

Conservation laws with ML for energy landscapes

Tristan Bereau Max Planck Institute for Polymer Research Mainz, Germany

MAX PLANCK INSTITUTE FOR POLYMER RESEARCH

Max-Planck-Institut für Polymerforschung

$\mathbf{F} = m\mathbf{a}$

Max-Planck-Institut für Polymerforschung

$\mathbf{F} = m\mathbf{a}$ Specify interparticle forces: "force field"

Max-Planck-Institut für Polymerforschung

Numerically integrate particle positions

$\mathbf{F} = ma$

Specify interparticle forces: "force field"

Max-Planck-Institut für Polymerforschung

Numerically integrate particle positions

$\mathbf{F} = ma$

Numerically integrate particle positions

$\mathbf{F} = ma$

Numerically integrate particle positions

$\mathbf{F} = ma$

Numerically integrate particle positions

$F = ma^{\prime}$

Numerically integrate particle positions

$F = ma^{\prime}$

$\mathbf{H} = m\mathbf{a}$

Links to machine learning

Potential energy surface

Max-Planck-Institut für Polymerforschung

Max Planck Institute for Polymer Research

Can we build a more accurate PES?

Can we **easily** build an accurate PES?

Can we make the numerical integration faster and/or more efficient?

З

Disclaimer: only kernel methods covered

Kernel

needs a representation linear algebra can be efficient with small data

Deep learning

learns the representation complex mathematical structure data hungry

Kernel machine learning 101

Kernel machine learning 101

Kernel machine learning 101 Define kernel $K(r,r') = \exp\left(-\frac{(r-r')^2}{2\sigma^2}\right)$ $U_{\rm LJ}(r)$ Training points Prediction Make a prediction: $U(r) = \sum \alpha_i K(r_i^*, r)$ $U_{\rm LJ}(r) = 4\epsilon \left[\left(\frac{\sigma}{r}\right)^{12} - \left(\frac{\sigma}{r}\right)^6 \right]$ Training points Predicted energy Query sample Train your model:

2.01.61.8 1.4

 $\alpha = (K + \lambda \mathbb{I})^{-1} U$

THEORY GROUP Rasmussen, Advanced lectures on machine learning. Springer, 63-71 (2004)

Gaussian processes

THEORY GROUP Rasmussen, Advanced lectures on machine learning. Springer, 63-71 (2004)

 $f \sim \mathcal{GP}(m,k)$

 $f \sim \mathcal{GP}(m,k)$ $\mu_i = m(x_i) \qquad \Sigma_{ij} = k(x_i, x_j)$

f(x)

random variable: value of the stochastic function at x

THEORY GROUP Rasmussen, Advanced lectures on machine learning. Springer, 63-71 (2004)

Gaussian processes

mean

covariance

Gaussian processes $f \sim \mathcal{GP}(m,k)$ $\mu_i = m(x_i) \qquad \Sigma_{ij} = k(x_i, x_j)$ covariance mean kernel

f(x)

random variable: value of the stochastic function at x

THEORY GROUP Rasmussen, Advanced lectures on machine learning. Springer, 63-71 (2004)

THEORY GROUP

Gaussian processes $f \sim \mathcal{GP}(m,k)$ $\mu_i = m(x_i) \qquad \Sigma_{ij} = k(x_i, x_j)$ covariance mean kernel Nonuniform: replace by repulsive potential (Csanyi and coworkers, Clementi and

f(x)

random variable: value of the stochastic function at x

|Noé, . . .)

target property

Rasmussen, Advanced lectures on machine learning. Springer, 63-71 (2004)

Conformational space missing from training

Linking conformational and interpolation spaces

MAX PLANCK INSTITUTE FOR POLYMER RESEARCH

Symmetries and conservation laws

Mechanics 101: Principle of least action

Mechanics 101: Principle of least action $\mathcal{S}[x(t)] = \int_{t_1}^{t_2} \mathrm{d}t \, L[x(t), \dot{x}(t), t]$ kinetic energy action potential energy Lagrangian L = T

Hamilton's principle: system minimizes action (variational principle)

$\mathcal{S}[x^*(t)] = 0$

Mechanics 101: Principle of least action $\mathcal{S}[x(t)] = \int_{t_1}^{t_2} dt \, L[x(t), \dot{x}(t), t] \qquad \qquad \text{kinetic end}$ action $\mathcal{L} = T - Lagrangian \ L = T$ kinetic energy potential energy

