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Links to machine learning
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Potential energy surface

Can we build a more accurate PES?

Can we easily build an accurate PES?

Can we make the numerical integration 
faster and/or more efficient?



Disclaimer: only kernel methods covered
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Kernel

Deep learning

- needs a representation 
- linear algebra 
- can be efficient with small 

data
{

{- learns the representation 
- complex mathematical 

structure 
- data hungry



Kernel machine learning 101
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K(r, r′�) = exp (−
(r − r′�)2

2σ2 )
U(r) = ∑

i

αiK(r*i , r)

Define kernel

α = (K + λ𝕀)−1U

Make a prediction:

Train your model:
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Extrapolation in machine learning
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Bayesian inference
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Bayes’ formula

p( f, f* |y) =
p(y | f ) p( f, f*)

p(y)

likelihood
prior

posterior
normalization
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(a) Prior distribution. 15 samples (thin lines)
drawn from a Gaussian process with zero
mean and Gaussian covariance function with
unit length scale.
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(b) Posterior distribution with mean function
(thick line). 15 samples (thin lines) drawn
from the posterior distribution after condi-
tioning on three training data (red crosses).

Figure 6: Idea of Gaussian process regression. Starting from the prior distribution (a), one
conditions on the training data. Mean and variance of the posterior distribution (b) are used
as predictor and confidence estimate. Shaded regions denote two standard deviations.

are determined via Eq. 17, given a training set. This leaves the choice of kernel k and
regularization hyperparameter �, plus any hyperparameters of the kernel, with the optimal
choice depending on the dataset. A general guiding principle is Occam’s razor,⇤ which for
our purposes states that among models with equal performance, the simplest one should be
preferred. Many approaches to model selection are in use;94 here, the focus is on performance
estimation as selection criterion. As a specific example, given similar performance, for the
models presented in this tutorial one should prefer (i) the linear kernel over the Gaussian and
the Laplacian kernel, (ii) the Gaussian over the Laplacian kernel, (iii) higher regularization
strengths, and (iv) larger length scales, the reason for (ii)–(iv) being smoothness of the
estimator.

Estimating model performance. Ideally, we would like to know the error of our model on
new data—predicting those is its purpose, after all. In statistical learning theory,19,95,96 this
is measured by the risk of the model f ,

R(f) =

Z
L
�
y, f(x)

�
dP (x, y) = EP

⇥
L(y, f(x))

⇤
(20)

where P is the joint distribution of inputs and labels, and L : Y ⇥ Y ! R is a loss function
measuring the error of a prediction. Eq. 20 is the expected error of f . Unfortunately, P
is usually not known, and R has to be estimated from a finite set of training data as the
empirical risk

Rn(f) =
1

n

nX

i=1

L
�
yi, f(xi)

�
. (21)

⇤ Attributed to William of Ockham (early 14th century), but already known to Aristotle and Ptolemy
in classical antiquity.

18

Rasmussen, Advanced lectures on machine learning. Springer, 63-71 (2004)
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random variable: 
value of the 
stochastic function 
at x

mean covariance

f(x)
<latexit sha1_base64="Appt6dOASLoU0puF9XJna1LvMt4=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBahXkoigh6LXjxWMG2hDWWz3bRLdzdhdyOW0L/gxYMiXv1D3vw3btoctPXBwOO9GWbmhQln2rjut1NaW9/Y3CpvV3Z29/YPqodHbR2nilCfxDxW3RBrypmkvmGG026iKBYhp51wcpv7nUeqNIvlg5kmNBB4JFnECDa5FNWfzgfVmttw50CrxCtIDQq0BtWv/jAmqaDSEI617nluYoIMK8MIp7NKP9U0wWSCR7RnqcSC6iCb3zpDZ1YZoihWtqRBc/X3RIaF1lMR2k6BzVgve7n4n9dLTXQdZEwmqaGSLBZFKUcmRvnjaMgUJYZPLcFEMXsrImOsMDE2nooNwVt+eZW0Lxqe2/DuL2vNmyKOMpzAKdTBgytowh20wAcCY3iGV3hzhPPivDsfi9aSU8wcwx84nz9sX43R</latexit><latexit sha1_base64="Appt6dOASLoU0puF9XJna1LvMt4=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBahXkoigh6LXjxWMG2hDWWz3bRLdzdhdyOW0L/gxYMiXv1D3vw3btoctPXBwOO9GWbmhQln2rjut1NaW9/Y3CpvV3Z29/YPqodHbR2nilCfxDxW3RBrypmkvmGG026iKBYhp51wcpv7nUeqNIvlg5kmNBB4JFnECDa5FNWfzgfVmttw50CrxCtIDQq0BtWv/jAmqaDSEI617nluYoIMK8MIp7NKP9U0wWSCR7RnqcSC6iCb3zpDZ1YZoihWtqRBc/X3RIaF1lMR2k6BzVgve7n4n9dLTXQdZEwmqaGSLBZFKUcmRvnjaMgUJYZPLcFEMXsrImOsMDE2nooNwVt+eZW0Lxqe2/DuL2vNmyKOMpzAKdTBgytowh20wAcCY3iGV3hzhPPivDsfi9aSU8wcwx84nz9sX43R</latexit><latexit sha1_base64="Appt6dOASLoU0puF9XJna1LvMt4=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBahXkoigh6LXjxWMG2hDWWz3bRLdzdhdyOW0L/gxYMiXv1D3vw3btoctPXBwOO9GWbmhQln2rjut1NaW9/Y3CpvV3Z29/YPqodHbR2nilCfxDxW3RBrypmkvmGG026iKBYhp51wcpv7nUeqNIvlg5kmNBB4JFnECDa5FNWfzgfVmttw50CrxCtIDQq0BtWv/jAmqaDSEI617nluYoIMK8MIp7NKP9U0wWSCR7RnqcSC6iCb3zpDZ1YZoihWtqRBc/X3RIaF1lMR2k6BzVgve7n4n9dLTXQdZEwmqaGSLBZFKUcmRvnjaMgUJYZPLcFEMXsrImOsMDE2nooNwVt+eZW0Lxqe2/DuL2vNmyKOMpzAKdTBgytowh20wAcCY3iGV3hzhPPivDsfi9aSU8wcwx84nz9sX43R</latexit><latexit sha1_base64="Appt6dOASLoU0puF9XJna1LvMt4=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBahXkoigh6LXjxWMG2hDWWz3bRLdzdhdyOW0L/gxYMiXv1D3vw3btoctPXBwOO9GWbmhQln2rjut1NaW9/Y3CpvV3Z29/YPqodHbR2nilCfxDxW3RBrypmkvmGG026iKBYhp51wcpv7nUeqNIvlg5kmNBB4JFnECDa5FNWfzgfVmttw50CrxCtIDQq0BtWv/jAmqaDSEI617nluYoIMK8MIp7NKP9U0wWSCR7RnqcSC6iCb3zpDZ1YZoihWtqRBc/X3RIaF1lMR2k6BzVgve7n4n9dLTXQdZEwmqaGSLBZFKUcmRvnjaMgUJYZPLcFEMXsrImOsMDE2nooNwVt+eZW0Lxqe2/DuL2vNmyKOMpzAKdTBgytowh20wAcCY3iGV3hzhPPivDsfi9aSU8wcwx84nz9sX43R</latexit>

⌃ij = k(xi, xj)
<latexit sha1_base64="B38NMmyREyUD9XF68oO/vbLsTCw=">AAACAXicbVDLSgMxFM3UV62vUTeCm2ARKkiZEUE3QtGNy4r2Ae0wZNJMmzbJDElGWoa68VfcuFDErX/hzr8xbWeh1QMXDufcy733BDGjSjvOl5VbWFxaXsmvFtbWNza37O2duooSiUkNRyySzQApwqggNU01I81YEsQDRhrB4GriN+6JVDQSd3oUE4+jrqAhxUgbybf32re0y5Gf0v4YXsBBaejT46HfP/LtolN2poB/iZuRIshQ9e3PdifCCSdCY4aUarlOrL0USU0xI+NCO1EkRniAuqRlqECcKC+dfjCGh0bpwDCSpoSGU/XnRIq4UiMemE6OdE/NexPxP6+V6PDcS6mIE00Eni0KEwZ1BCdxwA6VBGs2MgRhSc2tEPeQRFib0AomBHf+5b+kflJ2nbJ7c1qsXGZx5ME+OAAl4IIzUAHXoApqAIMH8ARewKv1aD1bb9b7rDVnZTO74Besj28OApX4</latexit><latexit sha1_base64="B38NMmyREyUD9XF68oO/vbLsTCw=">AAACAXicbVDLSgMxFM3UV62vUTeCm2ARKkiZEUE3QtGNy4r2Ae0wZNJMmzbJDElGWoa68VfcuFDErX/hzr8xbWeh1QMXDufcy733BDGjSjvOl5VbWFxaXsmvFtbWNza37O2duooSiUkNRyySzQApwqggNU01I81YEsQDRhrB4GriN+6JVDQSd3oUE4+jrqAhxUgbybf32re0y5Gf0v4YXsBBaejT46HfP/LtolN2poB/iZuRIshQ9e3PdifCCSdCY4aUarlOrL0USU0xI+NCO1EkRniAuqRlqECcKC+dfjCGh0bpwDCSpoSGU/XnRIq4UiMemE6OdE/NexPxP6+V6PDcS6mIE00Eni0KEwZ1BCdxwA6VBGs2MgRhSc2tEPeQRFib0AomBHf+5b+kflJ2nbJ7c1qsXGZx5ME+OAAl4IIzUAHXoApqAIMH8ARewKv1aD1bb9b7rDVnZTO74Besj28OApX4</latexit><latexit sha1_base64="B38NMmyREyUD9XF68oO/vbLsTCw=">AAACAXicbVDLSgMxFM3UV62vUTeCm2ARKkiZEUE3QtGNy4r2Ae0wZNJMmzbJDElGWoa68VfcuFDErX/hzr8xbWeh1QMXDufcy733BDGjSjvOl5VbWFxaXsmvFtbWNza37O2duooSiUkNRyySzQApwqggNU01I81YEsQDRhrB4GriN+6JVDQSd3oUE4+jrqAhxUgbybf32re0y5Gf0v4YXsBBaejT46HfP/LtolN2poB/iZuRIshQ9e3PdifCCSdCY4aUarlOrL0USU0xI+NCO1EkRniAuqRlqECcKC+dfjCGh0bpwDCSpoSGU/XnRIq4UiMemE6OdE/NexPxP6+V6PDcS6mIE00Eni0KEwZ1BCdxwA6VBGs2MgRhSc2tEPeQRFib0AomBHf+5b+kflJ2nbJ7c1qsXGZx5ME+OAAl4IIzUAHXoApqAIMH8ARewKv1aD1bb9b7rDVnZTO74Besj28OApX4</latexit><latexit sha1_base64="B38NMmyREyUD9XF68oO/vbLsTCw=">AAACAXicbVDLSgMxFM3UV62vUTeCm2ARKkiZEUE3QtGNy4r2Ae0wZNJMmzbJDElGWoa68VfcuFDErX/hzr8xbWeh1QMXDufcy733BDGjSjvOl5VbWFxaXsmvFtbWNza37O2duooSiUkNRyySzQApwqggNU01I81YEsQDRhrB4GriN+6JVDQSd3oUE4+jrqAhxUgbybf32re0y5Gf0v4YXsBBaejT46HfP/LtolN2poB/iZuRIshQ9e3PdifCCSdCY4aUarlOrL0USU0xI+NCO1EkRniAuqRlqECcKC+dfjCGh0bpwDCSpoSGU/XnRIq4UiMemE6OdE/NexPxP6+V6PDcS6mIE00Eni0KEwZ1BCdxwA6VBGs2MgRhSc2tEPeQRFib0AomBHf+5b+kflJ2nbJ7c1qsXGZx5ME+OAAl4IIzUAHXoApqAIMH8ARewKv1aD1bb9b7rDVnZTO74Besj28OApX4</latexit>

µi = m(xi)
<latexit sha1_base64="D0Sep4kp8I3o60t3thmND8Z0x+o=">AAAB9XicbVBNSwMxEJ31s9avqkcvwSLUS9kVQS9C0YvHCvYD2nXJptk2NMkuSVYtS/+HFw+KePW/ePPfmLZ70NYHA4/3ZpiZFyacaeO6387S8srq2npho7i5tb2zW9rbb+o4VYQ2SMxj1Q6xppxJ2jDMcNpOFMUi5LQVDq8nfuuBKs1ieWdGCfUF7ksWMYKNle67Ig0YukSi8hSwk6BUdqvuFGiReDkpQ456UPrq9mKSCioN4Vjrjucmxs+wMoxwOi52U00TTIa4TzuWSiyo9rPp1WN0bJUeimJlSxo0VX9PZFhoPRKh7RTYDPS8NxH/8zqpiS78jMkkNVSS2aIo5cjEaBIB6jFFieEjSzBRzN6KyAArTIwNqmhD8OZfXiTN06rnVr3bs3LtKo+jAIdwBBXw4BxqcAN1aAABBc/wCm/Oo/PivDsfs9YlJ585gD9wPn8AA4WRhw==</latexit><latexit sha1_base64="D0Sep4kp8I3o60t3thmND8Z0x+o=">AAAB9XicbVBNSwMxEJ31s9avqkcvwSLUS9kVQS9C0YvHCvYD2nXJptk2NMkuSVYtS/+HFw+KePW/ePPfmLZ70NYHA4/3ZpiZFyacaeO6387S8srq2npho7i5tb2zW9rbb+o4VYQ2SMxj1Q6xppxJ2jDMcNpOFMUi5LQVDq8nfuuBKs1ieWdGCfUF7ksWMYKNle67Ig0YukSi8hSwk6BUdqvuFGiReDkpQ456UPrq9mKSCioN4Vjrjucmxs+wMoxwOi52U00TTIa4TzuWSiyo9rPp1WN0bJUeimJlSxo0VX9PZFhoPRKh7RTYDPS8NxH/8zqpiS78jMkkNVSS2aIo5cjEaBIB6jFFieEjSzBRzN6KyAArTIwNqmhD8OZfXiTN06rnVr3bs3LtKo+jAIdwBBXw4BxqcAN1aAABBc/wCm/Oo/PivDsfs9YlJ585gD9wPn8AA4WRhw==</latexit><latexit sha1_base64="D0Sep4kp8I3o60t3thmND8Z0x+o=">AAAB9XicbVBNSwMxEJ31s9avqkcvwSLUS9kVQS9C0YvHCvYD2nXJptk2NMkuSVYtS/+HFw+KePW/ePPfmLZ70NYHA4/3ZpiZFyacaeO6387S8srq2npho7i5tb2zW9rbb+o4VYQ2SMxj1Q6xppxJ2jDMcNpOFMUi5LQVDq8nfuuBKs1ieWdGCfUF7ksWMYKNle67Ig0YukSi8hSwk6BUdqvuFGiReDkpQ456UPrq9mKSCioN4Vjrjucmxs+wMoxwOi52U00TTIa4TzuWSiyo9rPp1WN0bJUeimJlSxo0VX9PZFhoPRKh7RTYDPS8NxH/8zqpiS78jMkkNVSS2aIo5cjEaBIB6jFFieEjSzBRzN6KyAArTIwNqmhD8OZfXiTN06rnVr3bs3LtKo+jAIdwBBXw4BxqcAN1aAABBc/wCm/Oo/PivDsfs9YlJ585gD9wPn8AA4WRhw==</latexit><latexit sha1_base64="D0Sep4kp8I3o60t3thmND8Z0x+o=">AAAB9XicbVBNSwMxEJ31s9avqkcvwSLUS9kVQS9C0YvHCvYD2nXJptk2NMkuSVYtS/+HFw+KePW/ePPfmLZ70NYHA4/3ZpiZFyacaeO6387S8srq2npho7i5tb2zW9rbb+o4VYQ2SMxj1Q6xppxJ2jDMcNpOFMUi5LQVDq8nfuuBKs1ieWdGCfUF7ksWMYKNle67Ig0YukSi8hSwk6BUdqvuFGiReDkpQ456UPrq9mKSCioN4Vjrjucmxs+wMoxwOi52U00TTIa4TzuWSiyo9rPp1WN0bJUeimJlSxo0VX9PZFhoPRKh7RTYDPS8NxH/8zqpiS78jMkkNVSS2aIo5cjEaBIB6jFFieEjSzBRzN6KyAArTIwNqmhD8OZfXiTN06rnVr3bs3LtKo+jAIdwBBXw4BxqcAN1aAABBc/wCm/Oo/PivDsfs9YlJ585gD9wPn8AA4WRhw==</latexit>

Rasmussen, Advanced lectures on machine learning. Springer, 63-71 (2004)
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f ⇠ GP(m, k)
<latexit sha1_base64="Doab9rHmtdx101r/HIygjLjGtcs=">AAACA3icbVBNS8NAEJ3Ur1q/ot70sliEClISEfRY9KDHCvYDmlI22027dDcJuxuhhIIX/4oXD4p49U9489+4aXPQ1gcDj/dmmJnnx5wp7TjfVmFpeWV1rbhe2tjc2t6xd/eaKkokoQ0S8Ui2fawoZyFtaKY5bceSYuFz2vJH15nfeqBSsSi81+OYdgUehCxgBGsj9eyDAHmKCeQJrIcE8/SmPkEVcYpGJz277FSdKdAicXNShhz1nv3l9SOSCBpqwrFSHdeJdTfFUjPC6aTkJYrGmIzwgHYMDbGgqptOf5igY6P0URBJU6FGU/X3RIqFUmPhm87sVDXvZeJ/XifRwWU3ZWGcaBqS2aIg4UhHKAsE9ZmkRPOxIZhIZm5FZIglJtrEVjIhuPMvL5LmWdV1qu7debl2lcdRhEM4ggq4cAE1uIU6NIDAIzzDK7xZT9aL9W59zFoLVj6zD39gff4A08qWVA==</latexit><latexit sha1_base64="Doab9rHmtdx101r/HIygjLjGtcs=">AAACA3icbVBNS8NAEJ3Ur1q/ot70sliEClISEfRY9KDHCvYDmlI22027dDcJuxuhhIIX/4oXD4p49U9489+4aXPQ1gcDj/dmmJnnx5wp7TjfVmFpeWV1rbhe2tjc2t6xd/eaKkokoQ0S8Ui2fawoZyFtaKY5bceSYuFz2vJH15nfeqBSsSi81+OYdgUehCxgBGsj9eyDAHmKCeQJrIcE8/SmPkEVcYpGJz277FSdKdAicXNShhz1nv3l9SOSCBpqwrFSHdeJdTfFUjPC6aTkJYrGmIzwgHYMDbGgqptOf5igY6P0URBJU6FGU/X3RIqFUmPhm87sVDXvZeJ/XifRwWU3ZWGcaBqS2aIg4UhHKAsE9ZmkRPOxIZhIZm5FZIglJtrEVjIhuPMvL5LmWdV1qu7debl2lcdRhEM4ggq4cAE1uIU6NIDAIzzDK7xZT9aL9W59zFoLVj6zD39gff4A08qWVA==</latexit><latexit sha1_base64="Doab9rHmtdx101r/HIygjLjGtcs=">AAACA3icbVBNS8NAEJ3Ur1q/ot70sliEClISEfRY9KDHCvYDmlI22027dDcJuxuhhIIX/4oXD4p49U9489+4aXPQ1gcDj/dmmJnnx5wp7TjfVmFpeWV1rbhe2tjc2t6xd/eaKkokoQ0S8Ui2fawoZyFtaKY5bceSYuFz2vJH15nfeqBSsSi81+OYdgUehCxgBGsj9eyDAHmKCeQJrIcE8/SmPkEVcYpGJz277FSdKdAicXNShhz1nv3l9SOSCBpqwrFSHdeJdTfFUjPC6aTkJYrGmIzwgHYMDbGgqptOf5igY6P0URBJU6FGU/X3RIqFUmPhm87sVDXvZeJ/XifRwWU3ZWGcaBqS2aIg4UhHKAsE9ZmkRPOxIZhIZm5FZIglJtrEVjIhuPMvL5LmWdV1qu7debl2lcdRhEM4ggq4cAE1uIU6NIDAIzzDK7xZT9aL9W59zFoLVj6zD39gff4A08qWVA==</latexit><latexit sha1_base64="Doab9rHmtdx101r/HIygjLjGtcs=">AAACA3icbVBNS8NAEJ3Ur1q/ot70sliEClISEfRY9KDHCvYDmlI22027dDcJuxuhhIIX/4oXD4p49U9489+4aXPQ1gcDj/dmmJnnx5wp7TjfVmFpeWV1rbhe2tjc2t6xd/eaKkokoQ0S8Ui2fawoZyFtaKY5bceSYuFz2vJH15nfeqBSsSi81+OYdgUehCxgBGsj9eyDAHmKCeQJrIcE8/SmPkEVcYpGJz277FSdKdAicXNShhz1nv3l9SOSCBpqwrFSHdeJdTfFUjPC6aTkJYrGmIzwgHYMDbGgqptOf5igY6P0URBJU6FGU/X3RIqFUmPhm87sVDXvZeJ/XifRwWU3ZWGcaBqS2aIg4UhHKAsE9ZmkRPOxIZhIZm5FZIglJtrEVjIhuPMvL5LmWdV1qu7debl2lcdRhEM4ggq4cAE1uIU6NIDAIzzDK7xZT9aL9W59zFoLVj6zD39gff4A08qWVA==</latexit>

