + µ),C] + regularizer[θ,W,µ]

subject to ∂tY(t) = f (Y(t),θ(t)) , Y(0) = Y0.

I First-Differentiate-then-Discretize ( Diff→Disc)
I Keep θ,b,Y continuous in time
I Euler-Lagrange-Equations adjoint equation (≈ backprop)
I flexible choice of ODE solver in forward and adjoint
I gradients only useful if fwd and adjoint solved well
I use optimization to obtain discrete solution of ELE

I First-Discretize-then-Differentiate (Disc→Diff)
I Discretize θ,b,Y in time (could use different grids)
I Differentiate objective (e.g., use automatic differentiation)
I / gradients related to adjoints but no choice of solver
I gradients useful even if discretization is inaccurate
I use nonlinear optimization tools to approximate minimizer

MD Gunzburger
Perspectives in flow control
and optimization.
SIAM, 2013.

TQ Chen et al.,
Neural Ordinary
Differential Equations.
NeurIPS, 2018.

A Gholami, K Keutzer, G Biros
ANODE: Unconditionally
Accurate Memory-Efficient
Gradients for Neural ODEs.
arXiv:1902.10298
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Example: The Adjoint Equation
Simplified learning problem: one example (y0, c), no weights for classifier, no
regularizer

min
θ

loss(y(1,θ), c) subject to ∂ty(t,θ) = f (y(t),θ(t)), y(0,θ) = y0.

Use adjoint method to compute gradient of objective w.r.t. θ

∂loss
∂θ

(t) =
(
∂f
∂θ

(y(t,θ),θ(t))
)>

z(t)

where z satisfies the adjoint method (−∂t  backward in time)

−∂tz(t,θ) =
(
∂f
∂y

(y(t,θ),θ(t))
)>

z(t), z(1,θ) =
∂loss
∂y

(y(1,θ), c).

note: y(t) needed for solve adjoint equation memory

G. A. Bliss
The use of adjoint systems in the problem of
differential corrections for trajectories.
JUS Artillery, 51:296–311, 1919

D.E. Rumelhart, G.E. Hinton, R.J. Williams
Learning representations by back-propagating
errors.
Nature, 533–536, 1986.
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Multilevel Training of ResNets

Note: Training result depends on initial guess for optimization.

Multi-level learning

ResNet with n layers→ h = T/n
θ0,W0,µ0 ← random initialization
for ` = 1 : 3 do

train ResNet with initial weights θ0,W0,µ0

obtain θ∗,W∗,µ∗
(n, h)← (2n, h/2)
refine ResNet
θ0 ← prolongate θ∗

(W0,µ0)←W∗,µ∗

FA Bornemann, P Deuflhard
The cascadic multigrid method for elliptic
problems.
Numerische Mathematik, 1996.

B Chang et al.
Multi-level Residual Networks from Dynamical
Systems View.
ICLR, 2018.
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Stability and Well-Posedness

Title Intro OC Stab Parallel Σ 15



Lars Ruthotto DNNs motivated by ODEs @ IPAM, 2019

Stability of Deep Neural Networks: Motivation

Goal in learning: Build model that generalizes.
Todo list:

1. model forward dynamic
2. discretize forward dynamic ( 

architecture)
3. train network by minimizing

regularized loss
Expectation: tasks are related

Analogy: Recall the ingredients of a
well-posed inverse problem

1. well-posed forward problem
2. bounded inverse
Next: study properties o forward
propagation

Modeling
well-defined continuous

forward propagation

Discretization
new architectures through
consistent discretization

Optimization
new algorithms inspired

by optimal control
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Impact of Network Architecture on Optimization - 1

min
θ

1
2
‖YN(θ)− C‖2

F Yj+1(θ) = Yj(θ) +
10
N

tanh (KYj(θ))

where C = Y200(1, 1), Y0 ∼ N (0, 1), and

K(θ) =

−θ1 − θ2 θ1 θ2
θ2 −θ1 − θ2 θ1
θ1 θ2 −θ1 − θ2


loss, N = 5 loss, N = 100

Next: Compare examples for different inputs ∼ generalization
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Impact of Network Architecture on Optimization - 2

objective, Ytrain
0 objective, Ytest

0 abs. diff
un

st
ab

le
,N

=
5

st
ab

le
,N

=
10

0
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Stability of Continuous Forward Propagation

Interpret ResNet as discretization of initial value
problem

∂ty(t,θ, y0) = f (y(t,θ, y0),θ(t))

y(0,θ, y0) = y0.

