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Increasing Nonlinearity

Linear Chaotic

Guckenheimer and Holmes, Springer, 1983

Weakly Nonlinear
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Finite-time Lyapunov exponents  (FTLE)

ẋ = x

ẏ = �y + x2

Haller, 2002; 
Shadden et al., 2005

Dynamical Systems:  Poincare and Geometry

Discrete-time update

2 Background on Koopman analysis

Consider a continuous-time dynamical system, given by:

d

dt
x = f(x), (1)

where x 2 M is an n-dimensional state on a smooth manifold M. The vector field f is an element
of the tangent bundle TM of M, such that f(x) 2 TxM. Note that in many cases we dispense
with manifolds and choose M = Rn and f a Lipschitz continuous function.

For a given time t, we may consider the flow map Ft : M ! M, which maps the state x(t0)
forward time t into the future to x(t0 + t), according to:

Ft(x(t0)) = x(t0 + t) = x(t0) +

Z t0+t

t0

f(x(⌧)) d⌧. (2)

In particular, this induces a discrete-time dynamical system:

xk+1 = Ft(xk), (3)

where xk = x(kt). In general, discrete-time dynamical systems are more general than continuous
time systems, but we choose to start with continuous time for illustrative purposes.

We also define a real-valued observable function g : M ! R, which is an element of an infinite-
dimensional Hilbert space. Typically, the Hilbert space is given by the Lebesque square-integrable
functions on M; other choices of a measure space are also valid.

The Koopman operator Kt is an infinite-dimensional linear operator that acts on observable
functions g as:

Ktg = g � Ft (4)

where � is the composition operator, so that:

Ktg(xk) = g(Ft(xk)) = g(xk+1). (5)

In other words, the Koopman operator Kt defines an infinite-dimensional linear dynamical system
that advances the observation of the state gk = g(xk) to the next timestep:

g(xk+1) = Ktg(xk). (6)

Note that this is true for any observable function g and for any point xk 2 M.
In the original paper by Koopman, Hamiltonian fluid systems with a positive density were

investigated. In this case, the Koopman operator Kt is unitary, and forms a one-parameter family
of unitary transformations in Hilbert space.

We may also describe the continuous-time version of the observable dynamical system in
Eq. (6) with the infinitesimal generator K of the one-parameter family of transformations Kt [6] :

d

dt
g = Kg. (7)

The linear dynamical systems in Eqs. (7) and (6) are analogous to the dynamical systems in Eqs. (1)
and (3), respectively. It is important to note that the original state x may be the observable, and the
infinite-dimensional operator Kt will advance this observable function. Note that we are denoting
this operator K in bold because it is an operator that operates on an infinite dimensional vector
space; given a particular basis for Hilbert space, K may be thought of as a generalization of a
matrix to infinite dimensions (i.e., an infinite-dimensional linear operator). Again, for Hamiltonian
systems, the infinitesimal generator K is self-adjoint.
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    HIGH-DIMENSIONALITY often obscures dynamics:             

  Patterns exist, facilitating reduction 

Often EQUATIONS ARE UNKNOWN or partially known:           

  Model discovery with machine learning 

    NONLINEAR dynamics are still poorly understood:          

  Coordinate transformations to linearize dynamics        



CONTROL



Open-Loop

 Relies on good model
 Can’t stabilize unstable dynamics
 Over-reacts to noise and disturbances
 Not robust to uncertainties



Closed-Loop (Feedback)

 Stabilize unstable dynamics
 Compensates for uncertainties
 Attenuate noise & reject disturbances

 Time delays kill robust performance 



Limited Sensors (robustness vs. performance)



Model Predictive Control



Bad Model

Good Model



Playing Atari Games



Robot Catch



First Steps