random variable: 
value of the 
stochastic function 
at x

mean covariance

f(x)
<latexit sha1_base64="Appt6dOASLoU0puF9XJna1LvMt4=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBahXkoigh6LXjxWMG2hDWWz3bRLdzdhdyOW0L/gxYMiXv1D3vw3btoctPXBwOO9GWbmhQln2rjut1NaW9/Y3CpvV3Z29/YPqodHbR2nilCfxDxW3RBrypmkvmGG026iKBYhp51wcpv7nUeqNIvlg5kmNBB4JFnECDa5FNWfzgfVmttw50CrxCtIDQq0BtWv/jAmqaDSEI617nluYoIMK8MIp7NKP9U0wWSCR7RnqcSC6iCb3zpDZ1YZoihWtqRBc/X3RIaF1lMR2k6BzVgve7n4n9dLTXQdZEwmqaGSLBZFKUcmRvnjaMgUJYZPLcFEMXsrImOsMDE2nooNwVt+eZW0Lxqe2/DuL2vNmyKOMpzAKdTBgytowh20wAcCY3iGV3hzhPPivDsfi9aSU8wcwx84nz9sX43R</latexit><latexit sha1_base64="Appt6dOASLoU0puF9XJna1LvMt4=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBahXkoigh6LXjxWMG2hDWWz3bRLdzdhdyOW0L/gxYMiXv1D3vw3btoctPXBwOO9GWbmhQln2rjut1NaW9/Y3CpvV3Z29/YPqodHbR2nilCfxDxW3RBrypmkvmGG026iKBYhp51wcpv7nUeqNIvlg5kmNBB4JFnECDa5FNWfzgfVmttw50CrxCtIDQq0BtWv/jAmqaDSEI617nluYoIMK8MIp7NKP9U0wWSCR7RnqcSC6iCb3zpDZ1YZoihWtqRBc/X3RIaF1lMR2k6BzVgve7n4n9dLTXQdZEwmqaGSLBZFKUcmRvnjaMgUJYZPLcFEMXsrImOsMDE2nooNwVt+eZW0Lxqe2/DuL2vNmyKOMpzAKdTBgytowh20wAcCY3iGV3hzhPPivDsfi9aSU8wcwx84nz9sX43R</latexit><latexit sha1_base64="Appt6dOASLoU0puF9XJna1LvMt4=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBahXkoigh6LXjxWMG2hDWWz3bRLdzdhdyOW0L/gxYMiXv1D3vw3btoctPXBwOO9GWbmhQln2rjut1NaW9/Y3CpvV3Z29/YPqodHbR2nilCfxDxW3RBrypmkvmGG026iKBYhp51wcpv7nUeqNIvlg5kmNBB4JFnECDa5FNWfzgfVmttw50CrxCtIDQq0BtWv/jAmqaDSEI617nluYoIMK8MIp7NKP9U0wWSCR7RnqcSC6iCb3zpDZ1YZoihWtqRBc/X3RIaF1lMR2k6BzVgve7n4n9dLTXQdZEwmqaGSLBZFKUcmRvnjaMgUJYZPLcFEMXsrImOsMDE2nooNwVt+eZW0Lxqe2/DuL2vNmyKOMpzAKdTBgytowh20wAcCY3iGV3hzhPPivDsfi9aSU8wcwx84nz9sX43R</latexit><latexit sha1_base64="Appt6dOASLoU0puF9XJna1LvMt4=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBahXkoigh6LXjxWMG2hDWWz3bRLdzdhdyOW0L/gxYMiXv1D3vw3btoctPXBwOO9GWbmhQln2rjut1NaW9/Y3CpvV3Z29/YPqodHbR2nilCfxDxW3RBrypmkvmGG026iKBYhp51wcpv7nUeqNIvlg5kmNBB4JFnECDa5FNWfzgfVmttw50CrxCtIDQq0BtWv/jAmqaDSEI617nluYoIMK8MIp7NKP9U0wWSCR7RnqcSC6iCb3zpDZ1YZoihWtqRBc/X3RIaF1lMR2k6BzVgve7n4n9dLTXQdZEwmqaGSLBZFKUcmRvnjaMgUJYZPLcFEMXsrImOsMDE2nooNwVt+eZW0Lxqe2/DuL2vNmyKOMpzAKdTBgytowh20wAcCY3iGV3hzhPPivDsfi9aSU8wcwx84nz9sX43R</latexit>

⌃ij = k(xi, xj)
<latexit sha1_base64="B38NMmyREyUD9XF68oO/vbLsTCw=">AAACAXicbVDLSgMxFM3UV62vUTeCm2ARKkiZEUE3QtGNy4r2Ae0wZNJMmzbJDElGWoa68VfcuFDErX/hzr8xbWeh1QMXDufcy733BDGjSjvOl5VbWFxaXsmvFtbWNza37O2duooSiUkNRyySzQApwqggNU01I81YEsQDRhrB4GriN+6JVDQSd3oUE4+jrqAhxUgbybf32re0y5Gf0v4YXsBBaejT46HfP/LtolN2poB/iZuRIshQ9e3PdifCCSdCY4aUarlOrL0USU0xI+NCO1EkRniAuqRlqECcKC+dfjCGh0bpwDCSpoSGU/XnRIq4UiMemE6OdE/NexPxP6+V6PDcS6mIE00Eni0KEwZ1BCdxwA6VBGs2MgRhSc2tEPeQRFib0AomBHf+5b+kflJ2nbJ7c1qsXGZx5ME+OAAl4IIzUAHXoApqAIMH8ARewKv1aD1bb9b7rDVnZTO74Besj28OApX4</latexit><latexit sha1_base64="B38NMmyREyUD9XF68oO/vbLsTCw=">AAACAXicbVDLSgMxFM3UV62vUTeCm2ARKkiZEUE3QtGNy4r2Ae0wZNJMmzbJDElGWoa68VfcuFDErX/hzr8xbWeh1QMXDufcy733BDGjSjvOl5VbWFxaXsmvFtbWNza37O2duooSiUkNRyySzQApwqggNU01I81YEsQDRhrB4GriN+6JVDQSd3oUE4+jrqAhxUgbybf32re0y5Gf0v4YXsBBaejT46HfP/LtolN2poB/iZuRIshQ9e3PdifCCSdCY4aUarlOrL0USU0xI+NCO1EkRniAuqRlqECcKC+dfjCGh0bpwDCSpoSGU/XnRIq4UiMemE6OdE/NexPxP6+V6PDcS6mIE00Eni0KEwZ1BCdxwA6VBGs2MgRhSc2tEPeQRFib0AomBHf+5b+kflJ2nbJ7c1qsXGZx5ME+OAAl4IIzUAHXoApqAIMH8ARewKv1aD1bb9b7rDVnZTO74Besj28OApX4</latexit><latexit sha1_base64="B38NMmyREyUD9XF68oO/vbLsTCw=">AAACAXicbVDLSgMxFM3UV62vUTeCm2ARKkiZEUE3QtGNy4r2Ae0wZNJMmzbJDElGWoa68VfcuFDErX/hzr8xbWeh1QMXDufcy733BDGjSjvOl5VbWFxaXsmvFtbWNza37O2duooSiUkNRyySzQApwqggNU01I81YEsQDRhrB4GriN+6JVDQSd3oUE4+jrqAhxUgbybf32re0y5Gf0v4YXsBBaejT46HfP/LtolN2poB/iZuRIshQ9e3PdifCCSdCY4aUarlOrL0USU0xI+NCO1EkRniAuqRlqECcKC+dfjCGh0bpwDCSpoSGU/XnRIq4UiMemE6OdE/NexPxP6+V6PDcS6mIE00Eni0KEwZ1BCdxwA6VBGs2MgRhSc2tEPeQRFib0AomBHf+5b+kflJ2nbJ7c1qsXGZx5ME+OAAl4IIzUAHXoApqAIMH8ARewKv1aD1bb9b7rDVnZTO74Besj28OApX4</latexit><latexit sha1_base64="B38NMmyREyUD9XF68oO/vbLsTCw=">AAACAXicbVDLSgMxFM3UV62vUTeCm2ARKkiZEUE3QtGNy4r2Ae0wZNJMmzbJDElGWoa68VfcuFDErX/hzr8xbWeh1QMXDufcy733BDGjSjvOl5VbWFxaXsmvFtbWNza37O2duooSiUkNRyySzQApwqggNU01I81YEsQDRhrB4GriN+6JVDQSd3oUE4+jrqAhxUgbybf32re0y5Gf0v4YXsBBaejT46HfP/LtolN2poB/iZuRIshQ9e3PdifCCSdCY4aUarlOrL0USU0xI+NCO1EkRniAuqRlqECcKC+dfjCGh0bpwDCSpoSGU/XnRIq4UiMemE6OdE/NexPxP6+V6PDcS6mIE00Eni0KEwZ1BCdxwA6VBGs2MgRhSc2tEPeQRFib0AomBHf+5b+kflJ2nbJ7c1qsXGZx5ME+OAAl4IIzUAHXoApqAIMH8ARewKv1aD1bb9b7rDVnZTO74Besj28OApX4</latexit>

µi = m(xi)
<latexit sha1_base64="D0Sep4kp8I3o60t3thmND8Z0x+o=">AAAB9XicbVBNSwMxEJ31s9avqkcvwSLUS9kVQS9C0YvHCvYD2nXJptk2NMkuSVYtS/+HFw+KePW/ePPfmLZ70NYHA4/3ZpiZFyacaeO6387S8srq2npho7i5tb2zW9rbb+o4VYQ2SMxj1Q6xppxJ2jDMcNpOFMUi5LQVDq8nfuuBKs1ieWdGCfUF7ksWMYKNle67Ig0YukSi8hSwk6BUdqvuFGiReDkpQ456UPrq9mKSCioN4Vjrjucmxs+wMoxwOi52U00TTIa4TzuWSiyo9rPp1WN0bJUeimJlSxo0VX9PZFhoPRKh7RTYDPS8NxH/8zqpiS78jMkkNVSS2aIo5cjEaBIB6jFFieEjSzBRzN6KyAArTIwNqmhD8OZfXiTN06rnVr3bs3LtKo+jAIdwBBXw4BxqcAN1aAABBc/wCm/Oo/PivDsfs9YlJ585gD9wPn8AA4WRhw==</latexit><latexit sha1_base64="D0Sep4kp8I3o60t3thmND8Z0x+o=">AAAB9XicbVBNSwMxEJ31s9avqkcvwSLUS9kVQS9C0YvHCvYD2nXJptk2NMkuSVYtS/+HFw+KePW/ePPfmLZ70NYHA4/3ZpiZFyacaeO6387S8srq2npho7i5tb2zW9rbb+o4VYQ2SMxj1Q6xppxJ2jDMcNpOFMUi5LQVDq8nfuuBKs1ieWdGCfUF7ksWMYKNle67Ig0YukSi8hSwk6BUdqvuFGiReDkpQ456UPrq9mKSCioN4Vjrjucmxs+wMoxwOi52U00TTIa4TzuWSiyo9rPp1WN0bJUeimJlSxo0VX9PZFhoPRKh7RTYDPS8NxH/8zqpiS78jMkkNVSS2aIo5cjEaBIB6jFFieEjSzBRzN6KyAArTIwNqmhD8OZfXiTN06rnVr3bs3LtKo+jAIdwBBXw4BxqcAN1aAABBc/wCm/Oo/PivDsfs9YlJ585gD9wPn8AA4WRhw==</latexit><latexit sha1_base64="D0Sep4kp8I3o60t3thmND8Z0x+o=">AAAB9XicbVBNSwMxEJ31s9avqkcvwSLUS9kVQS9C0YvHCvYD2nXJptk2NMkuSVYtS/+HFw+KePW/ePPfmLZ70NYHA4/3ZpiZFyacaeO6387S8srq2npho7i5tb2zW9rbb+o4VYQ2SMxj1Q6xppxJ2jDMcNpOFMUi5LQVDq8nfuuBKs1ieWdGCfUF7ksWMYKNle67Ig0YukSi8hSwk6BUdqvuFGiReDkpQ456UPrq9mKSCioN4Vjrjucmxs+wMoxwOi52U00TTIa4TzuWSiyo9rPp1WN0bJUeimJlSxo0VX9PZFhoPRKh7RTYDPS8NxH/8zqpiS78jMkkNVSS2aIo5cjEaBIB6jFFieEjSzBRzN6KyAArTIwNqmhD8OZfXiTN06rnVr3bs3LtKo+jAIdwBBXw4BxqcAN1aAABBc/wCm/Oo/PivDsfs9YlJ585gD9wPn8AA4WRhw==</latexit><latexit sha1_base64="D0Sep4kp8I3o60t3thmND8Z0x+o=">AAAB9XicbVBNSwMxEJ31s9avqkcvwSLUS9kVQS9C0YvHCvYD2nXJptk2NMkuSVYtS/+HFw+KePW/ePPfmLZ70NYHA4/3ZpiZFyacaeO6387S8srq2npho7i5tb2zW9rbb+o4VYQ2SMxj1Q6xppxJ2jDMcNpOFMUi5LQVDq8nfuuBKs1ieWdGCfUF7ksWMYKNle67Ig0YukSi8hSwk6BUdqvuFGiReDkpQ456UPrq9mKSCioN4Vjrjucmxs+wMoxwOi52U00TTIa4TzuWSiyo9rPp1WN0bJUeimJlSxo0VX9PZFhoPRKh7RTYDPS8NxH/8zqpiS78jMkkNVSS2aIo5cjEaBIB6jFFieEjSzBRzN6KyAArTIwNqmhD8OZfXiTN06rnVr3bs3LtKo+jAIdwBBXw4BxqcAN1aAABBc/wCm/Oo/PivDsfs9YlJ585gD9wPn8AA4WRhw==</latexit>

Rasmussen, Advanced lectures on machine learning. Springer, 63-71 (2004)

K↵ = p

kernel

target property



Gaussian processes
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f ⇠ GP(m, k)
<latexit sha1_base64="Doab9rHmtdx101r/HIygjLjGtcs=">AAACA3icbVBNS8NAEJ3Ur1q/ot70sliEClISEfRY9KDHCvYDmlI22027dDcJuxuhhIIX/4oXD4p49U9489+4aXPQ1gcDj/dmmJnnx5wp7TjfVmFpeWV1rbhe2tjc2t6xd/eaKkokoQ0S8Ui2fawoZyFtaKY5bceSYuFz2vJH15nfeqBSsSi81+OYdgUehCxgBGsj9eyDAHmKCeQJrIcE8/SmPkEVcYpGJz277FSdKdAicXNShhz1nv3l9SOSCBpqwrFSHdeJdTfFUjPC6aTkJYrGmIzwgHYMDbGgqptOf5igY6P0URBJU6FGU/X3RIqFUmPhm87sVDXvZeJ/XifRwWU3ZWGcaBqS2aIg4UhHKAsE9ZmkRPOxIZhIZm5FZIglJtrEVjIhuPMvL5LmWdV1qu7debl2lcdRhEM4ggq4cAE1uIU6NIDAIzzDK7xZT9aL9W59zFoLVj6zD39gff4A08qWVA==</latexit><latexit sha1_base64="Doab9rHmtdx101r/HIygjLjGtcs=">AAACA3icbVBNS8NAEJ3Ur1q/ot70sliEClISEfRY9KDHCvYDmlI22027dDcJuxuhhIIX/4oXD4p49U9489+4aXPQ1gcDj/dmmJnnx5wp7TjfVmFpeWV1rbhe2tjc2t6xd/eaKkokoQ0S8Ui2fawoZyFtaKY5bceSYuFz2vJH15nfeqBSsSi81+OYdgUehCxgBGsj9eyDAHmKCeQJrIcE8/SmPkEVcYpGJz277FSdKdAicXNShhz1nv3l9SOSCBpqwrFSHdeJdTfFUjPC6aTkJYrGmIzwgHYMDbGgqptOf5igY6P0URBJU6FGU/X3RIqFUmPhm87sVDXvZeJ/XifRwWU3ZWGcaBqS2aIg4UhHKAsE9ZmkRPOxIZhIZm5FZIglJtrEVjIhuPMvL5LmWdV1qu7debl2lcdRhEM4ggq4cAE1uIU6NIDAIzzDK7xZT9aL9W59zFoLVj6zD39gff4A08qWVA==</latexit><latexit sha1_base64="Doab9rHmtdx101r/HIygjLjGtcs=">AAACA3icbVBNS8NAEJ3Ur1q/ot70sliEClISEfRY9KDHCvYDmlI22027dDcJuxuhhIIX/4oXD4p49U9489+4aXPQ1gcDj/dmmJnnx5wp7TjfVmFpeWV1rbhe2tjc2t6xd/eaKkokoQ0S8Ui2fawoZyFtaKY5bceSYuFz2vJH15nfeqBSsSi81+OYdgUehCxgBGsj9eyDAHmKCeQJrIcE8/SmPkEVcYpGJz277FSdKdAicXNShhz1nv3l9SOSCBpqwrFSHdeJdTfFUjPC6aTkJYrGmIzwgHYMDbGgqptOf5igY6P0URBJU6FGU/X3RIqFUmPhm87sVDXvZeJ/XifRwWU3ZWGcaBqS2aIg4UhHKAsE9ZmkRPOxIZhIZm5FZIglJtrEVjIhuPMvL5LmWdV1qu7debl2lcdRhEM4ggq4cAE1uIU6NIDAIzzDK7xZT9aL9W59zFoLVj6zD39gff4A08qWVA==</latexit><latexit sha1_base64="Doab9rHmtdx101r/HIygjLjGtcs=">AAACA3icbVBNS8NAEJ3Ur1q/ot70sliEClISEfRY9KDHCvYDmlI22027dDcJuxuhhIIX/4oXD4p49U9489+4aXPQ1gcDj/dmmJnnx5wp7TjfVmFpeWV1rbhe2tjc2t6xd/eaKkokoQ0S8Ui2fawoZyFtaKY5bceSYuFz2vJH15nfeqBSsSi81+OYdgUehCxgBGsj9eyDAHmKCeQJrIcE8/SmPkEVcYpGJz277FSdKdAicXNShhz1nv3l9SOSCBpqwrFSHdeJdTfFUjPC6aTkJYrGmIzwgHYMDbGgqptOf5igY6P0URBJU6FGU/X3RIqFUmPhm87sVDXvZeJ/XifRwWU3ZWGcaBqS2aIg4UhHKAsE9ZmkRPOxIZhIZm5FZIglJtrEVjIhuPMvL5LmWdV1qu7debl2lcdRhEM4ggq4cAE1uIU6NIDAIzzDK7xZT9aL9W59zFoLVj6zD39gff4A08qWVA==</latexit>

