ML Intro 1: shallow stuff

F. Noé!

September 4, 2019

1/37

Regression

@ Supervised learning problem

e Training set: N points (x;, y;), X, €R", y; €R, i=1,...N.

e Aim: approximate the equation f : R” — R underlying the data with
a model §(x; w) using parameters w € R"™:

Vi = y(xi; w) = f(x;)

2/37

Regression

@ Supervised learning problem

e Training set: N points (x;, y;), X, €R", y; €R, i=1,...N.

e Aim: approximate the equation f : R” — R underlying the data with
a model §(x; w) using parameters w € R"™:

yi = §(xii w) ~ f(x;)
o Learning problem: Find w such that we minimize the residuals A:
W =argmin||A||
w

defined by
A=y —y(xi; w).

2/37

Regression

X, X, X3 X,

Example: Fit data with linear function y(x) = wy 4+ wox by finding the
parameters w = (wy, wp).

3/37

Regression
Specification of the learning problem

We define ||A|| using the p-norm of A € R™

n 1/p
|all, = (ZIA:'”> :
i=1

Choice of p determines the type of regression problem:

’ p \ Learning Problem \ Name ‘
1| ming Y7 A LT (linear) optimization
2 [ming Y, A? Least squares (Gauss ~1800)
oo | miny max; A\; Tschebyscheff regression

4/37

Loss function
Least-squares regression

@ Most supervised machine learning problems can be formulated as the
problem to minimize a cost or loss function C(X,Y, 6).

o X € RV*" is the matrix of N input data points or features.
o Y € RVX/ are the labels. A label has / dimensions.
o Training data: (X,Y) = (x;,y)i=1,..n

5/37

Loss function
Least-squares regression

@ Most supervised machine learning problems can be formulated as the
problem to minimize a cost or loss function C(X,Y, 6).

o X € RV*" is the matrix of N input data points or features.
o Y € RV¥/ are the labels. A label has / dimensions.
o Training data: (X,Y) = (x;,y;)i=1,...N
@ Here: call 8 =w and consider univariate function regression — labels
can be written as a vector y € RV,
We choose the mean squared error as loss function:

C(X7 Y, W) = (yi —j\/(X,'; W))2

==
=

i=1

5/37

Loss function
Least-squares regression

@ Most supervised machine learning problems can be formulated as the
problem to minimize a cost or loss function C(X,Y, 6).
o X € RV*" is the matrix of N input data points or features.
o Y € RV¥/ are the labels. A label has / dimensions.
o Training data: (X,Y) = (x;,y;)i=1,...N
@ Here: call 8 =w and consider univariate function regression — labels
can be written as a vector y € RV,
We choose the mean squared error as loss function:

C(X7 Y, W) = (yi —j\/(X,'; W))2

==
=

i=1

o Learning problem: seek w such that the loss function is minimal:
N
W = arg m“iln i;[y,- — (xi; w)]?

The prefactor N~1 has no influence on W. 5/37

Loss function
Least-squares regression

Equivalent statistical interpretation (Gauss): Assume that
observations y; are produced from y(x;; w) with an additive measurement
error that is independent, identically distributed (iid) from a Normal
distribution.

N 1
yi=y(xiw)+4; Aj~A4(0,1)= Wi A7/

6/37

Loss function
Least-squares regression

Equivalent statistical interpretation (Gauss): Assume that
observations y; are produced from y(x;; w) with an additive measurement
error that is independent, identically distributed (iid) from a Normal

distribution.
1 2
i=y(xpw)+A; Aj~A4(0,1 =—— ¢ 4i/2
yi=yxiw)+A; A (0,1) Nor
We seek the maximum likelihood estimator W = arg max,, L(X, Y, w)
with
L(X,Y,w)=P[y | w] IN‘[1 3i9xiw))’
, ¥, W)= 1y - YN | W] = € ! "
i=1 V21