Hamilton's principle: system minimizes action (variational principle)

stationarity under small perturbations leads to Euler-Lagrange equations

$$\delta \mathcal{S} = \int_{t_1}^{t_2} \mathrm{d}t \, L(x^* + \varepsilon, \dot{x}^* + \dot{\varepsilon}, t) - L(x^*, \dot{x}^*, t)$$
$$= \int_{t_1}^{t_2} \mathrm{d}t \, \left(\varepsilon \frac{\partial L}{\partial x} + \dot{\varepsilon} \frac{\partial L}{\partial x}\right) = \int_{t_1}^{t_2} \mathrm{d}t \, \left(\varepsilon \frac{\partial L}{\partial x} - \varepsilon \frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial L}{\partial \dot{x}}\right) = 0$$

$\mathcal{S}[x^*(t)] = 0$

Mechanics 101: Principle of least action $\mathcal{S}[x(t)] = \int_{t_1}^{t_2} dt \, L[x(t), \dot{x}(t), t] \qquad \qquad \text{kinetic error} \\ \text{Lagrangian } L = T$ kinetic energy potential energy

Hamilton's principle: system minimizes action (variational principle)

stationarity under small perturbations leads to Euler-Lagrange equations

 $\varepsilon(t_1) = \varepsilon(t_2) = 0$

$$\delta S = \int_{t_1}^{t_2} dt L(x^* + \varepsilon, \dot{x}^* + \dot{\varepsilon}, t) - L(x^*, \dot{x}^*, t)$$
$$= \int_{t_1}^{t_2} dt \left(\varepsilon \frac{\partial L}{\partial x} + \dot{\varepsilon} \frac{\partial L}{\partial x} \right) = \int_{t_1}^{t_2} dt \left(\varepsilon \frac{\partial L}{\partial x} - \varepsilon \frac{d}{dt} \frac{\partial L}{\partial \dot{x}} \right) = 0$$

integration by parts &

$\mathcal{S}[x^*(t)] = 0$

From symmetries, to invariants, to conserved quantities

 $\mathcal{S}[x(t), y(t), z(t)] = \left[dt \, \frac{m}{2} \left(\dot{x}^2 + \dot{y}^2 + \dot{z}^2 \right) - mgz \right]$

- $\mathcal{S}[x(t), y(t), z(t)] =$
- Introduce constant translations along x and y:
 - $S[x(t) + x_0, y(t) + y_0, z(t)]$

$$\mathrm{d}t\,\frac{m}{2}\left(\dot{x}^2+\dot{y}^2+\dot{z}^2\right)-mgz$$

$$= \int dt \frac{m}{2} \left(\dot{x}^2 + \dot{y}^2 + \dot{z}^2 \right) - mgz$$
$$= \mathcal{S}[x(t), y(t), z(t)]$$

- $\mathcal{S}[x(t), y(t), z(t)] =$
- Introduce constant translations along *x* and *y*:
 - $S[x(t) + x_0, y(t) + y_0, z(t)]$

(Translational) symmetry leaves the action invariant. It leaves the Euler-Lagrange equation unchanged:

$$\mathrm{d}t\,\frac{m}{2}\left(\dot{x}^2+\dot{y}^2+\dot{z}^2\right)-mgz$$

$$= \int dt \frac{m}{2} \left(\dot{x}^2 + \dot{y}^2 + \dot{z}^2 \right) - mgz$$
$$= \mathcal{S}[x(t), y(t), z(t)]$$

 $\frac{\partial L}{\partial x} - \frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial L}{\partial \dot{x}} = 0$

$$\mathcal{S}[x(t), y(t), z(t)] = \int dt \, \frac{m}{2} \left(\dot{x}^2 + \dot{y}^2 + \dot{z}^2 \right) - mgz$$

Introduce constant translations along x and y:

$$\mathcal{S}[x(t) + x_0, y(t) + y_0, z(t)] = \int dt \, \frac{m}{2} \left(\dot{x}^2 + \dot{y}^2 + \dot{z}^2 \right) - mgz$$
$$= \mathcal{S}[x(t), y(t), z(t)]$$

(Translational) symmetry leaves the action invariant. It leaves the Euler-Lagrange equation unchanged:

$$\frac{\partial L}{\partial x} = 0 \qquad \qquad \frac{\partial L}{\partial \dot{x}} = m\dot{x} = \text{const.}$$

From symmetries, to invariants, to conserved quantities

 $\frac{\partial L}{\partial L} - \frac{\mathrm{d}}{\partial L} = 0$ $dt \partial \dot{x}$ ∂x

> Translational invariance implies linear momentum conversation

 $\mathcal{S}[\mathbf{r}(t)] =$

Rotational symmetry

Apply transformation $\mathbf{r} \rightarrow \mathbf{r}'$ where $\mathbf{r}'(t) = R\mathbf{r}(t) = \mathbf{r}(t) + \alpha \times \mathbf{r}(t)$

One can show that $\mathcal{S}[\mathbf{r}(t) + \alpha \times \mathbf{r}(t)] = \mathcal{S}[\mathbf{r}(t)]$