random variable: 
value of the 
stochastic function 
at x

mean covariance

f(x)
<latexit sha1_base64="Appt6dOASLoU0puF9XJna1LvMt4=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBahXkoigh6LXjxWMG2hDWWz3bRLdzdhdyOW0L/gxYMiXv1D3vw3btoctPXBwOO9GWbmhQln2rjut1NaW9/Y3CpvV3Z29/YPqodHbR2nilCfxDxW3RBrypmkvmGG026iKBYhp51wcpv7nUeqNIvlg5kmNBB4JFnECDa5FNWfzgfVmttw50CrxCtIDQq0BtWv/jAmqaDSEI617nluYoIMK8MIp7NKP9U0wWSCR7RnqcSC6iCb3zpDZ1YZoihWtqRBc/X3RIaF1lMR2k6BzVgve7n4n9dLTXQdZEwmqaGSLBZFKUcmRvnjaMgUJYZPLcFEMXsrImOsMDE2nooNwVt+eZW0Lxqe2/DuL2vNmyKOMpzAKdTBgytowh20wAcCY3iGV3hzhPPivDsfi9aSU8wcwx84nz9sX43R</latexit><latexit sha1_base64="Appt6dOASLoU0puF9XJna1LvMt4=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBahXkoigh6LXjxWMG2hDWWz3bRLdzdhdyOW0L/gxYMiXv1D3vw3btoctPXBwOO9GWbmhQln2rjut1NaW9/Y3CpvV3Z29/YPqodHbR2nilCfxDxW3RBrypmkvmGG026iKBYhp51wcpv7nUeqNIvlg5kmNBB4JFnECDa5FNWfzgfVmttw50CrxCtIDQq0BtWv/jAmqaDSEI617nluYoIMK8MIp7NKP9U0wWSCR7RnqcSC6iCb3zpDZ1YZoihWtqRBc/X3RIaF1lMR2k6BzVgve7n4n9dLTXQdZEwmqaGSLBZFKUcmRvnjaMgUJYZPLcFEMXsrImOsMDE2nooNwVt+eZW0Lxqe2/DuL2vNmyKOMpzAKdTBgytowh20wAcCY3iGV3hzhPPivDsfi9aSU8wcwx84nz9sX43R</latexit><latexit sha1_base64="Appt6dOASLoU0puF9XJna1LvMt4=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBahXkoigh6LXjxWMG2hDWWz3bRLdzdhdyOW0L/gxYMiXv1D3vw3btoctPXBwOO9GWbmhQln2rjut1NaW9/Y3CpvV3Z29/YPqodHbR2nilCfxDxW3RBrypmkvmGG026iKBYhp51wcpv7nUeqNIvlg5kmNBB4JFnECDa5FNWfzgfVmttw50CrxCtIDQq0BtWv/jAmqaDSEI617nluYoIMK8MIp7NKP9U0wWSCR7RnqcSC6iCb3zpDZ1YZoihWtqRBc/X3RIaF1lMR2k6BzVgve7n4n9dLTXQdZEwmqaGSLBZFKUcmRvnjaMgUJYZPLcFEMXsrImOsMDE2nooNwVt+eZW0Lxqe2/DuL2vNmyKOMpzAKdTBgytowh20wAcCY3iGV3hzhPPivDsfi9aSU8wcwx84nz9sX43R</latexit><latexit sha1_base64="Appt6dOASLoU0puF9XJna1LvMt4=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBahXkoigh6LXjxWMG2hDWWz3bRLdzdhdyOW0L/gxYMiXv1D3vw3btoctPXBwOO9GWbmhQln2rjut1NaW9/Y3CpvV3Z29/YPqodHbR2nilCfxDxW3RBrypmkvmGG026iKBYhp51wcpv7nUeqNIvlg5kmNBB4JFnECDa5FNWfzgfVmttw50CrxCtIDQq0BtWv/jAmqaDSEI617nluYoIMK8MIp7NKP9U0wWSCR7RnqcSC6iCb3zpDZ1YZoihWtqRBc/X3RIaF1lMR2k6BzVgve7n4n9dLTXQdZEwmqaGSLBZFKUcmRvnjaMgUJYZPLcFEMXsrImOsMDE2nooNwVt+eZW0Lxqe2/DuL2vNmyKOMpzAKdTBgytowh20wAcCY3iGV3hzhPPivDsfi9aSU8wcwx84nz9sX43R</latexit>

⌃ij = k(xi, xj)
<latexit sha1_base64="B38NMmyREyUD9XF68oO/vbLsTCw=">AAACAXicbVDLSgMxFM3UV62vUTeCm2ARKkiZEUE3QtGNy4r2Ae0wZNJMmzbJDElGWoa68VfcuFDErX/hzr8xbWeh1QMXDufcy733BDGjSjvOl5VbWFxaXsmvFtbWNza37O2duooSiUkNRyySzQApwqggNU01I81YEsQDRhrB4GriN+6JVDQSd3oUE4+jrqAhxUgbybf32re0y5Gf0v4YXsBBaejT46HfP/LtolN2poB/iZuRIshQ9e3PdifCCSdCY4aUarlOrL0USU0xI+NCO1EkRniAuqRlqECcKC+dfjCGh0bpwDCSpoSGU/XnRIq4UiMemE6OdE/NexPxP6+V6PDcS6mIE00Eni0KEwZ1BCdxwA6VBGs2MgRhSc2tEPeQRFib0AomBHf+5b+kflJ2nbJ7c1qsXGZx5ME+OAAl4IIzUAHXoApqAIMH8ARewKv1aD1bb9b7rDVnZTO74Besj28OApX4</latexit><latexit sha1_base64="B38NMmyREyUD9XF68oO/vbLsTCw=">AAACAXicbVDLSgMxFM3UV62vUTeCm2ARKkiZEUE3QtGNy4r2Ae0wZNJMmzbJDElGWoa68VfcuFDErX/hzr8xbWeh1QMXDufcy733BDGjSjvOl5VbWFxaXsmvFtbWNza37O2duooSiUkNRyySzQApwqggNU01I81YEsQDRhrB4GriN+6JVDQSd3oUE4+jrqAhxUgbybf32re0y5Gf0v4YXsBBaejT46HfP/LtolN2poB/iZuRIshQ9e3PdifCCSdCY4aUarlOrL0USU0xI+NCO1EkRniAuqRlqECcKC+dfjCGh0bpwDCSpoSGU/XnRIq4UiMemE6OdE/NexPxP6+V6PDcS6mIE00Eni0KEwZ1BCdxwA6VBGs2MgRhSc2tEPeQRFib0AomBHf+5b+kflJ2nbJ7c1qsXGZx5ME+OAAl4IIzUAHXoApqAIMH8ARewKv1aD1bb9b7rDVnZTO74Besj28OApX4</latexit><latexit sha1_base64="B38NMmyREyUD9XF68oO/vbLsTCw=">AAACAXicbVDLSgMxFM3UV62vUTeCm2ARKkiZEUE3QtGNy4r2Ae0wZNJMmzbJDElGWoa68VfcuFDErX/hzr8xbWeh1QMXDufcy733BDGjSjvOl5VbWFxaXsmvFtbWNza37O2duooSiUkNRyySzQApwqggNU01I81YEsQDRhrB4GriN+6JVDQSd3oUE4+jrqAhxUgbybf32re0y5Gf0v4YXsBBaejT46HfP/LtolN2poB/iZuRIshQ9e3PdifCCSdCY4aUarlOrL0USU0xI+NCO1EkRniAuqRlqECcKC+dfjCGh0bpwDCSpoSGU/XnRIq4UiMemE6OdE/NexPxP6+V6PDcS6mIE00Eni0KEwZ1BCdxwA6VBGs2MgRhSc2tEPeQRFib0AomBHf+5b+kflJ2nbJ7c1qsXGZx5ME+OAAl4IIzUAHXoApqAIMH8ARewKv1aD1bb9b7rDVnZTO74Besj28OApX4</latexit><latexit sha1_base64="B38NMmyREyUD9XF68oO/vbLsTCw=">AAACAXicbVDLSgMxFM3UV62vUTeCm2ARKkiZEUE3QtGNy4r2Ae0wZNJMmzbJDElGWoa68VfcuFDErX/hzr8xbWeh1QMXDufcy733BDGjSjvOl5VbWFxaXsmvFtbWNza37O2duooSiUkNRyySzQApwqggNU01I81YEsQDRhrB4GriN+6JVDQSd3oUE4+jrqAhxUgbybf32re0y5Gf0v4YXsBBaejT46HfP/LtolN2poB/iZuRIshQ9e3PdifCCSdCY4aUarlOrL0USU0xI+NCO1EkRniAuqRlqECcKC+dfjCGh0bpwDCSpoSGU/XnRIq4UiMemE6OdE/NexPxP6+V6PDcS6mIE00Eni0KEwZ1BCdxwA6VBGs2MgRhSc2tEPeQRFib0AomBHf+5b+kflJ2nbJ7c1qsXGZx5ME+OAAl4IIzUAHXoApqAIMH8ARewKv1aD1bb9b7rDVnZTO74Besj28OApX4</latexit>

µi = m(xi)
<latexit sha1_base64="D0Sep4kp8I3o60t3thmND8Z0x+o=">AAAB9XicbVBNSwMxEJ31s9avqkcvwSLUS9kVQS9C0YvHCvYD2nXJptk2NMkuSVYtS/+HFw+KePW/ePPfmLZ70NYHA4/3ZpiZFyacaeO6387S8srq2npho7i5tb2zW9rbb+o4VYQ2SMxj1Q6xppxJ2jDMcNpOFMUi5LQVDq8nfuuBKs1ieWdGCfUF7ksWMYKNle67Ig0YukSi8hSwk6BUdqvuFGiReDkpQ456UPrq9mKSCioN4Vjrjucmxs+wMoxwOi52U00TTIa4TzuWSiyo9rPp1WN0bJUeimJlSxo0VX9PZFhoPRKh7RTYDPS8NxH/8zqpiS78jMkkNVSS2aIo5cjEaBIB6jFFieEjSzBRzN6KyAArTIwNqmhD8OZfXiTN06rnVr3bs3LtKo+jAIdwBBXw4BxqcAN1aAABBc/wCm/Oo/PivDsfs9YlJ585gD9wPn8AA4WRhw==</latexit><latexit sha1_base64="D0Sep4kp8I3o60t3thmND8Z0x+o=">AAAB9XicbVBNSwMxEJ31s9avqkcvwSLUS9kVQS9C0YvHCvYD2nXJptk2NMkuSVYtS/+HFw+KePW/ePPfmLZ70NYHA4/3ZpiZFyacaeO6387S8srq2npho7i5tb2zW9rbb+o4VYQ2SMxj1Q6xppxJ2jDMcNpOFMUi5LQVDq8nfuuBKs1ieWdGCfUF7ksWMYKNle67Ig0YukSi8hSwk6BUdqvuFGiReDkpQ456UPrq9mKSCioN4Vjrjucmxs+wMoxwOi52U00TTIa4TzuWSiyo9rPp1WN0bJUeimJlSxo0VX9PZFhoPRKh7RTYDPS8NxH/8zqpiS78jMkkNVSS2aIo5cjEaBIB6jFFieEjSzBRzN6KyAArTIwNqmhD8OZfXiTN06rnVr3bs3LtKo+jAIdwBBXw4BxqcAN1aAABBc/wCm/Oo/PivDsfs9YlJ585gD9wPn8AA4WRhw==</latexit><latexit sha1_base64="D0Sep4kp8I3o60t3thmND8Z0x+o=">AAAB9XicbVBNSwMxEJ31s9avqkcvwSLUS9kVQS9C0YvHCvYD2nXJptk2NMkuSVYtS/+HFw+KePW/ePPfmLZ70NYHA4/3ZpiZFyacaeO6387S8srq2npho7i5tb2zW9rbb+o4VYQ2SMxj1Q6xppxJ2jDMcNpOFMUi5LQVDq8nfuuBKs1ieWdGCfUF7ksWMYKNle67Ig0YukSi8hSwk6BUdqvuFGiReDkpQ456UPrq9mKSCioN4Vjrjucmxs+wMoxwOi52U00TTIa4TzuWSiyo9rPp1WN0bJUeimJlSxo0VX9PZFhoPRKh7RTYDPS8NxH/8zqpiS78jMkkNVSS2aIo5cjEaBIB6jFFieEjSzBRzN6KyAArTIwNqmhD8OZfXiTN06rnVr3bs3LtKo+jAIdwBBXw4BxqcAN1aAABBc/wCm/Oo/PivDsfs9YlJ585gD9wPn8AA4WRhw==</latexit><latexit sha1_base64="D0Sep4kp8I3o60t3thmND8Z0x+o=">AAAB9XicbVBNSwMxEJ31s9avqkcvwSLUS9kVQS9C0YvHCvYD2nXJptk2NMkuSVYtS/+HFw+KePW/ePPfmLZ70NYHA4/3ZpiZFyacaeO6387S8srq2npho7i5tb2zW9rbb+o4VYQ2SMxj1Q6xppxJ2jDMcNpOFMUi5LQVDq8nfuuBKs1ieWdGCfUF7ksWMYKNle67Ig0YukSi8hSwk6BUdqvuFGiReDkpQ456UPrq9mKSCioN4Vjrjucmxs+wMoxwOi52U00TTIa4TzuWSiyo9rPp1WN0bJUeimJlSxo0VX9PZFhoPRKh7RTYDPS8NxH/8zqpiS78jMkkNVSS2aIo5cjEaBIB6jFFieEjSzBRzN6KyAArTIwNqmhD8OZfXiTN06rnVr3bs3LtKo+jAIdwBBXw4BxqcAN1aAABBc/wCm/Oo/PivDsfs9YlJ585gD9wPn8AA4WRhw==</latexit>

Rasmussen, Advanced lectures on machine learning. Springer, 63-71 (2004)

K↵ = p

kernel

target property

Nonuniform: replace by 
repulsive potential (Csanyi 
and coworkers, Clementi and 
Noé, …)
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Lecture 7 – Support Vector Machines and Kernel Methods

Visualization of SVs

� Problem: z-Space is infinite (unknown)
� How can the Support Vectors (from existing points) be visualized?

� Solution: non-zero alphas have been the identified support vectors

� Support vectors exist in Z – space (just transformed original data points)

� Example: million-D means a million-D vector for 

� But number of support vector is very low,  expected Eout is related to #SVs

(solution of quadratic programming optimization will be a set of alphas we can visualize)

[7] Visualization of high-dimensional space

(generalization behaviour despite million-D & snake-like overfitting)

(snake seems like overfitting,
fitting to well, cf. Lecture 2) � Counting the number of support 

vectors remains to be a good indicator 
for generalization behaviour even
when performing non-linear 
transforms and kernel methods that
can lead to infinite-D spaces

(rule of thumb)

64 / 72ML training set size is limited 
(kernels!) 

Use physics to reduce the 
interpolation space



Symmetries and conservation laws



Mechanics 101: Principle of least action
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𝒮[x(t)] = ∫
t2

t1

dt L[x(t), ·x(t), t]
action

microtrajectory
Lagrangian L = T − V

kinetic energy
potential energy
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𝒮[x(t)] = ∫
t2

t1

dt L[x(t), ·x(t), t]

Hamilton’s principle: system minimizes action (variational principle)·𝒮[x*(t)] = 0

action
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+ ·ε
∂L
∂x ) = ∫

t2

t1

dt (ε
∂L
∂x

− ε
d
dt

∂L
∂ ·x ) = 0

integration by parts &
ε(t1) = ε(t2) = 0

L = T − V

kinetic energy
potential energy
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𝒮[x(t), y(t), z(t)] = ∫ dt
m
2 ( ·x2 + ·y2 + ·z2) − mgz

Introduce constant translations along    and   :x y

𝒮[x(t) + x0, y(t) + y0, z(t)] = ∫ dt
m
2 ( ·x2 + ·y2 + ·z2) − mgz

= 𝒮[x(t), y(t), z(t)]

(Translational) symmetry leaves the action invariant. 
It leaves the Euler-Lagrange equation unchanged:

∂L
∂x

−
d
dt

∂L
∂ ·x

= 0

∂L
∂x

= 0
∂L
∂ ·x

= m ·x = const . Translational invariance implies 
linear momentum conversation



From symmetries to conserved quantities (cont’d)
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𝒮[r(t)] = ∫ dt
m
2

·r2 − V(r)

Rotational symmetry

Apply transformation r → r′�

where r′�(t) = Rr(t) = r(t) + α × r(t)

One can show that 
𝒮[r(t) + α × r(t)] = 𝒮[r(t)]

Conservation of angular momentum

Time translation

Apply transformation r → r′�

where r′�(t + ϵ) = r(t)

One can show that 
𝒮[r′�(t + ϵ)] = 𝒮[r(t)]

Conservation of energy
(up to a boundary term)

Bañados & Reyes, arXiv:1601.03616v3



Noether’s theorem
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3 examples: 
• Translational symmetry: Linear momentum conservation 
• Rotational symmetry: Angular momentum conservation 
• Time translation: Energy conservation

To every differentiable symmetry generated by local actions there 
corresponds a conserved quantity



2 ways of encoding symmetries:
- Representation
- ML model      f



Encoding symmetries in the 
representation



Translational and rotational symmetries
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Behler-Parrinello Coulomb matrix
input and the output layer are one or more ‘‘hidden layers,’’
each with a certain number of nodes. All nodes in each
layer are connected to the nodes in the adjacent layers by
real-valued weight parameters, which initially are chosen
randomly. For a given set of coordinates the output of the
NN is then given by the expression

 E i ! f2
a

!
w2

01 "
X3

j!1

w2
j1f

1
a

"
w1

0j "
X2

!!1

w1
!jG

!
i

#$
: (1)

Here, wkij is the weight parameter connecting node j in
layer k with node i in layer k# 1, and wk0j is a bias weight
that is used as an adjustable offset for the activation func-
tions fka. Activation functions are typically nonlinear func-
tions that introduce the capability to fit nonlinear functions
into the NN [5 ,6]. In the present work the hyperbolic
tangent has been used as an activation function in the
hidden layers, and a linear function for the output layer.
Since the weight parameters initially are chosen randomly,
the output of the NN does not correspond to the correct
total energy, but since the latter is known for a set of points
from DFT calculations, an error function can be con-
structed and minimized to optimize the weight parameters
in an iterative way. The optimized set of weights obtained
can then be used to calculate the potential energy for a new
set of coordinates.

This NN structure has several disadvantages that hinder
its application to high-dimensional PESs. Since all weights
are generally different, the order in which the coordinates
of a configuration are fed into the NN is not arbitrary, and
interchanging the coordinates of two atoms will change the
total energy even if the two atoms are of the same type.
Another limitation related to the fixed structure of the
network is the fact that a NN optimized for a certain
number of degrees of freedom, i.e., number of atoms,
cannot be used to predict energies for a different system
size, since the optimized weights are valid only for a fixed
number of input nodes. Thus, in order to represent PESs
useful for all system sizes, a new NN topology has to be
introduced.

