

Any system that evolves (changes) in time according to some rules

Josh Proctor Institute for Disease Modeling

Guckenheimer and Holmes, Springer, 1983

Increasing Nonlinearity

Dynamical Systems: Poincare and Geometry

Dynamics

$\mathbf{x}_{k+1} = \mathbf{F}_t(\mathbf{x}_k),$

Haller, 2002;

Discrete-time update

MODERN DATA-DRIVEN DYNAMICAL SYSTEMS

ODERN DATA-DRIVEN DYNAMICAL SYSTEM faculty.washington.edu/sbrunton/DataBook.pdf databookuw.com

Steve Brunton

Uploads

Simulating the Logistic Map

Discrete-Time

Simulating the Lorenz System

COM

DATA-DRIVEN SCIENCE AND ENGINEERING

Machine Learning, **Dynamical Systems**, and Control

Steven L. Brunton • J. Nathan Kutz

15

Often EQUATIONS ARE UNKNOWN or partially known: Model discovery with machine learning

NONLINEAR dynamics are still poorly understood:

HIGH-DIMENSIONALITY often obscures dynamics:

Patterns exist, facilitating reduction

Open-Loop

Relies on good model Can't stabilize unstable dynamics Over-reacts to noise and disturbances Not robust to uncertainties

Closed-Loop (Feedback)

Feedback signal

Time delays kill robust performance

Limited Sensors (robustness vs. performance)

Model Predictive Control

Bad Model

Good Model

Playing Atari Games

Robot Catch

Reinforcement Learning: Policy after 15 Trials Kober, J.; Peters, J.; Learning Motor Primitives in Robotics

First Steps