Conservation of angular momentum

From symmetries to conserved quantities (cont'd)

$$\int \mathrm{d}t \, \frac{m}{2} \dot{\mathbf{r}}^2 - V(r)$$

Time translation

Apply transformation $\mathbf{r} \rightarrow \mathbf{r}'$ where $\mathbf{r}'(t+\epsilon) = \mathbf{r}(t)$

One can show that $\mathcal{S}[\mathbf{r}'(t+\epsilon)] = \mathcal{S}[\mathbf{r}(t)]$ (up to a boundary term) Conservation of energy

Noether's theorem

To every differentiable symmetry generated by local actions there corresponds a conserved quantity

3 examples:

- Translational symmetry: Linear momentum conservation
- Rotational symmetry: Angular momentum conservation
- Time translation: Energy conservation

mentum conservation mentum conservation ation

2 ways of encoding symmetries:- Representation- ML model

MAX PLANCK INSTITUTE FOR POLYMER RESEARCH

Encoding symmetries in the representation

MAX PLANCK INSTITUTE FOR POLYMER RESEARCH

Translational and rotational symmetries Behler-Parrinello Coulomb matrix

$$G_{i}^{1} = \sum_{j \neq i}^{\text{all}} e^{-\eta(R_{ij} - R_{s})^{2}} f_{c}(R_{ij})$$

$$G_{i}^{2} = 2^{1-\zeta} \sum_{j,k \neq i}^{\text{all}} (1 + \lambda \cos \theta_{ijk})^{\zeta}$$

$$\times e^{-\eta(R_{ij}^{2} + R_{ik}^{2} + R_{jk}^{2})} f_{c}(R_{ij}) f_{c}(R_{ik}) f_{c}(R_{jk})$$

Distances
Angles

Behler & Parrinello, Phys Rev Lett 98 (2007)

Rupp, Tkatchenko, Müller, von Lilienfeld, Phys Rev Lett, 108 (2012)

6 (2012) 17

Encoding symmetries in the ML model

MAX PLANCK INSTITUTE FOR POLYMER RESEARCH

Action of group G on input sample $x \mapsto T_{g}(x)$

THEORY GROUP Risi Kondor, *Group theoretical methods in machine learning, PhD thesis* (2008)

Encoding symmetries in ML models using group theory

Action of group G on input sample $x \mapsto T_{\rho}(x)$

Can we find a kernel that is invariant to this group action? $f(T_g(x)) = f(x) \forall g \in G$

Encoding symmetries in ML models using group theory

 $k(x, x') = k(T_g(x), T_{g'}(x'))$

Action of group G on input sample $x \mapsto T_{\rho}(x)$

Can we find a kernel that is invariant to this group action?

To ensure invariance, symmetrize the kernel

 $k^{G}(x, x') = \frac{1}{|G|} \sum_{k \in V} k(x, T_{g}(x'))$ $g \in G$

Risi Kondor, Group theoretical methods in machine learning, PhD thesis (2008)

Encoding symmetries in ML models using group theory

 $f(T_g(x)) = f(x) \forall g \in G$ $k(x, x') = k(T_g(x), T_{g'}(x'))$

Example of symmetrized kernel

SOAP kernel/representation*

 $S(\hat{R}) \equiv S(\rho, \hat{R}\rho') = \int d\mathbf{r} \,\rho(\mathbf{r})\rho'(\hat{R}\mathbf{r}) = \sum \sum D_{m'm''}^{l'}(\hat{R}) \int dr \, c_{lm}^{i*}(r) c_{l'm'}^{i'}(r) \int d\hat{\mathbf{r}} \, Y_{lm}^{*}(\hat{\mathbf{r}}) Y_{l'm''}(\hat{\mathbf{r}})$

$$k(\rho, \rho') = \int \left| S(\rho, \hat{R}\rho') \right|^n d\hat{R} =$$
$$= \int d\hat{R} \left| \int \rho(\mathbf{r}) \rho'(\hat{R}\mathbf{r}) d\mathbf{r} \right|$$

metric between two samples

Tensorial property (e.g., dipole moment, force) **rotates** with the sample

Tensorial property (e.g., dipole moment, force) rotates with the sample

Tensorial property (e.g., dipole moment, force) **rotates** with the sample

Tensorial property (e.g., dipole moment, force) **rotates** with the sample

"Build kernel so as to encode the rotational properties of the target property"

Covariant kernels

Encode rotational properties of the target property in the **kernel**

$\hat{\mathbf{f}}(\mathcal{S}\rho \mid \mathcal{D}) = \hat{\mathbf{S}}\hat{\mathbf{f}}(\rho \mid \mathcal{D})$ Force prediction Transformation (rotation/inversion) Descriptor Training data

THEORY GROUP Glielmo, Sollich, De Vita, *Phys Rev B* **95** (2017)