The main idea is to represent the total energy E of the
system as a sum of atomic contributions E i, an approach
that is typically also used in empirical potentials

 E !
X
i
E i: (2)

The general structure of this new network topology is
shown schematically in Fig. 2 for a system consisting of
three atoms and all associated degrees of freedom. The
fR"i g represent the Cartesian coordinates " of atom i. In a
first step these coordinates are transformed into a set of
symmetry function values fG!

i g for each atom i. These
symmetry function values describe the energetically rele-
vant local environment of each atom and are subsequently
used as input for the NN. They depend on the positions of
all atoms in the system, as indicated by the dotted arrows.

For each atom in the system there is now a ‘‘standard’’ NN
(cf. Fig. 1), which we call subnet Si and which after the
weight optimization yields the energy contribution E i to
the total energy E . Summing these energy contributions
then finally yields the total energy of the system. To ensure
the invariance of the total energy with respect to the
interchanging of two atoms the structure of all subnets
and the values of the weight parameters are constrained
to be identical in each Si.

The crucial point is the introduction of a new type of
symmetry function. While other types of symmetry func-
tions have been used before [5 ], in our approach the
symmetry function values of each atom reflect the local
environment that determines its energy; i.e., two structures
with different energies must yield different sets of symme-
try function values, while identical local environments
must give rise to the same set. Furthermore, the symmetry
function values must be invariant with respect to a rotation
or translation of the system. Finally, the number of sym-
metry functions must be independent of the coordination of
the atom, because the coordination number of an atom can
change in a MD simulation, while the structure of the
subnets must not be changed if the NN is to remain
applicable generally.

Symmetry functions can be constructed from atomic
positions in a way similar to empirical potentials. But
while in the latter case these terms are used to construct
directly the total energy of the system, in the case of the
NN they are used only to describe the structure. The
assignment of the energies to the structures is done in a
second step by the NN.

In order to define the energetically relevant local envi-
ronment we employ a cutoff function fc of the interatomic
distance Rij, which has the form

 fc$Rij% !
8<
:

0:5 &
h
cos

%
#Rij
Rc

&
" 1

i
for Rij ' Rc;

0 for Rij > Rc:
(3)

 

FIG. 2. Structure of the neural network as applied in this Letter
to a system containing three atoms. The Cartesian coordinates of
atom i are given by R"i . These are transformed to a set of !
symmetry function values G!

i describing the local geometric
environment of atom i, which depends on the positions of all
atoms in the system as indicated by the dotted arrows. The
symmetry function values of atom i then enter the subnet Si
yielding the energy contribution E i of atom i to the total energy
of the system E . The structure of the subnets corresponds to the
neural network shown in Fig. 1.
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At interatomic separations larger than the cutoff Rc this
function yields zero value and slope. The cutoff has to be
sufficiently large to include several nearest neighbors, and
in the present Letter a cutoff of 6 Å has been used.

Radial symmetry functions are constructed as a sum of
Gaussians with the parameters ! and Rs,

 G1
i !

Xall

j!i
e"!#Rij"Rs$

2
fc#Rij$: (4)

The summation over all neighbors j ensures the indepen-
dence of the coordination number.

Angular terms are constructed for all triplets of atoms by
summing the cosine values of the angles "ijk ! Rij%Rik

RijRik
centered at atom i, with Rij ! Ri "Rj,
 

G2
i ! 21"# Xall

j;k!i

#1 & $ cos"ijk$#

' e"!#R2
ij& R2

ik& R2
jk$fc#Rij$fc#Rik$fc#Rjk$; (5)

with the parameters $ #! & 1;"1$, !, and # . The multi-
plication by the three cutoff functions and by the Gaussian
ensures a smooth decay to zero in the case of large inter-
atomic separations. We note that the G%

i in Eqs. (4) and (5)
depend on all atomic positions inside the cutoff radius and
thus represent ‘‘many-body’’ terms. Several functions of
each type with different parameter values are used. The
choice of symmetry functions and their parameters is not
unique nor does it need to be, and many types of functions
can be used, as long as the set of function values is suitable
for describing the environment of an atom.

To demonstrate the capability of the method we calcu-
lated the PES of bulk silicon using DFT in the local density
approximation (LDA). The system used for the optimiza-
tion of the NN parameters contains 64 atoms yielding 64
atomic environments per calculation. The calculations
were carried out employing the plane-wave pseudo-
potential method as implemented in PWSCF [7]. A cutoff
of 20 Ry was applied in combination with an ultrasoft
pseudopotential [8]. A mesh of 3 ' 3 ' 3 k points was
used. To improve the convergence of the metallic phases a
Fermi smearing of 0.1 eV was employed.

Since the functional form of the NN has no physical
motivation, the construction of an optimized NN requires
special care. The structures used to train the NN [9] were
initially taken from crystal structures including high-
pressure phases [10] and MD simulations at different pres-
sures and temperatures. Starting from this data set a series
of fits was generated employing different NN topologies,
i.e., numbers of hidden layers and nodes per hidden layer.
The best fits can then be used to optimize the NN in a self-
consistent way by performing MD, hybrid Monte Carlo
[11,12], and metadynamics [13,14] runs based on these fits
and subsequently recalculating several hundred represen-
tative structures with DFT. If the root mean square error

(RMSE) is larger than the error of the fit, the DFT calcu-
lations are added to the training set and new fits deter-
mined, which are used to generate more structures, and so
forth.

In total about 9000 DFT energies were calculated, 8200
of which were used for optimizing the NN and 800 as an
independent test set to investigate the predictive capability
of the NN for structures not included in the optimization
set. The RMSE of the optimization set is typically 4–
5 meV per atom, the RMSE of the test set 5–6 meV. For
the NN atomic forces we found a RMSE of about
0:2 eV= !A with respect to DFT. The subnet employed con-
sists typically of 2 hidden layers, each of which has about
40 nodes. In total 48 symmetry functions, i.e., input nodes,
with different values of !, Rs, and # have been used
resulting in a few thousand fitting parameters for the NN.

As a first test of the NN potential we calculated the
energy vs volume curves for the different crystal structures
of silicon [10]. It is well known that empirical potentials
are not able to describe the correct energetic sequence of
the various phases [15] while DFT is in good agreement
with the experimental data [10]. The NN potential accu-
rately reproduces the curves and the transition pressures of
DFT. To test the ability of the NN potential to describe also
disordered structures we calculated the radial distribution
function (RDF) of a silicon melt at 3000 K. The result is
shown in Fig. 3 and compared to other potentials of varying
form and complexity [15–17]. The MD simulations were
run for 20 ps (8 ps in the case of DFT [18]). The RDF
obtained from the NN is very close to the DFT data, while
there are significant deviations for the empirical potentials.
The origin of the small difference between DFT and the
NN is probably due to the fact that in the ab initio MD only
the " point has been used to sample the Brillouin zone,
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FIG. 3 (color online). Radial distribution function (RDF) of a
silicon melt at 3000 K as obtained using a cubic 64 atom cell
(a ! 20:526 bohr). The curves shown were obtained from the
Bazant [17,19], the Lenosky [15,19], the Tersoff [16,20], a
neural network (NN) potential, and from density-functional
theory (DFT) [18].
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the various phases [15] while DFT is in good agreement
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Rupp, Tkatchenko, Müller, von Lilienfeld, Phys Rev Lett, 108 (2012)

Next, the resulting electrostatic interactions are combined with
a classical many-body dispersion (MBD)24 in order to validate
the model by estimating intermolecular energies of nearly 1,000
molecular dimers as well as the cohesive binding energy of the
benzene crystal. We find that the machine learning model
retains an accuracy similar to the same model parametrized
from individual quantum-chemical calculations.

2. METHODS
The following describes the ML model, the baseline property
used in the Δ-learning procedure, the data set, and the
description of the reference MTPs.
2.1. Machine Learning Model. We rely on supervised

learning to construct a kernel-ridge regression which general-
izes the linear-ridge regression model (i.e., linear regression
with regularizer λ) by mapping the input space x into a higher
dimensional “feature space”, ϕ(x), thereby casting the problem
in a linear way.16,25 The strength of the method comes from
avoiding the actual determination of ϕ thanks to the so-called
kernel trick:26 Since the ML algorithm only requires the inner
product between data vectors in feature space, one can apply a
kernel function k(x,x′) to compute dot products within input
space, thereby leaving the feature space entirely implicit. As a
result, the problem is reformulated from a v-dimensional input
space (i.e., the dimensionality of each data vector) into an n-
dimensional space spanned by the number of samples in the
training set. This characteristic implies that the larger n is, the
better the prediction ought to bethus the denomination of a
supervised learning method.
Here, we build on the Δ-ML approach,27 which estimates the

difference between the desired property and an inexpensive
baseline model that accounts for the most relevant physics.
More specifically, a refined target property p(x) is predicted
from baseline property pVor (see section 2.3) plus the ML-
model Δ

= + Δp x p x x p( ) ( ) ( , )Vor Vor
(1)

where x corresponds to the representation vectoror
descriptorof the input sample (e.g., query molecule). Δ
corresponds to the standard kernel-ridge regression model of
the difference between baseline and target property constructed
for n training samples,

∑ αΔ = + ′
=

x p k x x k p p( , ) [ ( , ) ( , )]
i

n

i i i
Vor

1

Vor Vor

(2)

where αi is the weight given to training molecule i. These
weights are determined by best reproducing the reference
property pref(x) for each sample in the training set according to
the closed-form solution α λ= + ′ + −−OK K p p( ) ( )1 ref Vor ,
where pref − pVor is the vector of training properties, i.e., the
difference between reference and baseline, and K and K′ are the
two kernel matrices. Note that, in eq 2, we have included
representation and baseline property in the kernel, each having
a different width in their respective kernel functions.
ML maps an input representation vector x into a scalar value

of similarity. Thus, before applying ML to predict atomic
MTPs, the information contained in the three-dimensional
structure of a molecule must be encoded in a vector of
numbers, i.e., its representation or descriptor. Ideally, this
information should reflect symmetries of molecular structures
with respect to rotations, translations, reflections, and atom

index permutations, etc. Here, we rely on the Coulomb-matrix
descriptor,28
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where i and j are index atoms in the molecule, Zi is atom i’s
atomic number, and Ri represents its Cartesian coordinates.
Note that the Coulomb matrix not only encodes inverse
pairwise distances between atoms but also the chemical
elements involved. As different molecules have different
numbers of atoms, their Coulomb matrices will vary in size.
Distant neighbors are expected to have a comparatively small
impact on a prediction, such that the inclusion of all neighbors
can prove inefficient for large molecules. Given a set of
molecules, we pad matrices with zeros such that their size
amounts to n × n, where n is the number of closest neighboring
atoms considered.28 In the following, we set n = 4. Given a
molecule’s d atoms, there are d individual atomic MTP samples
for the ML to learn from. For each, an individual Coulomb
matrix is built in which the atom of interest fills up the first
row/column, while the indices of the surrounding n atoms are
sorted according to the atoms’ Euclidean distances to the query
atom. As such, we coarsen our descriptor to contain at least the
first shell of n covalently bound neighbors, and atoms that only
differ in their environment at larger distances will be assigned
the same MTP. We have found n = 4 to correspond to a
reasonable compromise between computational efficiency and
performance. Note, however, that while such choices of
descriptor typically do affect the model’s performance for
given training sets, other descriptor choices could work just as
wellas long as they meet the requirements and invariances
necessary for the ML of quantum properties.29

In the context of applying ML to the prediction of tensorial
quantities, such as MTPs, properties pVor(x) and p(x) will be
expressed as vectors of size mthe number of independent
coefficients of the tensor of interest (e.g., 1 for a scalar charge, 3
for a vector dipole moment, 5 for a traceless second-rank tensor
quadrupole). We express MTP moments with their minimal
number of independent coefficients by using the spherical-
coordinate representation. We recognize that the kernel
matrices, K and K′, will remain unmodified when learning/
predicting different tensor components of the same input data
vector. Finally, the weights α are expressed as a matrix of size m
× n, which naturally reduces to a vector when predicting a
scalar quantity.
For this work, we have used the Laplacian kernels,
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where σ and ζ are free parameters and |...| corresponds to the
Manhattan, or city block, L1 norm. This combination of kernel
functions and distance measure has previously been shown to
yield the best performance for the modeling of molecular
atomization energies and other electronic properties using the
Coulomb-matrix representation.30,31 Nt is the number of
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Action of group      on input sampleG x ↦ Tg(x)

Can we find a kernel that is invariant to this group action? f(Tg(x)) = f(x)∀g ∈ G
k(x, x′�) = k(Tg(x), Tg′�(x′�))

To ensure invariance, symmetrize the kernel

kG(x, x′�) =
1

|G| ∑
g∈G

k(x, Tg(x′�))
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FIG. 6. Examples of the angular basis functions for lmax = 4
of the AFS descriptor.

IV. A SIMILARITY MEASURE BETWEEN

ATOMIC ENVIRONMENTS

It is clear from the preceding section that there is a
lot of freedom in constructing descriptors, e.g. in the
choice of angular band limit, the radial basis and also
which subset of the basis elements are actually used. As
we have shown in section II, the key to PES fitting are
not the descriptors per se, but the similarity measure
K(q,q0) that is constructed from the descriptors. This
suggests an alternative approach, in which descriptors are
bypassed altogether, and a similarity measure between
atomic neighbourhoods is constructed directly. The cri-
teria for a good similarity measure is not only that it be
invariant to symmetry operations of the atoms of each en-
vironment and have a well-defined limit when comparing
two identical or two very di↵erent environments, but also
that the it change smoothly with the Cartesian atomic
coordinates.

We define the similarity of two atomic environments
directly as the inner product of two atomic neighbour
densities ⇢ and ⇢

0 (defined in equation (9)), as the overlap

S(⇢, ⇢0) =

Z
⇢(r)⇢0(r)dr. (29)

This clearly satisfies the permutational invariance crite-
rion. Integrating equation (29) over all possible rotations
of one of the environments leads to a rotationally invari-
ant similarity kernel
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, (30)

It is easy to see that for n = 1, all angular information –
the relative orientation of individual atoms – is lost be-
cause the order of the two integrations can be exchanged,
but for n � 2 the kernel retains the angular informa-
tion of the original environments. The obvious practical
di�culty with this construction is the evaluation of the
angular integral, which is addressed next.

A. Analytic evaluation a smooth similarity kernel

Retaining the Dirac-delta functions in the definition of
the atomic neighbour density would lead to a discontinu-
ous similarity kernel in that the dissimilarity between two
environments with very close but not identical atomic po-
sitions would be large. Therefore, instead of the Dirac-
delta functions, we construct the atomic neighbour den-
sity using Gaussians, expanded in terms of spherical har-
monic functions as58
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where ◆l are the modified spherical Bessel functions of
the first kind. The atomic neighbour density function is
then defined as a sum of Gaussians with one centred on
each neighbour,
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Bartók, Kondor, Csányi, Phys Rev B 87 (2013)
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IV. A SIMILARITY MEASURE BETWEEN

ATOMIC ENVIRONMENTS

It is clear from the preceding section that there is a
lot of freedom in constructing descriptors, e.g. in the
choice of angular band limit, the radial basis and also
which subset of the basis elements are actually used. As
we have shown in section II, the key to PES fitting are
not the descriptors per se, but the similarity measure
K(q,q0) that is constructed from the descriptors. This
suggests an alternative approach, in which descriptors are
bypassed altogether, and a similarity measure between
atomic neighbourhoods is constructed directly. The cri-
teria for a good similarity measure is not only that it be
invariant to symmetry operations of the atoms of each en-
vironment and have a well-defined limit when comparing
two identical or two very di↵erent environments, but also
that the it change smoothly with the Cartesian atomic
coordinates.

We define the similarity of two atomic environments
directly as the inner product of two atomic neighbour
densities ⇢ and ⇢

0 (defined in equation (9)), as the overlap

S(⇢, ⇢0) =

Z
⇢(r)⇢0(r)dr. (29)

This clearly satisfies the permutational invariance crite-
rion. Integrating equation (29) over all possible rotations
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ant similarity kernel
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It is easy to see that for n = 1, all angular information –
the relative orientation of individual atoms – is lost be-
cause the order of the two integrations can be exchanged,
but for n � 2 the kernel retains the angular informa-
tion of the original environments. The obvious practical
di�culty with this construction is the evaluation of the
angular integral, which is addressed next.

A. Analytic evaluation a smooth similarity kernel

Retaining the Dirac-delta functions in the definition of
the atomic neighbour density would lead to a discontinu-
ous similarity kernel in that the dissimilarity between two
environments with very close but not identical atomic po-
sitions would be large. Therefore, instead of the Dirac-
delta functions, we construct the atomic neighbour den-
sity using Gaussians, expanded in terms of spherical har-
monic functions as58
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where ◆l are the modified spherical Bessel functions of
the first kind. The atomic neighbour density function is
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Ĩ
l

mm0(↵, ri, ri0)D
l

mm0(R̂) =
X

l,m,m0

I
l

mm0D
l

mm0(R̂),



Invariant vs. covariant properties

 21Glielmo, Sollich, De Vita, Phys Rev B 95 (2017)

Tensorial property (e.g., dipole moment, force) rotates with the sample



Invariant vs. covariant properties

 21Glielmo, Sollich, De Vita, Phys Rev B 95 (2017)

Tensorial property (e.g., dipole moment, force) rotates with the sample



Invariant vs. covariant properties

 21Glielmo, Sollich, De Vita, Phys Rev B 95 (2017)

Tensorial property (e.g., dipole moment, force) rotates with the sample



Invariant vs. covariant properties

 21Glielmo, Sollich, De Vita, Phys Rev B 95 (2017)

Tensorial property (e.g., dipole moment, force) rotates with the sample

“Build kernel so as to encode the rotational 
properties of the target property”
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Encode rotational properties of the target property in the kernel

Glielmo, Sollich, De Vita, Phys Rev B 95 (2017)
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Encode rotational properties of the target property in the kernel

2

VECTORIAL GAUSSIAN PROCESS

REGRESSION

We wish to model by a VGP the force f acting on
an atom whose chemical environment is in a configura-
tion ⇢ that encodes the positions of all of neighbours of
the atom, up to a suitable cutoff radius, in an arbitrary
Cartesian reference frame. In a Bayesian setting, before
any data is considered, f is treated as a Gaussian Process,
i.e., it is assumed that for any finite set of configurations
{⇢i, i = 1, . . . N} the values f(⇢i) taken by the vector
function f are well described by a multivariate Gaussian
distribution [21]. We write:

f(⇢) ⇠ GP(m(⇢),K(⇢, ⇢0)) (1)

where m(⇢) is a vector-valued mean function and K(⇢, ⇢0)
is a matrix-valued kernel function. Before any data is
considered, m is usually assumed to be zero as all prior
information on f is encoded into the kernel function
K(⇢, ⇢0). The latter represents the correlation of the vec-
tors f(⇢) and f(⇢0) as a function of the two configurations
(“input space points”) ⇢ and ⇢

0:

K(⇢, ⇢0) = hf(⇢)fT(⇢0)i, (2)

where angular brackets here signify the expected value
over the multivariate Gaussian distribution. Any ker-
nel K consistent with this definition must be a positive
semi-definite matrix function, since for any collection of
vectors {vi}

X

ij

vT
i
K(⇢i, ⇢j)vj = h(

X

i

vT
i
f(⇢i))

2
i � 0. (3)

To train the prediction model we need to access a
database of atomic configurations and reference forces
D = {(⇢, fr)i, i = 1, . . . , N}. Using Bayes’ theorem [27]
the distribution (1) is modified to take the data D into ac-
count [21]. If the likelihood function [22] is also Gaussian
(which effectively assumes that the observed forces fr

i
are

the true forces subject to Gaussian noise of variance �
2
n
)

then the resulting posterior distribution f(⇢ | D), condi-
tional on the data, will also be a Gaussian process

f(⇢ | D) ⇠ GP(f̂(⇢ | D), Ĉ(⇢, ⇢0)). (4)

The mean function of the posterior distribution, f̂(⇢ | D),
is at this point the best estimate for the true underlying
function:

f̂(⇢ | D) =
NX

ij

K(⇢, ⇢i)[K+ I�2
n
]�1
ij

fr
j
. (5)

Here �
2
n
, formally is the noise affecting the observed

forces fr, serves in practice as a regulariser for the matrix
inverse. In the following, blackboard bold characters such

as K or I indicate N⇥N block matrices (for instance, the
Gram matrix K is defined as (K)ij = K(⇢i, ⇢j)). Simil-
arly, we denote by [K+ I�2

n
]�1
ij

the ij-block of the inverse
matrix.