6/37

Loss function
Least-squares regression

Equivalent statistical interpretation (Gauss): Assume that
observations y; are produced from y(x;; w) with an additive measurement
error that is independent, identically distributed (iid) from a Normal

distribution.
1 2
i=y(xpw)+A; Aj~A4(0,1 =—— ¢ 4i/2
yi=yxiw)+A; A (0,1) Nor
We seek the maximum likelihood estimator W = arg max,, L(X, Y, w)
with
L(X,Y,w)=P[y | w] IN‘[1 3i9xiw))’
, ¥, W)= 1y - YN | W] = —F=¢€ ! "
i=1 V21

This is equivalent with:

argmax L(X, Y, w) = argmaxlog L(X, Y, w)

—argmaxZ—l — P(xi; w))? —log (\/ﬂ)

— 2
argmlnz X,, 6/37

Linear Least Squares Regression

@ In a linear regression problem, the model has the form:
n
~ . LT _
§(xiiw) = xj w=)_ x;w;
j=1

e Matrix notation: § = Xw. Linear least squares (LLS) regression
problem:
: 2
min[ly — Xw/(/3
w

7/37

Linear Least Squares Regression

@ In a linear regression problem, the model has the form:
n
~ . LT _
§(xiiw) = xj w=)_ x;w;
j=1

e Matrix notation: § = Xw. Linear least squares (LLS) regression
problem:
: 2
min[ly — Xw/(/3
w

o Featurization: Starting from some initial data r; € R, we define n
basis functions or feature functions ¢; : RY — R. Thus every
datapoint is featurized:

ri— x; = (P1(r), e $n(ri)) .
@ Our linear regression model then has the form
y(ri; w) = wi91(r;) + ... + wpdn(r))
with can be nonlinear in r.

7/37

Linear Least Squares Regression

@ In a linear regression problem, the model has the form:

n
o T
§(xiiw) =x; w=Y x;w,
j=1
e Matrix notation: § = Xw. Linear least squares (LLS) regression
problem:
: 2
min[ly — Xw/(/3
w

o Featurization: Starting from some initial data r; € R, we define n
basis functions or feature functions ¢; : RY — R. Thus every
datapoint is featurized:

ri— % = (01(ri), ... 9n(ri)) .
@ Our linear regression model then has the form
y(ri; w) = wi91(r;) + ... + wpdn(r))

with can be nonlinear in r.
o Example: with ¢ = {1,r,r?} and w = (wy, wo, w3) we can fit a

quadratic function f(r) = wy +war+ wsr?, 7/37

Linear Least Squares Regression
Normal equations

The vector w € R" is the solution to min ||y — Xw/|, exactly if it fulfills
the normal equations
X Xw=XTy

The linear regression problem has a unique solution exactly if the rank of
X is maximal, i.e. tk(X) = n.

8/37

Linear Least Squares Regression
Normal equations

The vector w € R" is the solution to min ||y — Xw/|, exactly if it fulfills
the normal equations
X Xw=XTy

The linear regression problem has a unique solution exactly if the rank of
X is maximal, i.e. tk(X) = n.
Direct inversion (numerically unstable and inefficient):

w=(X"X)"1XTy=X"y.

where X is the Moore-Penrose pseudoinverse of X.
Defining the covariance matrices

Cxx = XX
Cxy =Xy

(here Cxy € R™1, but it is a matrix if we have multiple regression
targets) the formal solution can be written as:

-1
w = CyxCxy. 8/37

Example: Markov models

R
&S Early b
@4‘4\ Intermediates ¢ &
Q- S
414
Dissociated 2:10°sY §6-10°st
° % P P
‘2. Sz
<05 Late. 8-10%s1 1-105s? Loosely 2-10°s? Tightly
17, Intermediates Pre-bound bound
%
< Misbound
&)
&F
L X
arnase %
)

v <

Plattner, Doerr, De Fabritiis, Noé, Nature Chemistry (2017)

9/37

Example: Markov models

@ Define feature functions ¢;(x) with i =1,...,n. Transform time
series:

Xij = 9j(xi)
Yij = ¢J(Xi+1:)

with feature matrices X, Y ¢ R™*" and m=T — 1.