Covariant kernels

Encode rotational properties of the target property in the **kernel**

$\mathbf{f}(\mathcal{S}\rho \mid \mathcal{D}) = \mathbf{S}\hat{\mathbf{f}}(\rho \mid \mathcal{D})$ Force prediction Transformation (rotation/inversion) Descripto Training data

THEORY Glielmo, Sollich, De Vita, *Phys Rev B* **95** (2017)

Covariant kernels

Encode rotational properties of the target property in the **kernel**

"Transform the configuration, and the prediction transforms with it"

Transformations (rotation/inversion)

THEORY Glielmo, Sollich, De Vita, Phys Rev B 95 (2017)

Covariant kernels $\mathbf{K}(\mathcal{S}\rho,\mathcal{S}'\rho') = \mathbf{S}\mathbf{K}(\rho,\rho')\mathbf{S}'^{\mathrm{T}}$ Configurations

 $\mathbf{K}(\boldsymbol{\rho},\boldsymbol{\rho}') = \int d\mathcal{R}\mathbf{R}k_b(\boldsymbol{\rho},\mathcal{R}\boldsymbol{\rho}')$

 $\mathbf{K}^{\mu}(\rho, \rho') = \frac{1}{L} \sum_{ij} \phi(r_i, r_j) \mathbf{r}_i \otimes \mathbf{r}_j'^{\mathrm{T}}$

Extension to higher-order tensors $\mathbf{K}^{\mathsf{Q}}(\mathcal{S}\rho, \mathcal{S}'\rho') = \mathbf{S}'\mathbf{S}^{\mathsf{T}}\mathbf{K}^{\mathsf{Q}}(\rho, \rho')\mathbf{S}\mathbf{S}'^{\mathsf{T}}$

 $\mathbf{K}^{\mathbf{Q}}(\rho, \rho') = \frac{1}{L} \sum_{ij} \left(\mathbf{R}_{j}^{\mathrm{T}} \otimes \mathbf{R}_{i} \right) \Phi(r_{i}, r_{j}) \left(\mathbf{R}_{i}^{\mathrm{T}} \otimes \mathbf{R}_{j} \right)$ aligns \mathbf{r}_i onto \hat{z} \hat{z}_{\dagger} **fr**_i

Bereau, DiStasio Jr., Tkatchenko, von Lilienfeld, J Chem Phys 148 (2018) THEORY Grisafi, Wilkins, Csanyi, Ceriotti, Phys Rev Lett **120** (2018) GROUP

 $\Phi(r_i, r_j) = e^{\frac{-\alpha_{ij}^2}{4\sigma^2}} \int d\alpha \int d\beta \int d\gamma \frac{\sin \beta}{8\pi^2} \times \mathbf{R}^{\mathrm{T}}(\alpha, \beta, \gamma) \otimes \mathbf{R}(\alpha, \beta, \gamma) e^{\frac{r_i r_j \cos \beta}{2\sigma^2}}$ $=\begin{pmatrix} \varphi_1 & 0 & 0 & 0 & \varphi_2 & 0 & 0 & 0 \\ 0 & \varphi_1 & 0 & -\varphi_2 & 0 & 0 & 0 & 0 \\ 0 & 0 & \varphi_3 & 0 & 0 & 0 & 0 & 0 \\ 0 & -\varphi_2 & 0 & \varphi_1 & 0 & 0 & 0 & 0 \\ \varphi_2 & 0 & 0 & 0 & \varphi_1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & \varphi_3 & 0 & 0 & 0 \\ \end{pmatrix}$

Application to intermolecular interactions

MAX PLANCK INSTITUTE FOR POLYMER RESEARCH

Transferable model for intermolecular interactions

Physics-based models

Encode laws, symmetries
Little chemical information

Compositional (e.g., benzene vs. chlorobenzene)

Data-driven models

- Need to *learn* laws, symmetries
- Interpolate across chemistry

)

Transferable model for intermolecular interactions

Physics-based models

- Encode laws, symmetries
- Little chemical information

Any small molecule made of H, C, O, N neutral compounds

Compositional (e.g., benzene vs. chlorobenzene)

Data-driven models

- Need to *learn* laws, symmetries
- Interpolate across chemistry

Long-ranged

- Static electrostatics
- Many-body dispersion
- Polarization

Van Vleet, Misquitta, Stone, and Schmidt, *J. Chem. Theory Comput.* **12** (2016); Vandenbrande, et al., *J. Chem. Theory Comput.* **13** (2017); Grimme, *J. Chem. Theory Comput.* **10** (2014); Verstraelen, et al., *J. Chem. Theory Comput.* **12** (2016); Metz et al, *J. Chem. Theory Comput* **12** (2016)