We next examine how to incorporate the vector be-
haviour of forces into the learning algorithm. The rel-
evant symmetry transformations in the input space are:
rigid translation of all atoms, permutation of atoms of
the same chemical species, rotations and reflections of
atomic configurations. Forces are invariant with respect
to translations and atomic permutations, and covariant
with respect to rotations and reflections. Assuming that
the representation of the atomic configuration is local,
i.e., the atom subject to the force fi is at the origin of the
reference frame used for ⇢i, translations are automatic-
ally taken into account. The remaining symmetries must
be addressed in the construction of covariant kernels.

COVARIANT KERNELS

From now on we will define S to be any symmetry
operator (rotation or reflection) acting on an atomistic
configuration of a d-dimensional system. Rotations will
be denoted by R and reflections by Q.

We require two properties to apply to the predicted
force f̂(⇢ | D), once configurations are transformed by an
operator S (represented by a matrix S):

Property 1 If the target configuration ⇢ is trans-
formed to S⇢, the predicted force must transform ac-
cordingly:

f̂(S⇢ | D) = Sf̂(⇢ | D). (6)

Property 2 The predicted force must not change if we
arbitrarily transform the configurations in the database
(D ! D̃ = {(Si⇢i,Sifri )}) with any chosen set of roto-
reflections {Si}.

We next introduce a special class of kernel functions
that automatically guarantees these two properties: a
covariant kenrel has the defining property

K(S⇢,S 0
⇢
0) = SK(⇢, ⇢0)S0T

. (7)

That a covariant kernel imposes Property 1 follows
straightforwardly from equation (5):

f̂(S⇢ | D) =
NX

ij

K(S⇢, ⇢i)[K+ I�2
n
]�1
ij

fr
j

=
NX

ij

SK(⇢, ⇢i)[K+ I�2
n
]�1
ij

fr
j

= Sf̂(⇢ | D). (8)

To prove Property 2 we note that, if the kernel function is
covariant, the transformed database D̃ has Gram matrix
(K̃)ij = K(Si⇢i,Sj⇢j) = SiK(⇢i, ⇢j)ST

j
. If we define the

Descriptor
Training data

Transformation (rotation/inversion)

Force prediction

Glielmo, Sollich, De Vita, Phys Rev B 95 (2017)
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VECTORIAL GAUSSIAN PROCESS

REGRESSION

We wish to model by a VGP the force f acting on
an atom whose chemical environment is in a configura-
tion ⇢ that encodes the positions of all of neighbours of
the atom, up to a suitable cutoff radius, in an arbitrary
Cartesian reference frame. In a Bayesian setting, before
any data is considered, f is treated as a Gaussian Process,
i.e., it is assumed that for any finite set of configurations
{⇢i, i = 1, . . . N} the values f(⇢i) taken by the vector
function f are well described by a multivariate Gaussian
distribution [21]. We write:

f(⇢) ⇠ GP(m(⇢),K(⇢, ⇢0)) (1)

where m(⇢) is a vector-valued mean function and K(⇢, ⇢0)
is a matrix-valued kernel function. Before any data is
considered, m is usually assumed to be zero as all prior
information on f is encoded into the kernel function
K(⇢, ⇢0). The latter represents the correlation of the vec-
tors f(⇢) and f(⇢0) as a function of the two configurations
(“input space points”) ⇢ and ⇢

0:

K(⇢, ⇢0) = hf(⇢)fT(⇢0)i, (2)

where angular brackets here signify the expected value
over the multivariate Gaussian distribution. Any ker-
nel K consistent with this definition must be a positive
semi-definite matrix function, since for any collection of
vectors {vi}
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ij

vT
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K(⇢i, ⇢j)vj = h(
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vT
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f(⇢i))

2
i � 0. (3)

To train the prediction model we need to access a
database of atomic configurations and reference forces
D = {(⇢, fr)i, i = 1, . . . , N}. Using Bayes’ theorem [27]
the distribution (1) is modified to take the data D into ac-
count [21]. If the likelihood function [22] is also Gaussian
(which effectively assumes that the observed forces fr

i
are

the true forces subject to Gaussian noise of variance �
2
n
)

then the resulting posterior distribution f(⇢ | D), condi-
tional on the data, will also be a Gaussian process

f(⇢ | D) ⇠ GP(f̂(⇢ | D), Ĉ(⇢, ⇢0)). (4)

The mean function of the posterior distribution, f̂(⇢ | D),
is at this point the best estimate for the true underlying
function:

f̂(⇢ | D) =
NX
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K(⇢, ⇢i)[K+ I�2
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]�1
ij

fr
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. (5)

Here �
2
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, formally is the noise affecting the observed

forces fr, serves in practice as a regulariser for the matrix
inverse. In the following, blackboard bold characters such

as K or I indicate N⇥N block matrices (for instance, the
Gram matrix K is defined as (K)ij = K(⇢i, ⇢j)). Simil-
arly, we denote by [K+ I�2

n
]�1
ij

the ij-block of the inverse
matrix.

We next examine how to incorporate the vector be-
haviour of forces into the learning algorithm. The rel-
evant symmetry transformations in the input space are:
rigid translation of all atoms, permutation of atoms of
the same chemical species, rotations and reflections of
atomic configurations. Forces are invariant with respect
to translations and atomic permutations, and covariant
with respect to rotations and reflections. Assuming that
the representation of the atomic configuration is local,
i.e., the atom subject to the force fi is at the origin of the
reference frame used for ⇢i, translations are automatic-
ally taken into account. The remaining symmetries must
be addressed in the construction of covariant kernels.

COVARIANT KERNELS

From now on we will define S to be any symmetry
operator (rotation or reflection) acting on an atomistic
configuration of a d-dimensional system. Rotations will
be denoted by R and reflections by Q.

We require two properties to apply to the predicted
force f̂(⇢ | D), once configurations are transformed by an
operator S (represented by a matrix S):

Property 1 If the target configuration ⇢ is trans-
formed to S⇢, the predicted force must transform ac-
cordingly:

f̂(S⇢ | D) = Sf̂(⇢ | D). (6)

Property 2 The predicted force must not change if we
arbitrarily transform the configurations in the database
(D ! D̃ = {(Si⇢i,Sifri )}) with any chosen set of roto-
reflections {Si}.

We next introduce a special class of kernel functions
that automatically guarantees these two properties: a
covariant kenrel has the defining property

K(S⇢,S 0
⇢
0) = SK(⇢, ⇢0)S0T

. (7)

That a covariant kernel imposes Property 1 follows
straightforwardly from equation (5):

f̂(S⇢ | D) =
NX

ij

K(S⇢, ⇢i)[K+ I�2
n
]�1
ij

fr
j

=
NX

ij

SK(⇢, ⇢i)[K+ I�2
n
]�1
ij

fr
j

= Sf̂(⇢ | D). (8)

To prove Property 2 we note that, if the kernel function is
covariant, the transformed database D̃ has Gram matrix
(K̃)ij = K(Si⇢i,Sj⇢j) = SiK(⇢i, ⇢j)ST

j
. If we define the

Descriptor
Training data

Transformation (rotation/inversion)

Force prediction

“Transform the configuration, and 
the prediction transforms with it”

Glielmo, Sollich, De Vita, Phys Rev B 95 (2017)
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We wish to model by a VGP the force f acting on
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any data is considered, f is treated as a Gaussian Process,
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function f are well described by a multivariate Gaussian
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information on f is encoded into the kernel function
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We next examine how to incorporate the vector be-
haviour of forces into the learning algorithm. The rel-
evant symmetry transformations in the input space are:
rigid translation of all atoms, permutation of atoms of
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atomic configurations. Forces are invariant with respect
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i.e., the atom subject to the force fi is at the origin of the
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From now on we will define S to be any symmetry
operator (rotation or reflection) acting on an atomistic
configuration of a d-dimensional system. Rotations will
be denoted by R and reflections by Q.

We require two properties to apply to the predicted
force f̂(⇢ | D), once configurations are transformed by an
operator S (represented by a matrix S):

Property 1 If the target configuration ⇢ is trans-
formed to S⇢, the predicted force must transform ac-
cordingly:

f̂(S⇢ | D) = Sf̂(⇢ | D). (6)

Property 2 The predicted force must not change if we
arbitrarily transform the configurations in the database
(D ! D̃ = {(Si⇢i,Sifri )}) with any chosen set of roto-
reflections {Si}.

We next introduce a special class of kernel functions
that automatically guarantees these two properties: a
covariant kenrel has the defining property

K(S⇢,S 0
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straightforwardly from equation (5):

f̂(S⇢ | D) =
NX

ij

K(S⇢, ⇢i)[K+ I�2
n
]�1
ij

fr
j

=
NX

ij

SK(⇢, ⇢i)[K+ I�2
n
]�1
ij

fr
j

= Sf̂(⇢ | D). (8)

To prove Property 2 we note that, if the kernel function is
covariant, the transformed database D̃ has Gram matrix
(K̃)ij = K(Si⇢i,Sj⇢j) = SiK(⇢i, ⇢j)ST

j
. If we define the
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Fig. 4 Learning the force
profile of a 1D LJ dimer using
data (blue circle) coming
from one atom only. It is
seen that a non covariant
GP (solid red line) does
not learn the symmetrically
equivalent force acting on
the other atom and it thus
predict a zero force and
maximum error. If covariance
is imposed to the kernel via
Eq. (23) (dashed blue line),
then the correct equivalent
(inverted) profile is recovered.
Shaded regions represent the
predicted 1sigma interval in
the two cases.

K(r,r 0) =
Z

dRRkb(r,Rr 0). (23)

This approach has been extended to learn higher order tensors in Refs. [49, 50].
Using rotational symmetry crucially improves the efficiency of the learned

model. A very simple illustrative example of the importance of rotational symmetry
is shown in Figure 4, addressing an atomic dimer in which force predictions coming
from a non-covariant squared exponential kernel and its covariant counterpart (ob-
tained using Eq. (23)) are compared. The figure reports the forces predicted to act on
an atom, as a function of the position on the x-axis of the other atom, relative to the
first. So that, for positive x values the figure reports the forces on the left atom as a
function of the position of the right atom, while negative x values will be associated
to forces acting on the right atom as a function of the position of the left atom. In
the absence of the covariance force properties, training the model on a sample of
nine forces acting on the left atom, will populate correctly only the right side of the
graph: a null force will be predicted to act on the right atom (solid red line on the
left panel). However, the covariant transformation (in 1D, just a change of sign) will
allow the transposition of the force field learned from one environment to the other,
and thus the correct prediction of the (inverted) force profile in the left panel.

2.3.3 Interaction order

Classical parametrised force fields are sometimes expressed as a truncated se-
ries of energy contributions of progressively higher n-body “interaction orders”
[51, 52, 53, 54]. The procedure is consistent with the intuition that, as long as the
series converges rapidly, truncating the expansion reduces the amount of data neces-
sary for the fitting, and enables a likely higher extrapolation power to unseen regions
of configuration space. The lowest truncation order compatible with the target pre-
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multipoles may remain frozen and only get updated when large
conformational changes are detected.

We presented electrostatic calculations using distributed
multipole—up to quadrupole—models. In comparison with
other atomic properties, an accurate prediction of multipole
electrostatics proves all the more challenging and critical
for the accurate estimation of various molecular systems.
Improvements will require more accurate models, and possi-
bly the incorporation of more advanced physical interactions,
such as anisotropic70 or many-body repulsion interactions. Our
framework paves the way toward significantly more transfer-
able models that blend in the physical laws and symmetries rel-
evant for the phenomena at hand with a data-driven approach to
infer the variation of environmentally dependent local atomic
parameters across chemical space. We expect such models
that are transferable across chemical composition to be of
use in systems of interest in chemistry, biology, and materials
science.
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APPENDIX A: MANY-BODY DISPERSION

The following summarizes the many-body dispersion
(MBD) method31,46,47 as implemented elsewhere.32 We start
with the atomic polarizability ↵p of atom p. The frequency
dependence of ↵p allows for an estimation of the pairwise
dispersion coefficient via the Casimir-Polder integral,
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⇡
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where i! are imaginary frequencies and p and q are a
pair of atoms. Given reference free-atom values for C6pp,
we can estimate the characteristic frequency of atom p!p

= 4C6pp/3↵2
p
.71

The atomic polarizabilities and characteristic frequen-
cies yield the necessary ingredients for the system of coupled
quantum harmonic oscillators with N atoms,

C
QHO
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p
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↵p↵qTpq, (A2)
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W (rpq) is a dipole interaction tensor
with modified Coulomb potential
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◆�#

rpq

. (A3)

In this equation, � is a range-separation parameter and R
vdW
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= �(RvdW
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+ R
vdW
q

) is the sum of effective van der Waals
radii scaled by a chemistry-independent fitting parameter. The
effective van der Waals radius is obtained by scaling its ref-
erence free-atom counterpart: R

vdW
p
= (↵p/↵free

p
)1/3

R
vdW, free
p .

An expression for Tpq is provided in the work of Bereau
and von Lilienfeld.32 In particular, we apply a range sepa-
ration to the dipole interaction tensor by scaling it by a Fermi
function72

f (rpq) =
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1 + exp
f
�d(rpq/RvdW

pq � 1)
g . (A4)

Diagonalizing the 3N ⇥ 3N matrix C
QHO
pq yields its

eigenvalues {�i}, which in turn provide the MBD energy,

EMBD =
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3
2
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p=1

!p. (A5)

The methodology depends on three chemistry-independent
parameters: �, �, and d.

APPENDIX B: COVARIANT KERNELS

Glielmo et al.
52 recently proposed a covariant kernel Kµ

for vector quantities—suitable here to predict dipoles—such
that two samples ⇢ and ⇢0 subject to rotations S and S0,
respectively, will obey

Kµ(S⇢,S0⇢0) = SKµ(⇢, ⇢0)S0T. (B1)

The atom i from sample ⇢ is encoded by a set of atom-centered
Gaussian functions
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and the covariant kernel is analytically integrated over all 3D
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where ⌦ denotes the outer product.
In the present work, we extend the construction of covari-

ant kernels to predict quadrupole moments. Following a similar
procedure adapted to second-rank tensors, we enforce the
relation

KQ(S⇢,S0⇢0) = S0STKQ(⇢, ⇢0)SS0T (B4)

onto a base pairwise kernel of diagonal form Kb(⇢, ⇢0)
= 1k

b(⇢, ⇢0), where k
b(⇢, ⇢0) is independent of the reference

ri

rj
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multipoles may remain frozen and only get updated when large
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We presented electrostatic calculations using distributed
multipole—up to quadrupole—models. In comparison with
other atomic properties, an accurate prediction of multipole
electrostatics proves all the more challenging and critical
for the accurate estimation of various molecular systems.
Improvements will require more accurate models, and possi-
bly the incorporation of more advanced physical interactions,
such as anisotropic70 or many-body repulsion interactions. Our
framework paves the way toward significantly more transfer-
able models that blend in the physical laws and symmetries rel-
evant for the phenomena at hand with a data-driven approach to
infer the variation of environmentally dependent local atomic
parameters across chemical space. We expect such models
that are transferable across chemical composition to be of
use in systems of interest in chemistry, biology, and materials
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The following summarizes the many-body dispersion
(MBD) method31,46,47 as implemented elsewhere.32 We start
with the atomic polarizability ↵p of atom p. The frequency
dependence of ↵p allows for an estimation of the pairwise
dispersion coefficient via the Casimir-Polder integral,
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where i! are imaginary frequencies and p and q are a
pair of atoms. Given reference free-atom values for C6pp,
we can estimate the characteristic frequency of atom p!p

= 4C6pp/3↵2
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The atomic polarizabilities and characteristic frequen-
cies yield the necessary ingredients for the system of coupled
quantum harmonic oscillators with N atoms,
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effective van der Waals radius is obtained by scaling its ref-
erence free-atom counterpart: R
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An expression for Tpq is provided in the work of Bereau
and von Lilienfeld.32 In particular, we apply a range sepa-
ration to the dipole interaction tensor by scaling it by a Fermi
function72
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52 recently proposed a covariant kernel Kµ

for vector quantities—suitable here to predict dipoles—such
that two samples ⇢ and ⇢0 subject to rotations S and S0,
respectively, will obey

Kµ(S⇢,S0⇢0) = SKµ(⇢, ⇢0)S0T. (B1)

The atom i from sample ⇢ is encoded by a set of atom-centered
Gaussian functions
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and the covariant kernel is analytically integrated over all 3D
rotations to yield52
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where ⌦ denotes the outer product.
In the present work, we extend the construction of covari-

ant kernels to predict quadrupole moments. Following a similar
procedure adapted to second-rank tensors, we enforce the
relation

KQ(S⇢,S0⇢0) = S0STKQ(⇢, ⇢0)SS0T (B4)

onto a base pairwise kernel of diagonal form Kb(⇢, ⇢0)
= 1k

b(⇢, ⇢0), where k
b(⇢, ⇢0) is independent of the reference
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frame. The covariant kernel is constructed by integrating the
base kernel over all 3D rotations
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1
L
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dSS ⌦ ST

k
b(⇢,ST⇢0), (B5)

which leads to the expression
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where Ri and Rj are the rotation matrices that align ri and rj

onto the z axis to form r̃i and r̃0
j
, respectively.52 We analytically

integrate all 3D rotations
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Transferable intermolecular potentials for small organic molecules
parametrized from machine learning of local properties
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1
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Germanya)

(Dated: 29 October 2016)

We propose a set of intermolecular potentials with explicit polarization transferable across small organic
molecules. Machine learning provides predictions for atomic polarizabilities, the decay rate of atomic densities,
and static electrostatic multipole coe�cients across conformations and chemical compositions using H, C,
N, and O atoms. The parameters enable accurate calculations of intermolecular contributions: multipole
electrostatics, charge penetration, repulsion, induction (i.e., polarization and charge transfer), and many-
body dispersion.

I. INTRODUCTION

II. METHODS

A. Prediction of local properties

The set of intermolecular potentials is based on ma-
chine learning of local (i.e., atom in molecule) proper-
ties targeted at predicting atomic polarizabilities, the de-
cay rate of atomic densities, and electrostatic coe�cients,
which we present in the following.

1. Atomic polarizabilities

The Hirshfeld scheme provides a partitioning of the
molecular charge density into atomic contributions (i.e.,
atom-in-molecule description).1–4 It consists of estimat-
ing the loss of atomic volume of atom p due to the neigh-
boring atoms, as compared to the corresponding atom in
free space

V e↵
p

V free
p

=

R
drr3wp(r)n(r)R
drr3nfree

p (r)
, (1)

where nfree
p (r) is the electron density of the free atom,

n(r) is the electron density of the molecule, and wp(r)
weighs the contribution of the free atom p against all free
atoms at r.2 The static polarizability is then estimated
from the free-atom polarizability scaled by the Hirshfeld
ratio

↵p = ↵free
p

 
V e↵
p

V free
p

!4/3

. (2)

Derivation for 4/3 power.
Reference Hirshfeld ratios were provided from DFT

calculations of 1,000 molecules using the PBE05 func-
tional and extracted using postg.6,7 The geometry of

a)Electronic mail: bereau@mpip-mainz.mpg.de

the molecule was encoded in the Coulomb matrix,8 C,
such that for two atoms i and j

Cij =

(
Z2.4
i /2 i = j

ZiZj/rij i 6= j
(3)

A machine learning model of the Hirshfeld ratios was
built using kernel-ridge regression and provided predic-
tions for atomic polarizabilities of atoms in molecules
for the chemical elements H, C, O, and N. For all ma-
chine learning models presented here, datasets are split
between training and test subsets at a ⇡ 80 : 20 ratio, in
order to alleviate overfitting.