IVP is stable if for any v ∈ Rn

‖y(T,θ, y0)− y(T,θ, y0 + εv)‖2 = O(ε‖v‖).

unstable IVP

stable IVP

idea: ensure stability by design / constraints on f and θ
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Stability of Forward Propagation

K+, λ(K+) = 2

−1.5 0 1.5
−1.5

0

1.5
K−, λ(K−) = −2

−1.5 0 1.5
−1.5

0

1.5
K0, λ(K0) = ±ı

−1.5 0 1.5
−1.5

0

1.5

Fact: The ODE ∂ty(t) = f (y) is stable if the real parts of the eigenvalues of
the Jacobian J are non-positive.

Example: Consider ResNet with stationary weights

∂ty(t) = σ (Ky(t) + b) ⇒ J(t) = diag(σ′(Ky(t) + b))K.

In general, one cannot assume that forward propagation is stable.

Networks with non-stationary weights require additional arguments (e.g.,
kinematic eigenvalues) or assumptions (J changes slowly).
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Enforcing Stability: Antisymmetric Transformation
Two examples of more stable networks.

ResNet with antisymmetric transformation matrix

∂ty(t) = σ((K(t)−K(t)>)y + b(t)).

Hamiltonian-like ResNet

d
dt

(
y
z

)
(t) = σ

((
0 K(t)

−K(t)> 0

)(
y
z

)
+ b(t)

)
.

How about the stability of the discrete system?

−0.1 0 0.1
−0.1

0

0.1
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Stability of Discrete Forward Problem

forward Euler Bashforth family

ResNet not stable for layer fantisym(Y,Kj,bj) = σ
(
(Kj −K>j )Y + bj

)
.

Need to replace fwd Euler by, e.g.,

Yj+1 = Yj+
h

12
(
23fantisym(Yj,θj)− 16fantisym(Yj−1,θj−1) + 5fantisym(Yj−2,θj−2)

)
.
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Verlet Integration for Hamiltonian-inspired NNs
Forward propagation: For Z− 1

2
= 0 and j = 0, . . . ,N − 1 do

Zj+ 1
2
= Zj− 1

2
− hσ (KjYj + bj)

Yj+1 = Yj + hσ
(

K>j Zj+ 1
2
+ bj

)
Note that this is reversible. Given YN and ZN− 1

2
and j = N − 1, . . . , 1 do

Yj = Yj+1 − hσ
(

K>j Zj+ 1
2
+ bj

)
Zj− 1

2
= Zj+ 1

2
+ hσ (KjYj + bj)

Notes:
I reversibility often exploited in hyperbolic PDE-constrained optimization
I this network is a special (in particular, stable) case of ’RevNet’

A. Gomez, M. Ren, R. Urtasun, R. Grosse
The Reversible Residual Network:
Backpropagation Without Storing Activations
arXiv 1707.04585, 2017.

B. Chang, L. Meng, E. Haber, LR, D. Begert,
E. Holtham
Reversible architectures for arbitrarily deep
residual neural networks
32nd AAAI, 1–8, 2018.
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Limitations of Reversibility
Q: Is any algebraically reversible network reversible in practice?
For α, β ∈ R consider original RevNet with F(Y) = αY and G(Z) = βZ, i.e.,

Zj+ 1
2
= Zj− 1

2
− αYj, and Yj+1 = Yj + βZj+ 1

2
.

Combining two time steps in Y

Yj+1 − Yj = βZj+ 1
2
, and Yj − Yj−1 = βZj− 1

2

Subtracting those two gives

Yj+1 − 2Yj + Yj−1 = β(Zj+ 1
2
− Zj− 1

2
) = αβYj

⇔Yj+1 − (2 + αβ)Yj + Yj−1 = 0

There is a solution Yj = ξj, i.e., with a = (2 + αβ)/2

ξ2 − 2aξ + 1 = 0 ⇒ ξ = a±
√

a2 − 1

|ξ|2 = 1 (stable) if a2 ≤ 1. Otherwise ξ growing!
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Example: Impact of Discretization on Training

classification problem generated from peaks in MATLAB R©

data setup
I 2, 000 points in 2D, 5 classes
I Residual Neural Network
I tanh activation, softmax classifier
I multilevel: 32 layers→ 64 layers

compare three configurations
1. ”unstable”: T = 10 (3rd order multistep)
2. ”medium”: T = 5 (1st order Verlet)
3. ”stable”: T = 0.2 (3rd order multistep)

features and labels

Q: how does learning performance compare?
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Example: Impact of ODE Solver - Convergence

unstable, ab3 (T = 10) medium, Verlet (T = 5) stable, ab3 (T = 0.2)