Max-Planck-Institut für Polymerforschung

Max Planck Institute for Polymer Research

Short-ranged

- Charge penetration
- Repulsion
- (Charge transfer)

Long-ranged

Perturbation theory

- Static electrostatics
- Many-body dispersion
- Polarization

Van Vleet, Misquitta, Stone, and Schmidt, J. Chem. Theory Comput. 12 (2016); Vandenbrande, et al., J. Chem. Theory Comput. 13 (2017); Grimme, J. Chem. Theory Comput. 10 (2014); Verstraelen, et al., J. Chem. Theory THEORY *Comput.* **12** (2016); Metz et al, *J. Chem. Theory Comput* **12** (2016)

Max-Planck-Institut für Polymerforschung

Max Planck Institute for Polymer Research

Short-ranged

Overlap models

- Charge penetration
- Repulsion
- (Charge transfer)

 $S_{ij} = \int \mathrm{d}^3 \mathbf{r} \rho_i(\mathbf{r}) \rho_j(\mathbf{r})$

Long-ranged

- Static electrostatics
- Many-body dispersion
- Polarization

Use ML to predict atoms-in-molecules properties

- Multipole moments
- Hirshfeld ratios

Van Vleet, Misquitta, Stone, and Schmidt, J. Chem. Theory Comput. 12 (2016); Vandenbrande, et al., J. Chem. Theory Comput. 13 (2017); Grimme, J. Chem. Theory Comput. 10 (2014); Verstraelen, et al., J. Chem. Theory THEORY *Comput.* **12** (2016); Metz et al, *J. Chem. Theory Comput* **12** (2016) GROUP

Max-Planck-Institut für Polymerforschung

Max Planck Institute for Polymer Research

Short-ranged

- Charge penetration
- Repulsion
- (Charge transfer)

Atomic density widths/populations

Long-ranged

- Static electrostatics
- Many-body dispersion Hirshfeld ratios
- Polarization

- Multipole moments
- Hirshfeld ratios

Van Vleet, Misquitta, Stone, and Schmidt, J. Chem. Theory Comput. 12 (2016); Vandenbrande, et al., J. Chem. Theory Comput. 13 (2017); Grimme, J. Chem. Theory Comput. 10 (2014); Verstraelen, et al., J. Chem. Theory THEORY *Comput.* **12** (2016); Metz et al, *J. Chem. Theory Comput* **12** (2016) GROUP

Stone, The Theory of Intermolecular Forces **THEORY** Bereau and Meuwly, Many-Body Effects and Electrostatics in Biomolecules

Static multipole electrostatics

Stone, The Theory of Intermolecular Forces Bereau and Meuwly, Many-Body Effects and Electrostatics in Biomolecules

R

 $-\frac{\mu_{\alpha}R_{\alpha}}{R^{3}}+\frac{1}{3}\Theta_{\alpha\beta}\frac{3R_{\alpha}R_{\beta}-R^{2}\delta_{\alpha\beta}}{D^{5}}$

THEORY GROUP

Stone, The Theory of Intermolecular Forces Bereau and Meuwly, Many-Body Effects and Electrostatics in Biomolecules

THEORY GROUP

Bereau and Meuwly, Many-Body Effects and Electrostatics in Biomolecules

Multipoles: Learning curves

THEORY GROUP Bereau, DiStasio Jr., Tkatchenko, von Lilienfeld, *JCP* **148**, 241706 (2018); JCP Editor's Choice 2018

Easier to learn H,O than C,N

Multipoles: Correlation curves

monopole

Max-Planck-Institut für Polymerforschung

Max Planck Institute for Polymer Research

Intermolecular energy across conformations and composition

Jurecka, Sponer, Cerny, Hobza, PCCP (2006) Paton and Goodman, J Chem Inf Model (2009)

THEORY GROUP Bereau, DiStasio Jr., Tkatchenko, von Lilienfeld, *JCP* **148**, 241706 (2018); JCP Editor's Choice 2018 1518 104 VIEWS SHARES TO CO CO CO

2 6	in	SUBSCRIBE
SIGN UP FOR ALERTS		
d machine molecular		
ems witl ne learni	h an ap ing me	proach that thods.