2. Atomic-density overlap

Exchange-repulsion, as well as other short-ranged in-
teractions, are proportional to the overlap of the charge
densities9,10

Sij =

Z
d3r⇢i(r)⇢j(r). (4)

Van Vleet et al.10 presented a series of short-ranged in-
termolecular potentials based on a Slater-like model of
overlapping atomic densities. They approximated the
atomic density using the iterated stockholder atom (ISA)
approach11,12 The atomic density of atom i, ⇢i, is approx-
imated by a single exponential function,

⇢i(r) ⇡ Di exp(�Bir), (5)

where Di is a prefactor absorbing the missing distance
dependency and Bi characterizes the rate of decay of the
atomic density. The short-ranged interactions proposed
by Van Vleet et al. rely on combinations of the decay
rates of atomic densities, i.e., Bij =

p
BiBj , for the atom

pair i and j.
We constructed a machine learning model of Bi coef-

ficients using the same descriptors and kernel as for Hir-
shfeld ratios (see above). Reference Bi coe�cients were
computed using Horton

13,14 for 1,102 molecules using
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ABSTRACT: Short-range repulsion within intermolecular force fields is
conventionally described by either Lennard-Jones (A/r12) or Born−Mayer
(A exp(−Br)) forms. Despite their widespread use, these simple functional
forms are often unable to describe the interaction energy accurately over a
broad range of intermolecular distances, thus creating challenges in the
development of ab initio force fields and potentially leading to decreased
accuracy and transferability. Herein, we derive a novel short-range
functional form based on a simple Slater-like model of overlapping atomic
densities and an iterated stockholder atom (ISA) partitioning of the
molecular electron density. We demonstrate that this Slater−ISA
methodology yields a more accurate, transferable, and robust description
of the short-range interactions at minimal additional computational cost
compared to standard Lennard-Jones or Born−Mayer approaches. Finally,
we show how this methodology can be adapted to yield the standard Born−Mayer functional form while still retaining many of
the advantages of the Slater-ISA approach.

1. INTRODUCTION

Molecular simulation is an essential tool for interpreting and
predicting the structure, thermodynamics, and dynamics of
chemical and biochemical systems. The fundamental inputs
into these simulations are the intra- and intermolecular force
fields, which provide simple and computationally efficient
descriptions of molecular interactions. Consequently, the
predictive and explanatory power of molecular simulations
depends on the fidelity of the force field to the underlying
(exact) potential energy surface.
In the case of intermolecular interactions, the dominant

contributions for nonreactive systems can be decomposed into
the following physically meaningful energy components:
electrostatic, exchange-repulsion, induction, and dispersion.1−5

At large intermolecular distances, where monomer electron
overlap can be neglected, the physics of intermolecular
interactions can be described entirely on the basis of monomer
properties (e.g., multipole moments, polarizabilities), all of
which can be calculated with high accuracy from first
principles.6 In conjunction with associated distribution schemes
that decompose molecular monomer properties into atomic
contributions,1,4,7−11 these monomer properties lead to an
accurate and computationally efficient model of “long-range”
intermolecular interactions as a sum of atom−atom terms,
which can be straightforwardly included in common molecular
simulation packages.

At shorter separations, where the molecular electron density
overlap cannot be neglected, the asymptotic description of
intermolecular interactions breaks down due to the influence of
Pauli repulsion, charge penetration, and charge transfer. These
effects can be quantitatively described using modern electronic
structure methods3,12−15 but are far more challenging to model
accurately using computationally inexpensive force fields. For
efficiency and ease of parametrization, most simple force fields
use a single “repulsive” term to model the cumulative influence
of (chemically distinct) short-range interactions. These simple
models have seen comparatively little progress over the past 80
years, and the Lennard-Jones16 (A/r12) and Born−Mayer17,18

(A exp(−Br)) forms continue as popular descriptions of short-
range effects in standard force fields despite some well-known
limitations (vide inf ra).
Because the prediction of physical and chemical properties

depends on the choice of a short-range interaction model,19−32

it is essential to develop sufficiently accurate short-range force
fields. This is particularly true in the case of ab initio force field
development. A principal goal of such a first-principles
approach is the reproduction of a calculated potential energy
surface (PES), thus (ideally) yielding accurate predictions of
bulk properties.33 Substantial deviations between a fitted and
calculated PES lead to nontrivial challenges in the para-
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terms of reproducing pure-liquid density, heat of vaporization,
and hydration free energy. They underline that a careful PC
parametrization can go a long way in reproducing the
thermodynamic properties of many simple liquids (e.g., PhH,
PhF), in which case MTPs are unlikely to play a significant role.
When switching from PC to MTP electrostatics, one should

expect force-field reparametrization: standard parametrization
protocols (including this one) make LJ coefficients inherently
dependent on the force field’s electrostatics. Lee and Meuwly
recently reparametrized a MTP model of cyanide in water and
showed that merely scaling the distance term, Rmin, allowed to
reproduce experimentally determined hydration free energies,
vibrational relaxation times, and 1D/2D spectroscopies.34−36 In
the present work, however, we kept the protocol applied to PC

electrostatics both for consistency and to best reproduce both
sterics and energetics. The results are shown in Table 3. We find
that most LJ coefficients remain similar across electrostatic
representations, except for a comparatively large change for the
well depth of N: 0.20 kcal/mol. The magnitude of these changes
do not correlate with the impact on the hydration free energies:
PhCl, PhBr, and PhI show the largest improvement in ΔGhyd,
though the changes in LJ parameters are modest. On the
contrary, the large change of εN did not improve ΔGhyd.
For all halobenzene compounds, MTP electrostatics allows us

to reproduce hydration free energies within ≈0.15 kcal/mol of
the experimental values. Naturally, we find the most significant
improvements on PhCl, PhBr, and PhI, which carry strong σ
holes. Jorgensen and Schyman introduced a correction for the
OPLS-AA force field to better describe halogenated compounds
by means of off-site point charges, which reproduces the
hydration free energies of halobenzene compounds within
0.4 kcal/mol.26 Other efforts to better reproduce σ holes in
computer modeling include the work of Ibrahim on off-site point
charges,37 as well as careful electrostatic calculations from the
SIBFA model38 and a recently published polarizable ellipsoidal
force field.39

Our PC and MTP parametrizations of pyrrole did not
reproduce the experimental hydration free energy as well as for
the other compounds, mostly due to the use of benzene’s
hydrogen atom type for pyrrole’s amine. Clearly, the two types of
hydrogens generate very different types of chemistry, which our
PC and MTP force fields do distinguish (to the extent of the
methods’ resolutions). Using benzene’s apolar hydrogen on the
amine is a stretch of transferability that shows its limits. Likewise,
distinguishing the carbons of benzene and pyrrole could prove
more accurate, as pyrrole is more reactive. However, the sole
purpose of the present pyrrole parametrization was to describe
the amine group of the brominated ligand studied below (Section
3.6). Because the conclusions drawn in that application do not
depend much on the quality of the amine’s parametrization (we
focus instead on the bromines), we decided against a careful, but
more expensive, LJ parametrization of both atom types of that
chemical group.

3.3. Structural Properties.We studied structural properties
of the PhX compounds solvated in a box of 500 water molecules.
NPT simulations were run for 1 ns, including 100 ps of
equilibration. Figure 3 shows the radial distribution functions,
g(r), between the Br atom of PhBr with water oxygens for both
PC and MTP electrostatics. The small changes in LJ parameters
for Br led to virtually no difference in g(r) between PC and MTP
electrostatics, despite the large change inΔGhyd (Table 4). While

Figure 2. Isosurfaces of the difference between ab initio and (a) PC and
(b)MTPESPs of PhBr. Blue and red regions denote an error of +0.5 and
−0.5 kcal/mol, respectively. The plots only show points within the first
interaction belt.

Table 3. LJ Parameters ε and Rmin/2 Parametrized Against PC
and MTP Electrostaticsa

PC elec. MTP elec.

compound atom name ε Rmin/2 ε Rmin/2

PhH C −0.05 2.00 −0.08 2.00
H −0.05 1.30 −0.01 1.20

PhF F −0.15 1.10 −0.07 1.70
PhCl Cl −0.44 1.90 −0.29 2.00
PhBr Br −0.50 2.17 −0.46 2.30
PhI I −0.57 2.33 −0.53 2.43
pyrrole N −0.31 2.00 −0.11 2.20

aAll units are in kcal/mol and Å.

Table 4. Comparison between Experimental Results25,31,40,41 and PC/MTP Calculations of Pure-Liquid Densities, ρ, Heats of
Vaporization, ΔHvap, and Hydration Free Energies, ΔGhyd

a

exptl. PC MTP

cmpd. ρ ΔHvap ΔGhyd RMSE ρ ΔHvap ΔGhyd RMSE ρ ΔHvap ΔGhyd

PhH 0.88 7.89 −0.86 0.505 0.86 7.53 −0.77 ± 0.12 0.254 0.90 7.88 −0.89 ± 0.11
PhF 1.02 8.26 −0.80 1.215 1.05 7.95 −0.48 ± 0.30 0.502 1.05 8.60 −0.75 ± 0.08
PhCl 1.11 9.79 −1.12 0.929 1.11 9.68 −0.66 ± 0.01 0.464 1.14 10.13 −1.11 ± 0.26
PhBr 1.50 10.65 −1.46 1.173 1.44 10.54 −0.55 ± 0.04 0.682 1.47 11.98 −1.40 ± 0.10
PhI 1.83 11.85 −1.83 0.978 1.76 11.39 −1.35 ± 0.15 0.581 1.84 12.43 −1.97 ± 0.16
pyrrole 0.97 10.78 −4.78 1.212 1.00 11.11 −4.11 ± 0.04 1.092 0.99 10.87 −3.74 ± 0.20

aRoot-mean squared errors (RMSEs) of gas-phase dimer energies (see ref 10) are also shown. All units are in kcal/mol, Å, and g/cm3. The errors of
the mean on the computed densities and heats of vaporization are 0.01 g/cm3, and 0.05 kcal/mol, respectively, while they are mentioned explicitly
for the hydration free energies.
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(b)MTPESPs of PhBr. Blue and red regions denote an error of +0.5 and
−0.5 kcal/mol, respectively. The plots only show points within the first
interaction belt.

Table 3. LJ Parameters ε and Rmin/2 Parametrized Against PC
and MTP Electrostaticsa

PC elec. MTP elec.

compound atom name ε Rmin/2 ε Rmin/2

PhH C −0.05 2.00 −0.08 2.00
H −0.05 1.30 −0.01 1.20

PhF F −0.15 1.10 −0.07 1.70
PhCl Cl −0.44 1.90 −0.29 2.00
PhBr Br −0.50 2.17 −0.46 2.30
PhI I −0.57 2.33 −0.53 2.43
pyrrole N −0.31 2.00 −0.11 2.20

aAll units are in kcal/mol and Å.

Table 4. Comparison between Experimental Results25,31,40,41 and PC/MTP Calculations of Pure-Liquid Densities, ρ, Heats of
Vaporization, ΔHvap, and Hydration Free Energies, ΔGhyd

a

exptl. PC MTP

cmpd. ρ ΔHvap ΔGhyd RMSE ρ ΔHvap ΔGhyd RMSE ρ ΔHvap ΔGhyd

PhH 0.88 7.89 −0.86 0.505 0.86 7.53 −0.77 ± 0.12 0.254 0.90 7.88 −0.89 ± 0.11
PhF 1.02 8.26 −0.80 1.215 1.05 7.95 −0.48 ± 0.30 0.502 1.05 8.60 −0.75 ± 0.08
PhCl 1.11 9.79 −1.12 0.929 1.11 9.68 −0.66 ± 0.01 0.464 1.14 10.13 −1.11 ± 0.26
PhBr 1.50 10.65 −1.46 1.173 1.44 10.54 −0.55 ± 0.04 0.682 1.47 11.98 −1.40 ± 0.10
PhI 1.83 11.85 −1.83 0.978 1.76 11.39 −1.35 ± 0.15 0.581 1.84 12.43 −1.97 ± 0.16
pyrrole 0.97 10.78 −4.78 1.212 1.00 11.11 −4.11 ± 0.04 1.092 0.99 10.87 −3.74 ± 0.20

aRoot-mean squared errors (RMSEs) of gas-phase dimer energies (see ref 10) are also shown. All units are in kcal/mol, Å, and g/cm3. The errors of
the mean on the computed densities and heats of vaporization are 0.01 g/cm3, and 0.05 kcal/mol, respectively, while they are mentioned explicitly
for the hydration free energies.
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pairs, hydrogen bonding, p-electron density—may require more elaborate schemes.
Going beyond the simple PC approximation can be approached both naturally and
systematically by considering the integral for the electrostatic potential (ESP)

4pe0F(r) =
Z

dr
0 r(r0)
|r� r0| , (1.1)

where r and r
0 are spatial variables. For a charge distribution confined to a sphere

of radius r0 around an arbitrary origin and an observation point outside the sphere
(r > r0), one can expand 1/|r� r

0| in powers of r0/r < 1 [30]. The ESP can thereby
be represented by an expansion in spherical harmonics Ylm(q ,f)—a set of orthonor-
mal functions that depends on the order l and its projection m, and the spherical
coordinates q and f—to yield

4pe0F(r) =
•

Â
l=0

l

Â
m=�l

Qlm

rl+1

r
4p

2l +1
Ylm(q ,f), (1.2)

while the spherical MTP moments are defined by

Qlm =
Z

dr
0r(r0)(r0)l

r
4p

2l +1
Y ⇤

lm(q 0,f 0) (1.3)

and can therefore be determined from the density r . For l  2, the Qlm coefficients
reduce to linear combinations of the familiar q (monopole scalar), µ (dipole vector),
and Qab (quadrupole second-rank tensor) expressed in Cartesian coordinates (see
field-line representations in Figure 1.1). A more convenient linear combination of
Cartesian coordinates expresses the spherical MTP moments in terms of cosmf
and sinmf , rather than the original exp±imf [31]. The new linear combination,
indexed by k = {0,1c,1s, . . . , lc, ls} for index l (c and s refer to cos and sin), has the
added advantage of containing only real components. While the spherical harmonics
and MTP moments can be found elsewhere (e.g., [31, 30]), the coefficients up to
quadrupole are summarized in Table 1.1.

An explicit development of Equation 1.2 in terms of the Cartesian coordinates
from Table 1.1 yields

Fig. 1.1 Representations of
the (a) monopole, (b) dipole,
and (c) quadrupole fields.
The anisotropy of the higher
MTPs provides the means for
an improved description of
the ESP.

(a) (b) (c)
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Table 1.1 List of spherical harmonics and MTP moments expressed in Cartesian coordinates—up
to quadrupole (i.e., l = 2) [31].
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R5 + . . . , (1.4)

F(r) = qT �µa Ta +
1
3

Qab Tab + . . . , (1.5)

where 1/R ⌘ 1/|r� r
0|, the Einstein summation convention is applied, and Kro-

necker delta, dab , is 1 only if a = b , 0 otherwise. The total ESP can be partitioned
into a sum of multipolar potentials Fl (e.g., F0 is the monopolar potential), leading
to the concept of a “distributed multipole” expansion. Equation 1.5 provides a more
compact notation in terms of the T tensors describing the geometry of the multipo-
lar potential. A simple Taylor expansion of the original formulation of the ESP (i.e.,
Equation 1.1) shows that the T tensors correspond to the various partial derivatives
of 1/R.

In terms of running a molecular dynamics (MD) simulation, the quantity of in-
terest is the interaction potential, U . This quantity is defined by the work done on an
MTP Qlk brought from infinity to a point r in a region populated by the (multipo-
lar) potential F , U = FQlk (derived from first-order perturbation theory [31, 30]).
Thus, the interaction energy between sites (e.g., atoms, molecules) a and b can be
written as

Uab =

✓
qaT �µa

a Ta +
1
3

Q a
ab Tab + . . .

◆✓
qb +µb

a +
1
3

Q b
ab + . . .

◆
, (1.6)

where the superscripts a and b over the MTP parameters refer to the interaction site
(usually an atom) they belong to. Evidently, a truncation of the MTP expansions to
l = 0 reduces to the familiar Coulomb interaction, Uab = qaqb/4pe0R. In general,
the interaction energy can be compactly written as Uab = (Qa)TT abQb, where Qa

is a vector containing all MTP moments of site a and T ab forms a matrix of T
tensors—as elegantly presented in the AMOEBA implementation [32].

For a given interaction between two MTP moments Qa
t and Qb

u on sites a and
b, respectively, the tensor element describing the geometry as T ab

tu (q) is required,
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terms of reproducing pure-liquid density, heat of vaporization,
and hydration free energy. They underline that a careful PC
parametrization can go a long way in reproducing the
thermodynamic properties of many simple liquids (e.g., PhH,
PhF), in which case MTPs are unlikely to play a significant role.
When switching from PC to MTP electrostatics, one should

expect force-field reparametrization: standard parametrization
protocols (including this one) make LJ coefficients inherently
dependent on the force field’s electrostatics. Lee and Meuwly
recently reparametrized a MTP model of cyanide in water and
showed that merely scaling the distance term, Rmin, allowed to
reproduce experimentally determined hydration free energies,
vibrational relaxation times, and 1D/2D spectroscopies.34−36 In
the present work, however, we kept the protocol applied to PC

electrostatics both for consistency and to best reproduce both
sterics and energetics. The results are shown in Table 3. We find
that most LJ coefficients remain similar across electrostatic
representations, except for a comparatively large change for the
well depth of N: 0.20 kcal/mol. The magnitude of these changes
do not correlate with the impact on the hydration free energies:
PhCl, PhBr, and PhI show the largest improvement in ΔGhyd,
though the changes in LJ parameters are modest. On the
contrary, the large change of εN did not improve ΔGhyd.
For all halobenzene compounds, MTP electrostatics allows us

to reproduce hydration free energies within ≈0.15 kcal/mol of
the experimental values. Naturally, we find the most significant
improvements on PhCl, PhBr, and PhI, which carry strong σ
holes. Jorgensen and Schyman introduced a correction for the
OPLS-AA force field to better describe halogenated compounds
by means of off-site point charges, which reproduces the
hydration free energies of halobenzene compounds within
0.4 kcal/mol.26 Other efforts to better reproduce σ holes in
computer modeling include the work of Ibrahim on off-site point
charges,37 as well as careful electrostatic calculations from the
SIBFA model38 and a recently published polarizable ellipsoidal
force field.39

Our PC and MTP parametrizations of pyrrole did not
reproduce the experimental hydration free energy as well as for
the other compounds, mostly due to the use of benzene’s
hydrogen atom type for pyrrole’s amine. Clearly, the two types of
hydrogens generate very different types of chemistry, which our
PC and MTP force fields do distinguish (to the extent of the
methods’ resolutions). Using benzene’s apolar hydrogen on the
amine is a stretch of transferability that shows its limits. Likewise,
distinguishing the carbons of benzene and pyrrole could prove
more accurate, as pyrrole is more reactive. However, the sole
purpose of the present pyrrole parametrization was to describe
the amine group of the brominated ligand studied below (Section
3.6). Because the conclusions drawn in that application do not
depend much on the quality of the amine’s parametrization (we
focus instead on the bromines), we decided against a careful, but
more expensive, LJ parametrization of both atom types of that
chemical group.