ob
je

ct
iv

e
fu

nc
tio

n

1 300 300
0

1

2

3

4
32 layers 64 layers

1 100 100
0

1

2

3

4
32 layers 64 layers

1 100 100
0

1

2

3

4
32 layers 64 layers

va
lid

at
io

n
ac

cu
ra

cy

1 300 300
0.4

0.6

0.8

1

32 layers 64 layers

1 100 100
0.4

0.6

0.8

1

32 layers 64 layers

1 100 100
0.4

0.6

0.8

1

32 layers 64 layers
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Example: Impact of ODE Solver - Dynamics

unstable, ab3 (T = 10) medium, Verlet (T = 5) stable, ab3 (T = 0.2)
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Example (Ellipses): Hamitonian-like network with Verlet

I 2D feature space,
concentric ellipses

I 1k training, 2k validation

I multilevel: 2→ 1024 layers

I optimization: block
coordinate descent with
Newton-PCG

I weight decay (Tikhonov)
regularization

I tanh activation, width 2

labeled training data propagated training data

prediction + validation data multilevel convergence

2 4 6 8 10

0.9

0.95

1

level

va
lid
at
io
n
ac
cu
ra
cy

ResNN
antiSym
Verlet
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Example (Swiss Roll): Hamitonian-like network with Verlet

I 2D feature space, swiss roll

I 256 training, 256 validation

I multilevel: 2→ 1024 layers

I optimization: block
coordinate descent with
Newton-PCG

I weight decay (Tikhonov)
regularization

I tanh activation, width 4

labeled training data propagated training data

prediction + validation data multilevel convergence

2 4 6 8 10
0.85

0.9

0.95

1

level

Title Intro OC Stab Parallel Σ 29



Lars Ruthotto DNNs motivated by ODEs @ IPAM, 2019

Layer-Parallel Training
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Layer-Parallel Training of Deep Residual Neural Networks

I with S. Günther, J. B. Schroder, E. C. Cyr, N. R. Gauger

Full-space version of the optimal control formulation of supervised learning

minimize
θ0,...,θN−1,W,Y1,...,YN

loss[g(WYN),C] + regularizer[θ,W]

subject to

Y1 = Y0 + hf (Y0,θ0)
Y2 = Y1 + hf (Y1,θ1)

...
...

YN = YN−1 + hf (YN−1,θN−1)

Recall: Constraints can be eliminated (explicit Euler, sequential).
Goal: Stay in full-space and create parallelism in time
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Example: Elimination vs. Iterative Solve

t0 t1 t2 t3
... tc

T0 T1 . . . TN/c : C-point
(fine and coarse grid)

: F-point
(fine grid only)

h∆ = ch

h

Consider linear dynamics ∂ty = Ay. Forward Euler discretization is


I

−(I + hA) I
−(I + hA) I

. . . . . .
−(I + hA) I




y1
y2
y3

...
yN

 =


y0
0
0
...
0


I Option 1: forward substitution ( optimal complexity but sequential)
I Option 2: use iterative solver ( higher complexity but parallel)
I Option 3: multigrid in time (MGRIT)
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Scalability for Forward and Simultaneous Optimization

1
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)

compute time (sec)

Simultaneous layer-parallel
Layer-serial reference

strong scaling (fwd + gradient) simultaneous optimization

I MGRIT provides a new form of parallelism (in addition to data parallelism)
I Use-case 1: Replace forward and backward propagation in SGD
I Use-case 2: simultaneous optimization (more intrusive)

S. Günther, LR, J. B. Schroder, E. C. Cyr, N. R. Gauger
Layer-Parallel Training of Deep Residual Neural Networks.
in revision, SIMODS, 2019.
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Conclusion
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Σ: Deep Neural Networks motivated by ODEs

Optimal control formulation
I new insights, theory, algorithms

Stability and well-posedness
I differentiate-then-discretize vs. discrete-then-differentiate
I examples: impact on optimization/generalization

Numerical Methods: Discretize-Optimize
I Verlet: reversible and stable networks (memory-free)
I Parallel-in-Layer: additional option for parallelism

DNNs motivated by PDEs (tomorrow)
I parabolic CNNs, hyberbolic CNNs, IMEX-Net, Lean ResNets

Lots to do/explore/contribute for computational and
applied mathematicians. . .

E Haber, LR
Stable Architectures
for DNNs.
Inverse Problems,
2017.

E Holtham et al.
Learning Across
Scales.
AAAI, 2018.

B Chang et al.,
Reversible
Architectures for
Deep ResNNs.
AAAI, 2018.

LR, E Haber
Deep Neural
Networks motivated
by PDEs.
arXiv, 2018.
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