Energy conservation

MAX PLANCK INSTITUTE FOR POLYMER RESEARCH

Up to now: learning a scalar field $f: \mathbb{R}^n \to \mathbb{R}$ $f(\mathbf{x}) = \sum_{i=1}^{N} \alpha_i K(\mathbf{x}, \mathbf{x}_i) \qquad N = N$

Macêdo and Castro, Learning divergence-free and curl-free vector fields with matrix-valued kernels, IMPA (2010) THEORY Micchelli and M. Pontil. Neural Computation, 17(1):177–204, 2005. • GROUP

Learning a vector field: matrix-valued kernels 🔰

 $\alpha_i \in \mathbb{R}$ $K: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$

Up to now: learning a scalar field $f: \mathbb{R}^n \to \mathbb{R}$

$$f(\mathbf{x}) = \sum_{i=1}^{N} \alpha_i K(\mathbf{x}, \mathbf{x}_i) \qquad N =$$

Learning a vector field $\mathbf{f}: \mathbb{R}^n \to \mathbb{R}^n$

 $\mathbf{f}(\mathbf{x}) = \sum \alpha_i K(\mathbf{x}, \mathbf{x}_i)$ Nn i=1

Macêdo and Castro, Learning divergence-free and curl-free vector fields with matrix-valued kernels, IMPA (2010) THEORY Micchelli and M. Pontil. Neural Computation, 17(1):177–204, 2005.

Learning a vector field: matrix-valued kernels

By default: components learned *independently*. No prior on the vector field.

Time invariance leads to an **energy-conserving** force field (curl-free): $\nabla \mathbf{x} \mathbf{f} = \mathbf{0}$

Design matrix-valued kernel that is *also* curl free.

By default: components learned *independently*. No prior on the vector field.

Recall the (translation-invariant) kernel:

THEORY GROUP E. Fuselier. PhD thesis, Texas A&M University (2006)

Enforcing structure onto the vector field: Matrix-valued radial basis functions

Recall the (translation-invariant) kernel: $K(\mathbf{r},\mathbf{r}') = \exp\left(-\frac{\|\mathbf{r}\|}{-$

Construct matrix-valued RBF $\Phi: \mathbb{R}^n$ Apply linear differential operator: $\Phi(\mathbf{x}) := (\mathscr{L}\phi)(\mathbf{x})$

Enforcing structure onto the vector field: Matrix-valued radial basis functions

$$\frac{\mathbf{r} - \mathbf{r}'\|^2}{2\sigma^2} = \varphi \left(\|\mathbf{r} - \mathbf{r}'\| \right)$$

scalar RBF $\Phi : \mathbb{R}^n \to \mathbb{R}$
 $\to \mathbb{R}^{n \times n}$ from a scalar RBF $\phi(\mathbf{x}) = \varphi(\|\mathbf{x}\|)$
 $\varphi(\mathbf{x}) := (\mathcal{L}\phi)(\mathbf{x})$

Recall the (translation-invariant) kernel: $K(\mathbf{r},\mathbf{r}') = \exp\left(-\frac{\|\mathbf{r}\|}{-$

Apply linear differential operator: $\Phi(\mathbf{x}) := (\mathscr{L}\phi)(\mathbf{x})$

Example: curl-free

THEORY GROUP E. Fuselier. PhD thesis, Texas A&M University (2006)

Enforcing structure onto the vector field: Matrix-valued radial basis functions

$$\frac{\mathbf{r} - \mathbf{r}' \|^2}{2\sigma^2} = \varphi \left(\|\mathbf{r} - \mathbf{r}'\| \right)$$

scalar RBF $\Phi : \mathbb{R}^n \to \mathbb{R}$

Construct matrix-valued RBF $\Phi: \mathbb{R}^n \to \mathbb{R}^{n \times n}$ from a scalar RBF $\phi(\mathbf{x}) = \phi(\|\mathbf{x}\|)$

$$(H\phi)_{ij} := \frac{\partial^2 \phi}{\partial x_i \partial x_j}$$

Vector fields: curl-free and divergence-free 🔰

divergence-free

Figure 1. Learning a vector field decomposition: samples, learned field, divergence- and curl-free parts.

THEORY Macêdo and Castro, Learning divergence-free and curl-free vector fields with matrix-valued kernels, IMPA (2010) GROUP

Distribution (Brownian dynamics)

Kernel learning of a 2D potential

 $\frac{V(x,y)}{k_{\rm B}T} = \frac{1}{50}(x-4)(x-2)(x+2)(x+3) + \frac{1}{20}y^2 + \frac{1}{25}\sin(3(x+5)(y-6))$

Potential from: Wang et al., ACS Cent. Sci. 5 755–767 (2019)

Standard kernel Learn the instantaneous forces $({f^x}, {f^y})$ and assume independence q_2 $N \equiv N \qquad N \times N \qquad N \equiv N \qquad N \times N$ $K(\mathbf{q},\mathbf{q}') = \exp\left(-\frac{(\mathbf{q}-\mathbf{q}')^2}{2\sigma^2}\right)$ -2 $\left| f_j^x = \sum \alpha_i^x \left(K(\mathbf{q}_i, \mathbf{q}_j) + \lambda \mathbb{I} \right) \qquad f_j^y = \sum \alpha_i^y \left(K(\mathbf{q}_i, \mathbf{q}_j) + \lambda \mathbb{I} \right) \right|$