3.3. Structural Properties.We studied structural properties
of the PhX compounds solvated in a box of 500 water molecules.
NPT simulations were run for 1 ns, including 100 ps of
equilibration. Figure 3 shows the radial distribution functions,
g(r), between the Br atom of PhBr with water oxygens for both
PC and MTP electrostatics. The small changes in LJ parameters
for Br led to virtually no difference in g(r) between PC and MTP
electrostatics, despite the large change inΔGhyd (Table 4). While

Figure 2. Isosurfaces of the difference between ab initio and (a) PC and
(b)MTPESPs of PhBr. Blue and red regions denote an error of +0.5 and
−0.5 kcal/mol, respectively. The plots only show points within the first
interaction belt.

Table 3. LJ Parameters ε and Rmin/2 Parametrized Against PC
and MTP Electrostaticsa

PC elec. MTP elec.

compound atom name ε Rmin/2 ε Rmin/2

PhH C −0.05 2.00 −0.08 2.00
H −0.05 1.30 −0.01 1.20

PhF F −0.15 1.10 −0.07 1.70
PhCl Cl −0.44 1.90 −0.29 2.00
PhBr Br −0.50 2.17 −0.46 2.30
PhI I −0.57 2.33 −0.53 2.43
pyrrole N −0.31 2.00 −0.11 2.20

aAll units are in kcal/mol and Å.

Table 4. Comparison between Experimental Results25,31,40,41 and PC/MTP Calculations of Pure-Liquid Densities, ρ, Heats of
Vaporization, ΔHvap, and Hydration Free Energies, ΔGhyd

a

exptl. PC MTP

cmpd. ρ ΔHvap ΔGhyd RMSE ρ ΔHvap ΔGhyd RMSE ρ ΔHvap ΔGhyd

PhH 0.88 7.89 −0.86 0.505 0.86 7.53 −0.77 ± 0.12 0.254 0.90 7.88 −0.89 ± 0.11
PhF 1.02 8.26 −0.80 1.215 1.05 7.95 −0.48 ± 0.30 0.502 1.05 8.60 −0.75 ± 0.08
PhCl 1.11 9.79 −1.12 0.929 1.11 9.68 −0.66 ± 0.01 0.464 1.14 10.13 −1.11 ± 0.26
PhBr 1.50 10.65 −1.46 1.173 1.44 10.54 −0.55 ± 0.04 0.682 1.47 11.98 −1.40 ± 0.10
PhI 1.83 11.85 −1.83 0.978 1.76 11.39 −1.35 ± 0.15 0.581 1.84 12.43 −1.97 ± 0.16
pyrrole 0.97 10.78 −4.78 1.212 1.00 11.11 −4.11 ± 0.04 1.092 0.99 10.87 −3.74 ± 0.20

aRoot-mean squared errors (RMSEs) of gas-phase dimer energies (see ref 10) are also shown. All units are in kcal/mol, Å, and g/cm3. The errors of
the mean on the computed densities and heats of vaporization are 0.01 g/cm3, and 0.05 kcal/mol, respectively, while they are mentioned explicitly
for the hydration free energies.
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pairs, hydrogen bonding, p-electron density—may require more elaborate schemes.
Going beyond the simple PC approximation can be approached both naturally and
systematically by considering the integral for the electrostatic potential (ESP)

4pe0F(r) =
Z

dr
0 r(r0)
|r� r0| , (1.1)

where r and r
0 are spatial variables. For a charge distribution confined to a sphere

of radius r0 around an arbitrary origin and an observation point outside the sphere
(r > r0), one can expand 1/|r� r

0| in powers of r0/r < 1 [30]. The ESP can thereby
be represented by an expansion in spherical harmonics Ylm(q ,f)—a set of orthonor-
mal functions that depends on the order l and its projection m, and the spherical
coordinates q and f—to yield

4pe0F(r) =
•

Â
l=0

l

Â
m=�l

Qlm

rl+1

r
4p

2l +1
Ylm(q ,f), (1.2)

while the spherical MTP moments are defined by

Qlm =
Z

dr
0r(r0)(r0)l

r
4p

2l +1
Y ⇤

lm(q 0,f 0) (1.3)

and can therefore be determined from the density r . For l  2, the Qlm coefficients
reduce to linear combinations of the familiar q (monopole scalar), µ (dipole vector),
and Qab (quadrupole second-rank tensor) expressed in Cartesian coordinates (see
field-line representations in Figure 1.1). A more convenient linear combination of
Cartesian coordinates expresses the spherical MTP moments in terms of cosmf
and sinmf , rather than the original exp±imf [31]. The new linear combination,
indexed by k = {0,1c,1s, . . . , lc, ls} for index l (c and s refer to cos and sin), has the
added advantage of containing only real components. While the spherical harmonics
and MTP moments can be found elsewhere (e.g., [31, 30]), the coefficients up to
quadrupole are summarized in Table 1.1.

An explicit development of Equation 1.2 in terms of the Cartesian coordinates
from Table 1.1 yields

Fig. 1.1 Representations of
the (a) monopole, (b) dipole,
and (c) quadrupole fields.
The anisotropy of the higher
MTPs provides the means for
an improved description of
the ESP.
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Table 1.1 List of spherical harmonics and MTP moments expressed in Cartesian coordinates—up
to quadrupole (i.e., l = 2) [31].
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R5 + . . . , (1.4)

F(r) = qT �µa Ta +
1
3

Qab Tab + . . . , (1.5)

where 1/R ⌘ 1/|r� r
0|, the Einstein summation convention is applied, and Kro-

necker delta, dab , is 1 only if a = b , 0 otherwise. The total ESP can be partitioned
into a sum of multipolar potentials Fl (e.g., F0 is the monopolar potential), leading
to the concept of a “distributed multipole” expansion. Equation 1.5 provides a more
compact notation in terms of the T tensors describing the geometry of the multipo-
lar potential. A simple Taylor expansion of the original formulation of the ESP (i.e.,
Equation 1.1) shows that the T tensors correspond to the various partial derivatives
of 1/R.

In terms of running a molecular dynamics (MD) simulation, the quantity of in-
terest is the interaction potential, U . This quantity is defined by the work done on an
MTP Qlk brought from infinity to a point r in a region populated by the (multipo-
lar) potential F , U = FQlk (derived from first-order perturbation theory [31, 30]).
Thus, the interaction energy between sites (e.g., atoms, molecules) a and b can be
written as

Uab =
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a Ta +
1
3
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ab Tab + . . .

◆✓
qb +µb

a +
1
3

Q b
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, (1.6)

where the superscripts a and b over the MTP parameters refer to the interaction site
(usually an atom) they belong to. Evidently, a truncation of the MTP expansions to
l = 0 reduces to the familiar Coulomb interaction, Uab = qaqb/4pe0R. In general,
the interaction energy can be compactly written as Uab = (Qa)TT abQb, where Qa

is a vector containing all MTP moments of site a and T ab forms a matrix of T
tensors—as elegantly presented in the AMOEBA implementation [32].

For a given interaction between two MTP moments Qa
t and Qb

u on sites a and
b, respectively, the tensor element describing the geometry as T ab

tu (q) is required,
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terms of reproducing pure-liquid density, heat of vaporization,
and hydration free energy. They underline that a careful PC
parametrization can go a long way in reproducing the
thermodynamic properties of many simple liquids (e.g., PhH,
PhF), in which case MTPs are unlikely to play a significant role.
When switching from PC to MTP electrostatics, one should

expect force-field reparametrization: standard parametrization
protocols (including this one) make LJ coefficients inherently
dependent on the force field’s electrostatics. Lee and Meuwly
recently reparametrized a MTP model of cyanide in water and
showed that merely scaling the distance term, Rmin, allowed to
reproduce experimentally determined hydration free energies,
vibrational relaxation times, and 1D/2D spectroscopies.34−36 In
the present work, however, we kept the protocol applied to PC

electrostatics both for consistency and to best reproduce both
sterics and energetics. The results are shown in Table 3. We find
that most LJ coefficients remain similar across electrostatic
representations, except for a comparatively large change for the
well depth of N: 0.20 kcal/mol. The magnitude of these changes
do not correlate with the impact on the hydration free energies:
PhCl, PhBr, and PhI show the largest improvement in ΔGhyd,
though the changes in LJ parameters are modest. On the
contrary, the large change of εN did not improve ΔGhyd.
For all halobenzene compounds, MTP electrostatics allows us

to reproduce hydration free energies within ≈0.15 kcal/mol of
the experimental values. Naturally, we find the most significant
improvements on PhCl, PhBr, and PhI, which carry strong σ
holes. Jorgensen and Schyman introduced a correction for the
OPLS-AA force field to better describe halogenated compounds
by means of off-site point charges, which reproduces the
hydration free energies of halobenzene compounds within
0.4 kcal/mol.26 Other efforts to better reproduce σ holes in
computer modeling include the work of Ibrahim on off-site point
charges,37 as well as careful electrostatic calculations from the
SIBFA model38 and a recently published polarizable ellipsoidal
force field.39

Our PC and MTP parametrizations of pyrrole did not
reproduce the experimental hydration free energy as well as for
the other compounds, mostly due to the use of benzene’s
hydrogen atom type for pyrrole’s amine. Clearly, the two types of
hydrogens generate very different types of chemistry, which our
PC and MTP force fields do distinguish (to the extent of the
methods’ resolutions). Using benzene’s apolar hydrogen on the
amine is a stretch of transferability that shows its limits. Likewise,
distinguishing the carbons of benzene and pyrrole could prove
more accurate, as pyrrole is more reactive. However, the sole
purpose of the present pyrrole parametrization was to describe
the amine group of the brominated ligand studied below (Section
3.6). Because the conclusions drawn in that application do not
depend much on the quality of the amine’s parametrization (we
focus instead on the bromines), we decided against a careful, but
more expensive, LJ parametrization of both atom types of that
chemical group.

3.3. Structural Properties.We studied structural properties
of the PhX compounds solvated in a box of 500 water molecules.
NPT simulations were run for 1 ns, including 100 ps of
equilibration. Figure 3 shows the radial distribution functions,
g(r), between the Br atom of PhBr with water oxygens for both
PC and MTP electrostatics. The small changes in LJ parameters
for Br led to virtually no difference in g(r) between PC and MTP
electrostatics, despite the large change inΔGhyd (Table 4). While

Figure 2. Isosurfaces of the difference between ab initio and (a) PC and
(b)MTPESPs of PhBr. Blue and red regions denote an error of +0.5 and
−0.5 kcal/mol, respectively. The plots only show points within the first
interaction belt.

Table 3. LJ Parameters ε and Rmin/2 Parametrized Against PC
and MTP Electrostaticsa

PC elec. MTP elec.

compound atom name ε Rmin/2 ε Rmin/2

PhH C −0.05 2.00 −0.08 2.00
H −0.05 1.30 −0.01 1.20

PhF F −0.15 1.10 −0.07 1.70
PhCl Cl −0.44 1.90 −0.29 2.00
PhBr Br −0.50 2.17 −0.46 2.30
PhI I −0.57 2.33 −0.53 2.43
pyrrole N −0.31 2.00 −0.11 2.20

aAll units are in kcal/mol and Å.

Table 4. Comparison between Experimental Results25,31,40,41 and PC/MTP Calculations of Pure-Liquid Densities, ρ, Heats of
Vaporization, ΔHvap, and Hydration Free Energies, ΔGhyd

a

exptl. PC MTP

cmpd. ρ ΔHvap ΔGhyd RMSE ρ ΔHvap ΔGhyd RMSE ρ ΔHvap ΔGhyd

PhH 0.88 7.89 −0.86 0.505 0.86 7.53 −0.77 ± 0.12 0.254 0.90 7.88 −0.89 ± 0.11
PhF 1.02 8.26 −0.80 1.215 1.05 7.95 −0.48 ± 0.30 0.502 1.05 8.60 −0.75 ± 0.08
PhCl 1.11 9.79 −1.12 0.929 1.11 9.68 −0.66 ± 0.01 0.464 1.14 10.13 −1.11 ± 0.26
PhBr 1.50 10.65 −1.46 1.173 1.44 10.54 −0.55 ± 0.04 0.682 1.47 11.98 −1.40 ± 0.10
PhI 1.83 11.85 −1.83 0.978 1.76 11.39 −1.35 ± 0.15 0.581 1.84 12.43 −1.97 ± 0.16
pyrrole 0.97 10.78 −4.78 1.212 1.00 11.11 −4.11 ± 0.04 1.092 0.99 10.87 −3.74 ± 0.20

aRoot-mean squared errors (RMSEs) of gas-phase dimer energies (see ref 10) are also shown. All units are in kcal/mol, Å, and g/cm3. The errors of
the mean on the computed densities and heats of vaporization are 0.01 g/cm3, and 0.05 kcal/mol, respectively, while they are mentioned explicitly
for the hydration free energies.
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pairs, hydrogen bonding, p-electron density—may require more elaborate schemes.
Going beyond the simple PC approximation can be approached both naturally and
systematically by considering the integral for the electrostatic potential (ESP)

4pe0F(r) =
Z

dr
0 r(r0)
|r� r0| , (1.1)

where r and r
0 are spatial variables. For a charge distribution confined to a sphere

of radius r0 around an arbitrary origin and an observation point outside the sphere
(r > r0), one can expand 1/|r� r

0| in powers of r0/r < 1 [30]. The ESP can thereby
be represented by an expansion in spherical harmonics Ylm(q ,f)—a set of orthonor-
mal functions that depends on the order l and its projection m, and the spherical
coordinates q and f—to yield

4pe0F(r) =
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2l +1
Ylm(q ,f), (1.2)

while the spherical MTP moments are defined by

Qlm =
Z
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0r(r0)(r0)l

r
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2l +1
Y ⇤

lm(q 0,f 0) (1.3)

and can therefore be determined from the density r . For l  2, the Qlm coefficients
reduce to linear combinations of the familiar q (monopole scalar), µ (dipole vector),
and Qab (quadrupole second-rank tensor) expressed in Cartesian coordinates (see
field-line representations in Figure 1.1). A more convenient linear combination of
Cartesian coordinates expresses the spherical MTP moments in terms of cosmf
and sinmf , rather than the original exp±imf [31]. The new linear combination,
indexed by k = {0,1c,1s, . . . , lc, ls} for index l (c and s refer to cos and sin), has the
added advantage of containing only real components. While the spherical harmonics
and MTP moments can be found elsewhere (e.g., [31, 30]), the coefficients up to
quadrupole are summarized in Table 1.1.

An explicit development of Equation 1.2 in terms of the Cartesian coordinates
from Table 1.1 yields

Fig. 1.1 Representations of
the (a) monopole, (b) dipole,
and (c) quadrupole fields.
The anisotropy of the higher
MTPs provides the means for
an improved description of
the ESP.
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Table 1.1 List of spherical harmonics and MTP moments expressed in Cartesian coordinates—up
to quadrupole (i.e., l = 2) [31].
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0 0 1 q
1 0 z µz
1 1c x µx
1 1s y µy
2 0 1

2 (3z2 � r2) Qzz
2 1c

p
3xz 2p

3
Qxz

2 1s
p

3yz 2p
3
Qyz

2 2c 1
2

p
3(x2 � y2) 1p

3
(Qxx �Qyy)

2 2s
p

3xy 2p
3
Qxy

4pe0F(r) =
q
R
+

µa Ra
R3 +

1
3

Qab
3Ra Rb �R2dab

R5 + . . . , (1.4)

F(r) = qT �µa Ta +
1
3

Qab Tab + . . . , (1.5)

where 1/R ⌘ 1/|r� r
0|, the Einstein summation convention is applied, and Kro-

necker delta, dab , is 1 only if a = b , 0 otherwise. The total ESP can be partitioned
into a sum of multipolar potentials Fl (e.g., F0 is the monopolar potential), leading
to the concept of a “distributed multipole” expansion. Equation 1.5 provides a more
compact notation in terms of the T tensors describing the geometry of the multipo-
lar potential. A simple Taylor expansion of the original formulation of the ESP (i.e.,
Equation 1.1) shows that the T tensors correspond to the various partial derivatives
of 1/R.

In terms of running a molecular dynamics (MD) simulation, the quantity of in-
terest is the interaction potential, U . This quantity is defined by the work done on an
MTP Qlk brought from infinity to a point r in a region populated by the (multipo-
lar) potential F , U = FQlk (derived from first-order perturbation theory [31, 30]).
Thus, the interaction energy between sites (e.g., atoms, molecules) a and b can be
written as

Uab =

✓
qaT �µa

a Ta +
1
3

Q a
ab Tab + . . .

◆✓
qb +µb

a +
1
3

Q b
ab + . . .

◆
, (1.6)

where the superscripts a and b over the MTP parameters refer to the interaction site
(usually an atom) they belong to. Evidently, a truncation of the MTP expansions to
l = 0 reduces to the familiar Coulomb interaction, Uab = qaqb/4pe0R. In general,
the interaction energy can be compactly written as Uab = (Qa)TT abQb, where Qa

is a vector containing all MTP moments of site a and T ab forms a matrix of T
tensors—as elegantly presented in the AMOEBA implementation [32].

For a given interaction between two MTP moments Qa
t and Qb

u on sites a and
b, respectively, the tensor element describing the geometry as T ab

tu (q) is required,

dipoles, quadrupoles rotate with the sample



Multipoles: Learning curves

 30

Easier to learn 
H,O than C,N

0.001

0.01

0.1

101 102 103 104

(a)
q

101 102 103 104

µ↵

101 102 103 104

Q↵�

0.001

0.01

0.1

101 102 103 104

(b)
q

101 102 103 104

µ↵

101 102 103 104

Q↵�

M
A
E
[e
Å
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Multipoles: Correlation curves
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7 global parameters



Energy conservation



Learning a vector field: matrix-valued kernels

 34
Macêdo and Castro, Learning divergence-free and curl-free vector fields with matrix-valued kernels, IMPA (2010) 
Micchelli and M. Pontil. Neural Computation, 17(1):177–204, 2005.

Up to now: learning a scalar field 

f(x) =
N

∑
i=1

αiK(x, xi) N × NN=N
αi ∈ ℝ

K : ℝn × ℝn → ℝ

f : ℝn → ℝ



Learning a vector field: matrix-valued kernels

 34
Macêdo and Castro, Learning divergence-free and curl-free vector fields with matrix-valued kernels, IMPA (2010) 
Micchelli and M. Pontil. Neural Computation, 17(1):177–204, 2005.

Up to now: learning a scalar field 

f(x) =
N

∑
i=1

αiK(x, xi) N × NN=N
αi ∈ ℝ

K : ℝn × ℝn → ℝ

f : ℝn → ℝ

Learning a vector field

f(x) =
N

∑
i=1

αiK(x, xi)
αi ∈ ℝn

K : ℝn × ℝn → ℝn×n

f : ℝn → ℝn

Nn × NnNn=Nn



Matrix-valued kernel
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Learning a vector field

f(x) =
N

∑
i=1

αiK(x, xi)
αi ∈ ℝn

K : ℝn × ℝn → ℝn×n

f : ℝn → ℝn

Nn × NnNn=Nn

By default: components learned independently. No prior on the vector field.



Matrix-valued kernel

 35

Time invariance leads to an energy-conserving force field (curl-free):

∇ × f = 0
Design matrix-valued kernel that is also curl free.

Learning a vector field

f(x) =
N

∑
i=1

αiK(x, xi)
αi ∈ ℝn

K : ℝn × ℝn → ℝn×n

f : ℝn → ℝn

Nn × NnNn=Nn

By default: components learned independently. No prior on the vector field.