 $\mathbf{q} = \begin{pmatrix} 2(x+y) \\ x-y \end{pmatrix}$

THEORY GROUP

$$\operatorname{Cov}\left(\frac{\partial E(\mathbf{q}_i)}{\partial r^k}, \frac{\partial E(\mathbf{q}_j)}{\partial r^l}\right) = \frac{\partial \mathbf{q}}{\partial r_i^k}$$

Energy-conserving kernel

Energy-conserving kernel

$$\operatorname{Cov}\left(\frac{\partial E(\mathbf{q}_{i})}{\partial r^{k}}, \frac{\partial E(\mathbf{q}_{j})}{\partial r^{l}}\right) = \frac{\partial \mathbf{q}}{\partial r_{i}^{k}}$$
$$K(\mathbf{q}, \mathbf{q}') = \exp\left(-\frac{(\mathbf{q} - \mathbf{q}')^{2}}{2\sigma^{2}}\right)$$

$$\mathbf{K}_{\text{Hess}}(q_i^k, q_j^l) = \frac{\partial \mathbf{q}}{\partial r_i^k} \cdot \frac{\partial \mathbf{q}}{\partial r_j^l} \frac{\partial}{\partial \mathbf{q}} \frac{\partial}{\partial \mathbf{q}}$$
$$= \frac{\partial \mathbf{q}}{\partial r_i^k} \cdot \frac{\partial \mathbf{q}}{\partial r_j^l} \frac{1}{\sigma^2} \left(\frac{\partial \mathbf{q}}{\partial r_j^k} - \frac{\partial \mathbf{q}}{\partial r_j^l} \frac{1}{\sigma^2} \right)$$

THEORY Mathias, Master Thesis, Bonn (2015); Glielmo et al., arXiv:1905.07626; Csanyi; Tkatchenko; Müller...

Energy-conserving kernel

$$\operatorname{Cov}\left(\frac{\partial E(\mathbf{q}_{i})}{\partial r^{k}}, \frac{\partial E(\mathbf{q}_{j})}{\partial r^{l}}\right) = \frac{\partial \mathbf{q}}{\partial r_{i}^{k}}$$
$$K(\mathbf{q}, \mathbf{q}') = \exp\left(-\frac{(\mathbf{q} - \mathbf{q}')^{2}}{2\sigma^{2}}\right)$$

$$\mathbf{K}_{\text{Hess}}(q_i^k, q_j^l) = \frac{\partial \mathbf{q}}{\partial r_i^k} \cdot \frac{\partial \mathbf{q}}{\partial r_j^l} \frac{\partial}{\partial \mathbf{q}} \frac{\partial}{\partial \mathbf{q}}$$
$$= \frac{\partial \mathbf{q}}{\partial r_i^k} \cdot \frac{\partial \mathbf{q}}{\partial r_j^l} \frac{1}{\sigma^2} \left(\frac{\partial \mathbf{q}}{\partial r_j^k} - \frac{\partial \mathbf{q}}{\partial r_j^l} \frac{1}{\sigma^2} \right)$$

THEORY GROUP Mathias, Master Thesis, Bonn (2015); Glielmo et al., arXiv:1905.07626; Csanyi; Tkatchenko; Müller...

Energy-conserving kernel

 $\frac{\partial^2 K(\mathbf{q}_i, \mathbf{q}_j)}{\partial \mathbf{q} \partial \mathbf{q}} \frac{\partial \mathbf{q}}{\partial r_j^l} + \frac{\partial K(\mathbf{q}_i, \mathbf{q}_j)}{\partial \mathbf{q}} \frac{\partial^2 \mathbf{q}}{\partial r_i^k \partial r_j^l}$ $\mathbf{K}_{\text{Hess}}(q_i^k, q_i^l)$ $\frac{\partial}{\partial \mathbf{q}} \exp\left(-\frac{(\mathbf{q}_i - \mathbf{q}_j)^2}{2\sigma^2}\right)$ $1 - \frac{(\mathbf{q}_i - \mathbf{q}_j)^2}{\sigma^2} \exp\left(-\frac{(\mathbf{q}_i - \mathbf{q}_j)^2}{2\sigma^2}\right)$

$$K(\mathbf{q}, \mathbf{q}') = \exp\left(-\frac{(\mathbf{q} - \mathbf{q}')^2}{2\sigma^2}\right)$$

$$\mathbf{K}_{\text{Hess}}(q_i^k, q_j^l) = \frac{\partial \mathbf{q}}{\partial r_i^k} \cdot \frac{\partial \mathbf{q}}{\partial r_j^l} \frac{\partial}{\partial \mathbf{q}} \frac{\partial}{\partial \mathbf{q}}$$
$$= \frac{\partial \mathbf{q}}{\partial r_i^k} \cdot \frac{\partial \mathbf{q}}{\partial r_j^l} \frac{1}{\sigma^2} \left($$

enables energy conservation

THEORY Mathias, Master Thesis, Bonn (2015); Glielmo et al., arXiv:1905.07626; Csanyi; Tkatchenko; Müller...