Enforcing structure onto the vector field: Matrix-valued radial basis functions

 36

K(r, r′�) = exp (−
∥r − r′�∥2

2σ2 ) = φ (∥r − r′�∥)

Recall the (translation-invariant) kernel:

scalar RBF Φ : ℝn → ℝ

E. Fuselier. PhD thesis, Texas A&M University (2006)
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K(r, r′�) = exp (−
∥r − r′�∥2

2σ2 ) = φ (∥r − r′�∥)

Recall the (translation-invariant) kernel:

scalar RBF Φ : ℝn → ℝ

Construct matrix-valued RBF                          from a scalar RBFΦ : ℝn → ℝn×n

Φ(x) := (ℒϕ)(x)
ϕ(x) = φ(∥x∥)

Apply linear differential operator: 

E. Fuselier. PhD thesis, Texas A&M University (2006)



Enforcing structure onto the vector field: Matrix-valued radial basis functions

 36

K(r, r′�) = exp (−
∥r − r′�∥2

2σ2 ) = φ (∥r − r′�∥)

Recall the (translation-invariant) kernel:

scalar RBF Φ : ℝn → ℝ

Construct matrix-valued RBF                          from a scalar RBFΦ : ℝn → ℝn×n

Φ(x) := (ℒϕ)(x)
ϕ(x) = φ(∥x∥)

Apply linear differential operator: 

Example: curl-free (Hϕ)ij :=
∂2ϕ

∂xi∂xj
E. Fuselier. PhD thesis, Texas A&M University (2006)



Vector fields: curl-free and divergence-free

 37Macêdo and Castro, Learning divergence-free and curl-free vector fields with matrix-valued kernels, IMPA (2010)

Φcf(x) = − (Hϕ)(x)Φdf(x) = (Hϕ)(x) − Tr{(Hϕ)(x)} ⋅ 𝕀
divergence-free curl-free
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Kernel learning of a 2D potential
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V(x, y)
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Standard kernel

 39

K(q, q′�) = exp (−
(q − q′�)2

2σ2 )

q = (2(x + y)
x − y )
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Learn the instantaneous forces 

({f x}, {f y})
and assume independence

f x
j = ∑

i

αx
i (K(qi, qj) + λ𝕀) f y

j = ∑
i

αy
i (K(qi, qj) + λ𝕀)

N × NN=N N × NN=N



Energy-conserving kernel

 40

Learning in the gradient domain:

Cov ( ∂E(qi)
∂rk

,
∂E(qj)

∂rl ) =
∂q
∂rk

i
⋅

∂2K(qi, qj)
∂q∂q

∂q
∂rl

j
+

∂K(qi, qj)
∂q

⋅
∂2q

∂rk
i ∂rl

j

Mathias, Master Thesis, Bonn (2015); Glielmo et al., arXiv:1905.07626; Csanyi; Tkatchenko; Müller…
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Building symmetries in ML force fields

 45Chmiela et al., Nat. Comm. 9:3887 (2018)

is necessary which is based on the composite matrix ~P of all
pairwise assignment matrices ~Pij ! Pð~τijÞ within the training set.

We propose to reconstruct a rank-limited P via the transitive
closure of the minimum spanning tree (MST) that minimizes the bi-
partite matching cost (see Eq. (1), Fig. 1) over the training set. The
MST is constructed from the most confident bi-partite assignments
and represents the rank N skeleton of ~P, defining also P.

The resulting consistent multipartite matching P enables
us to construct symmetric kernel-based ML models of the
form

f̂ ðxÞ ¼
XM

ij

αijκ x;Pijxi
! "

; ð3Þ
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Fig. 1 Fully data-driven symmetry discovery. a, b Our multipartite matching algorithm recovers a globally consistent atom-atom assignment across the
whole training set of molecular conformations, which directly enables the identification and reconstructive exploitation of relevant spatial and temporal
physical symmetries of the molecular dynamics. c The global solution is obtained via synchronization of approximate pairwise matchings based on the
assignment of adjacency matrix eigenvectors, which correspond in near isomorphic molecular graphs. We take advantage of the fact that the minimal
spanning set of best bipartite assignments fully describes the multipartite matching, which is recovered via its transitive closure. Symmetries that are not
relevant within the scope of the training dataset are successfully ignored. d This enables the efficient construction of individual kernel functions for each
training molecule, reflecting the joined similarity of all its symmetric variants with another molecule. The kernel exercises the symmetries by consolidating
all training examples in an arbitrary reference configuration from which they are distributed across all symmetric subdomains. This approach effectively
trains the fully symmetrized dataset without incurring the additional computational cost
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• Incorporate symmetries and conservation laws to minimize the training data 
• Reduces dataset size: can target extremely accurate quantum chemistry

by augmenting the training set with the symmetric variations of
each molecule (see Supplementary Note 1 for a comparison with
alternative symmetry-adapted kernel functions). A particular
advantage of our solution is that it can fully populate all recovered
permutational configurations even if they do not form a
symmetric group, severely reducing the computational effort in
evaluating the model. Even if we limit the range of j to include all
S unique assignments only, the major downside of this approach
is that a multiplication of the training set size leads to a drastic
increase in the complexity of the cubically scaling kernel ridge
regression learning algorithm. We overcome this drawback by
exploiting the fact that the set of coefficients α for the
symmetrized training set exhibits the same symmetries as the
data, hence the linear system can be contracted to its original size,
while still defining the full set of coefficients exactly.

For notational convenience we transform all training geome-
tries into a canonical permutation xi ! Pi1xi, enabling the use of
uniform symmetry transformations Pj ! P1j (see Supplementary
Note 2). Simplifying Eq. (3) accordingly, gives rise to the
symmetric kernel that we originally set off to construct

f̂ xð Þ ¼
PM

i
αi

PS

q
κ x;Pqxi
! "

¼
P
i
αiκsym x; xið Þ;

ð4Þ

and yields a model with the exact same number of parameters as
the original, non-symmetric one.

Our symmetric kernel is an extension to regular kernels and
can be applied universally, in particular to kernel-based force
fields. Here we construct a symmetric variant of the GDML
model, sGDML. This symmetrized GDML force field kernel takes
the form:

Hess κsym
! "

x; x′
# $

¼
XS

q

Hess κð Þ x;Pqx
′

! "
Pq: ð5Þ

Accordingly, the trained force field estimator collects the
contributions of the partial derivatives 3N of all training points M
and number of symmetry transformations S to compile the
prediction for a new input x. It takes the form

f̂ F xð Þ ¼
XM

i

X3N

l

XS

q

ðPqαiÞl
∂
∂xl

∇κ x;Pqxi
! "

ð6Þ

and a corresponding energy predictor is obtained by integrating
f̂F with respect to the Cartesian geometry. Due to linearity of
integration, the expression for the energy predictor is identical up
to second derivative operator on the kernel function.

Every (s)GDML model is trained on a set of reference examples
that reflects the population of energy states a particular molecule
visits during an MD simulation at a certain temperature. For our
purposes, the corresponding set of geometries is subsampled from
a 200 picosecond DFT MD trajectory at 500 K following the
Boltzmann distribution. Subsequently, a globally consistent
permutation graph is constructed that jointly assigns all
geometries in the training set, providing a small selection of
physically feasible transformations that define the training set
specific symmetric kernel function. In the interest of computa-
tional tractability, we shortcut this sampling process to construct
sGDML@CCSD(T) and only recompute energy and force labels
at this higher level of theory.

The sGDML model can be trained in closed form, which is
both quicker and more accurate than numerical solutions. Model
selection is performed through a grid search on a suitable subset

of the hyper-parameter space. Throughout, cross-validation with
dedicated datasets for training, testing, and validation are used to
estimate the generalization performance of the model.

Forces and energies from GDML to sGDML@DFT to
sGDML@CCSD(T). Our goal is to demonstrate that it is possible
to construct compact sGDML models that faithfully recover
CCSD(T) force fields for flexible molecules with up to 20 atoms,
by using only a small set of few hundred molecular conforma-
tions. As a first step, we investigate the gain in efficiency and
accuracy of the sGDML model vs. the GDML model employing
MD trajectories of ten molecules from benzene to azobenzene
computed with DFT (see Fig. 2 and Supplementary Table 1). The
benefit of a symmetric model is directly linked to the number of
symmetries in the system. For toluene, naphthalene, aspirin,
malonaldehyde, ethanol, paracetamol, and azobenzene, sGDML
improves the force prediction by 31.3–67.4% using the same
training sets in all cases (see Table 1). As expected, uracil and
salicylic acid have no exploitable symmetries, hence the perfor-
mance of sGDML is unchanged with respect to GDML. The
inclusion of symmetries leads to a stronger improvement in force
prediction performance compared to energy predictions. This is
most clearly visible for the naphthalene dataset, where the force
predictions even improve unilaterally. We attribute this to the
difference in complexity of both quantities and the fact that an
energy penalty is intentionally omitted in the cost function to
avoid a tradeoff.

A minimal force accuracy required for reliable MD simulations
is MAE= 1 kcal mol−1 Å−1. While the GDML model can achieve
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Fig. 2 Data efficiency gains using sGDML vs. GDML. Energy and force
prediction accuracy (in terms of the mean absolute error (MAE)) as a
function of training set size of both models trained on DFT forces: the gain
in efficiency and accuracy is directly linked to the number of symmetries in
the system
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is necessary which is based on the composite matrix ~P of all
pairwise assignment matrices ~Pij ! Pð~τijÞ within the training set.

We propose to reconstruct a rank-limited P via the transitive
closure of the minimum spanning tree (MST) that minimizes the bi-
partite matching cost (see Eq. (1), Fig. 1) over the training set. The
MST is constructed from the most confident bi-partite assignments
and represents the rank N skeleton of ~P, defining also P.

The resulting consistent multipartite matching P enables
us to construct symmetric kernel-based ML models of the
form

f̂ ðxÞ ¼
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by augmenting the training set with the symmetric variations of
each molecule (see Supplementary Note 1 for a comparison with
alternative symmetry-adapted kernel functions). A particular
advantage of our solution is that it can fully populate all recovered
permutational configurations even if they do not form a
symmetric group, severely reducing the computational effort in
evaluating the model. Even if we limit the range of j to include all
S unique assignments only, the major downside of this approach
is that a multiplication of the training set size leads to a drastic
increase in the complexity of the cubically scaling kernel ridge
regression learning algorithm. We overcome this drawback by
exploiting the fact that the set of coefficients α for the
symmetrized training set exhibits the same symmetries as the
data, hence the linear system can be contracted to its original size,
while still defining the full set of coefficients exactly.

For notational convenience we transform all training geome-
tries into a canonical permutation xi ! Pi1xi, enabling the use of
uniform symmetry transformations Pj ! P1j (see Supplementary
Note 2). Simplifying Eq. (3) accordingly, gives rise to the
symmetric kernel that we originally set off to construct

f̂ xð Þ ¼
PM

i
αi

PS

q
κ x;Pqxi
! "

¼
P
i
αiκsym x; xið Þ;

ð4Þ

and yields a model with the exact same number of parameters as
the original, non-symmetric one.

Our symmetric kernel is an extension to regular kernels and
can be applied universally, in particular to kernel-based force
fields. Here we construct a symmetric variant of the GDML
model, sGDML. This symmetrized GDML force field kernel takes
the form:

Hess κsym
! "

x; x′
# $

¼
XS

q

Hess κð Þ x;Pqx
′

! "
Pq: ð5Þ

Accordingly, the trained force field estimator collects the
contributions of the partial derivatives 3N of all training points M
and number of symmetry transformations S to compile the
prediction for a new input x. It takes the form

f̂ F xð Þ ¼
XM
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X3N

l

XS

q

ðPqαiÞl
∂
∂xl

∇κ x;Pqxi
! "

ð6Þ

and a corresponding energy predictor is obtained by integrating
f̂F with respect to the Cartesian geometry. Due to linearity of
integration, the expression for the energy predictor is identical up
to second derivative operator on the kernel function.

Every (s)GDML model is trained on a set of reference examples
that reflects the population of energy states a particular molecule
visits during an MD simulation at a certain temperature. For our
purposes, the corresponding set of geometries is subsampled from
a 200 picosecond DFT MD trajectory at 500 K following the
Boltzmann distribution. Subsequently, a globally consistent
permutation graph is constructed that jointly assigns all
geometries in the training set, providing a small selection of
physically feasible transformations that define the training set
specific symmetric kernel function. In the interest of computa-
tional tractability, we shortcut this sampling process to construct
sGDML@CCSD(T) and only recompute energy and force labels
at this higher level of theory.

The sGDML model can be trained in closed form, which is
both quicker and more accurate than numerical solutions. Model
selection is performed through a grid search on a suitable subset

of the hyper-parameter space. Throughout, cross-validation with
dedicated datasets for training, testing, and validation are used to
estimate the generalization performance of the model.

Forces and energies from GDML to sGDML@DFT to
sGDML@CCSD(T). Our goal is to demonstrate that it is possible
to construct compact sGDML models that faithfully recover
CCSD(T) force fields for flexible molecules with up to 20 atoms,
by using only a small set of few hundred molecular conforma-
tions. As a first step, we investigate the gain in efficiency and
accuracy of the sGDML model vs. the GDML model employing
MD trajectories of ten molecules from benzene to azobenzene
computed with DFT (see Fig. 2 and Supplementary Table 1). The
benefit of a symmetric model is directly linked to the number of
symmetries in the system. For toluene, naphthalene, aspirin,
malonaldehyde, ethanol, paracetamol, and azobenzene, sGDML
improves the force prediction by 31.3–67.4% using the same
training sets in all cases (see Table 1). As expected, uracil and
salicylic acid have no exploitable symmetries, hence the perfor-
mance of sGDML is unchanged with respect to GDML. The
inclusion of symmetries leads to a stronger improvement in force
prediction performance compared to energy predictions. This is
most clearly visible for the naphthalene dataset, where the force
predictions even improve unilaterally. We attribute this to the
difference in complexity of both quantities and the fact that an
energy penalty is intentionally omitted in the cost function to
avoid a tradeoff.

A minimal force accuracy required for reliable MD simulations
is MAE= 1 kcal mol−1 Å−1. While the GDML model can achieve
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Fig. 2 Data efficiency gains using sGDML vs. GDML. Energy and force
prediction accuracy (in terms of the mean absolute error (MAE)) as a
function of training set size of both models trained on DFT forces: the gain
in efficiency and accuracy is directly linked to the number of symmetries in
the system
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Take advantage of symmetries
Noether: symmetry leads to 
conservation law

Lecture 7 – Support Vector Machines and Kernel Methods

Visualization of SVs

� Problem: z-Space is infinite (unknown)
� How can the Support Vectors (from existing points) be visualized?

� Solution: non-zero alphas have been the identified support vectors

� Support vectors exist in Z – space (just transformed original data points)

� Example: million-D means a million-D vector for 

� But number of support vector is very low,  expected Eout is related to #SVs

(solution of quadratic programming optimization will be a set of alphas we can visualize)

[7] Visualization of high-dimensional space

(generalization behaviour despite million-D & snake-like overfitting)

(snake seems like overfitting,
fitting to well, cf. Lecture 2) � Counting the number of support 

vectors remains to be a good indicator 
for generalization behaviour even
when performing non-linear 
transforms and kernel methods that
can lead to infinite-D spaces

(rule of thumb)
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VECTORIAL GAUSSIAN PROCESS

REGRESSION

We wish to model by a VGP the force f acting on
an atom whose chemical environment is in a configura-
tion ⇢ that encodes the positions of all of neighbours of
the atom, up to a suitable cutoff radius, in an arbitrary
Cartesian reference frame. In a Bayesian setting, before
any data is considered, f is treated as a Gaussian Process,
i.e., it is assumed that for any finite set of configurations
{⇢i, i = 1, . . . N} the values f(⇢i) taken by the vector
function f are well described by a multivariate Gaussian
distribution [21]. We write:

f(⇢) ⇠ GP(m(⇢),K(⇢, ⇢0)) (1)

where m(⇢) is a vector-valued mean function and K(⇢, ⇢0)
is a matrix-valued kernel function. Before any data is
considered, m is usually assumed to be zero as all prior
information on f is encoded into the kernel function
K(⇢, ⇢0). The latter represents the correlation of the vec-
tors f(⇢) and f(⇢0) as a function of the two configurations
(“input space points”) ⇢ and ⇢

0:

K(⇢, ⇢0) = hf(⇢)fT(⇢0)i, (2)

where angular brackets here signify the expected value
over the multivariate Gaussian distribution. Any ker-
nel K consistent with this definition must be a positive
semi-definite matrix function, since for any collection of
vectors {vi}

X

ij

vT
i
K(⇢i, ⇢j)vj = h(

X

i

vT
i
f(⇢i))

2
i � 0. (3)

To train the prediction model we need to access a
database of atomic configurations and reference forces
D = {(⇢, fr)i, i = 1, . . . , N}. Using Bayes’ theorem [27]
the distribution (1) is modified to take the data D into ac-
count [21]. If the likelihood function [22] is also Gaussian
(which effectively assumes that the observed forces fr

i
are

the true forces subject to Gaussian noise of variance �
2
n
)

then the resulting posterior distribution f(⇢ | D), condi-
tional on the data, will also be a Gaussian process

f(⇢ | D) ⇠ GP(f̂(⇢ | D), Ĉ(⇢, ⇢0)). (4)

The mean function of the posterior distribution, f̂(⇢ | D),
is at this point the best estimate for the true underlying
function:

f̂(⇢ | D) =
NX

ij

K(⇢, ⇢i)[K+ I�2
n
]�1
ij

fr
j
. (5)

Here �
2
n
, formally is the noise affecting the observed

forces fr, serves in practice as a regulariser for the matrix
inverse. In the following, blackboard bold characters such

as K or I indicate N⇥N block matrices (for instance, the
Gram matrix K is defined as (K)ij = K(⇢i, ⇢j)). Simil-
arly, we denote by [K+ I�2

n
]�1
ij

the ij-block of the inverse
matrix.

We next examine how to incorporate the vector be-
haviour of forces into the learning algorithm. The rel-
evant symmetry transformations in the input space are:
rigid translation of all atoms, permutation of atoms of
the same chemical species, rotations and reflections of
atomic configurations. Forces are invariant with respect
to translations and atomic permutations, and covariant
with respect to rotations and reflections. Assuming that
the representation of the atomic configuration is local,
i.e., the atom subject to the force fi is at the origin of the
reference frame used for ⇢i, translations are automatic-
ally taken into account. The remaining symmetries must
be addressed in the construction of covariant kernels.

COVARIANT KERNELS

From now on we will define S to be any symmetry
operator (rotation or reflection) acting on an atomistic
configuration of a d-dimensional system. Rotations will
be denoted by R and reflections by Q.

We require two properties to apply to the predicted
force f̂(⇢ | D), once configurations are transformed by an
operator S (represented by a matrix S):

Property 1 If the target configuration ⇢ is trans-
formed to S⇢, the predicted force must transform ac-
cordingly:

f̂(S⇢ | D) = Sf̂(⇢ | D). (6)

Property 2 The predicted force must not change if we
arbitrarily transform the configurations in the database
(D ! D̃ = {(Si⇢i,Sifri )}) with any chosen set of roto-
reflections {Si}.

We next introduce a special class of kernel functions
that automatically guarantees these two properties: a
covariant kenrel has the defining property

K(S⇢,S 0
⇢
0) = SK(⇢, ⇢0)S0T

. (7)

That a covariant kernel imposes Property 1 follows
straightforwardly from equation (5):

f̂(S⇢ | D) =
NX

ij

K(S⇢, ⇢i)[K+ I�2
n
]�1
ij

fr
j

=
NX

ij

SK(⇢, ⇢i)[K+ I�2
n
]�1
ij

fr
j

= Sf̂(⇢ | D). (8)

To prove Property 2 we note that, if the kernel function is
covariant, the transformed database D̃ has Gram matrix
(K̃)ij = K(Si⇢i,Sj⇢j) = SiK(⇢i, ⇢j)ST

j
. If we define the

Build symmetries in ML model
Work with subset of kernels that a 
priori satisfy conservation law