Energy-conserving kernel

 $\operatorname{Cov}\left(\frac{\partial E(\mathbf{q}_{i})}{\partial r^{k}}, \frac{\partial E(\mathbf{q}_{j})}{\partial r^{l}}\right) = \frac{\partial \mathbf{q}}{\partial r_{i}^{k}} \cdot \frac{\partial^{2} K(\mathbf{q}_{i}, \mathbf{q}_{j})}{\partial \mathbf{q} \partial \mathbf{q}} \frac{\partial \mathbf{q}}{\partial r_{j}^{l}} + \frac{\partial K(\mathbf{q}_{i}, \mathbf{q}_{j})}{\partial \mathbf{q}} \cdot \frac{\partial^{2} \mathbf{q}}{\partial r_{i}^{k} \partial r_{j}^{l}}$ $\mathbf{K}_{\text{Hess}}(q_i^k, q_i^l)$ $\frac{\partial}{\partial \mathbf{q}} \exp\left(-\frac{(\mathbf{q}_i - \mathbf{q}_j)^2}{2\sigma^2}\right)$ $1 - \frac{(\mathbf{q}_i - \mathbf{q}_j)^2}{\sigma^2} \exp\left(-\frac{(\mathbf{q}_i - \mathbf{q}_j)^2}{2\sigma^2}\right)$

Energy-con

$$K(\mathbf{q},\mathbf{q}') = \exp\left(-\frac{(\mathbf{q}-\mathbf{q}')^2}{2\sigma^2}\right)$$

$$\mathbf{K}_{\text{Hess}}(q_i^k, q_j^l) = \frac{\partial \mathbf{q}}{\partial r_i^k} \cdot \frac{\partial \mathbf{q}}{\partial r_j^l} \frac{\partial}{\partial \mathbf{q}} \frac{\partial}{\partial \mathbf{q}} \exp\left(-\frac{(\mathbf{q}_i - \mathbf{q}_j)^2}{2\sigma^2}\right)$$
$$= \frac{\partial \mathbf{q}}{\partial r_i^k} \cdot \frac{\partial \mathbf{q}}{\partial r_j^l} \frac{1}{\sigma^2} \left(1 - \frac{(\mathbf{q}_i - \mathbf{q}_j)^2}{\sigma^2}\right) \exp\left(-\frac{(\mathbf{q}_i - \mathbf{q}_j)^2}{2\sigma^2}\right)$$

q =

enables energy conservation

$$= \begin{pmatrix} 2(x+y) \\ x-y \end{pmatrix} \quad \frac{\partial \mathbf{q}}{\partial x} = \begin{pmatrix} 2 \\ 1 \end{pmatrix} \quad \frac{\partial \mathbf{q}}{\partial y} = \begin{pmatrix} 2 \\ -1 \end{pmatrix}$$
$$\mathbf{q} = \begin{pmatrix} x \\ y \end{pmatrix} \qquad \frac{\partial \mathbf{q}}{\partial x} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \qquad \frac{\partial \mathbf{q}}{\partial y} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

Standard kernel

- 2.0 - 1.5 - 1.0 - 0.5

- 0.0

-0.5

- -1.0

- -1.5

-2.0

Energy-conserving ML

- 2.0 - 1.5 - 1.0 - 0.5 - 0.0

- -0.5 - -1.0

-1.5

-2.0

Comparison between ML models

THEORY GROUP

Energy-conserving force field useful in the low-data regime

1.00- 0.75 - 0.50 - 0.25 - 0.00 -0.25-0.50-0.75-1.00

Building symmetries in ML force fields

THEORY GROUP Chmiela et al., Nat. Comm. 9:3887 (2018)

$$\alpha_i)_l \frac{\partial}{\partial x_l} \nabla \kappa \left(\mathbf{x}, \mathbf{P}_q \mathbf{x}_i \right)$$

energy conservation

 Incorporate symmetries and conservation laws to minimize the training data • Reduces dataset size: can target extremely accurate quantum chemistry

Building symmetries in ML force fields

Chmiela et al., Nat. Comm. 9:3887 (2018)

Conclusions

Extrapolation in ML models of energy landscapes Can lead to catastrophic physics

Take advantage of symmetries Noether: symmetry leads to conservation law

$\mathbf{K}(\mathcal{S}\rho, \mathcal{S}'\rho') = \mathbf{S}\mathbf{K}(\rho, \rho')\mathbf{S}'^{\mathrm{T}}$

Build symmetries in ML model

Work with subset of kernels that a priori satisfy conservation law