10/37

Example: Markov models

@ Define feature functions ¢;(x) with i =1,...,n. Transform time
series:

Xij = 9j(xi)
Yij = ¢J(Xi+1:)

with feature matrices X, Y ¢ R™*" and m=T — 1.
@ Solve regression problem:

in|lY —XK
min [- XK.

in order to parametrize the Markovian dynamical model K that
describes the time evolution:

Y ~ XK,

or in other words x/ ; ~ x{ K.

10/37

Example: Markov models

@ Define feature functions ¢;(x) with i =1,...,n. Transform time
series:

Xij = 9j(xi)
Yij = ¢J(Xi+1:)

with feature matrices X, Y ¢ R™*" and m=T — 1.
@ Solve regression problem:

in|lY —XK
min [- XK.

in order to parametrize the Markovian dynamical model K that
describes the time evolution:

Y ~ XK,

or in other words x/ ; ~ x{ K.
@ Solution has the form (MSMs, TICA, EDMD, ...):

~1
T T -1
K=(X"X) XTY=CkCxy 10/37

Markov state models

@ Partition molecular state space 2 into substates S1,...,S,. Define
characteristic functions:

¢j<x>={1 K

0 else.

11/37

Markov state models

@ Partition molecular state space 2 into substates S1,...,S,. Define
characteristic functions:

¢j<x>={1 K

0 else.

@ Correlation matrices Cxx and Cxy then evaluate to:

(Cxx)ij i (xt)0j(xt) = &; N (1)
(Cxv)i = ila-(xf)@(xm) _y)

o N;: number of times the trajectory was in state i
o Njj: number of transitions i — j in time interval 7.

11/37

Markov state models

@ Partition molecular state space 2 into substates S1,...,S,. Define
characteristic functions:

¢j<x>={1 K

0 else.

@ Correlation matrices Cxx and Cxy then evaluate to:

(Cxx)ij i (xt)0j(xt) = &; N (1)
(Cxv)i = ila-(xf)@(xm) _y)

o N;: number of times the trajectory was in state i
o Njj: number of transitions i — j in time interval 7.

@ Markov model K can be written as:

Kij = Nii/ N; 11/37

Markov state models

Three different optimization principles. Xjj = ¢;(x;), Yij = ¢j(Xi+1).

@ Minimum regression error

K= min Y — XK{|,

For fixed featurization ¢, all three principles result in:

K= C)?)I(CXY 12/37

Markov state models

Three different optimization principles. Xjj = ¢;(x;), Yij = ¢j(Xi+1).

@ Minimum regression error

K= min Y — XK{|,

@ Maximum likelihood) N
K= m}?xnk,-j”
iJj

For fixed featurization ¢, all three principles result in:

K= CilCxy 12/37

Markov state models

Three different optimization principles. Xjj = ¢;(x;), Yij = ¢j(Xi+1).

@ Minimum regression error

K= min Y — XK{|,

@ Maximum likelihood) N
K= mléaka,-j”
iJj

© Variational approach of conformation dynamics: Parametrize
eigenvalue decomposition P = UAU~! and maximize eigenvalues by:

max [M(U)| 2

Nl

_1 _
with M = (UTCX)(U) 2 UTCXyU (UTCXXU) and
/\:diag(Mll,...,Mn,,)

For fixed featurization ¢, all three principles result in:

K= C)?)I(CXY 12/37

Markov state models with feature learning

For learned featurization ¢:
@ Minimum regression error mink ||Y — XK||, = 0 for trivial solution
(eg. 9=1)
@ Maximum likelihood maxk []; ; k,.j-v’j =1 for trivial solution (assign all
configurations to one state).
© Variational approach of conformation dynamics: Works —

stated state's

VAMPnets.
a VAMP b d :‘ o6
\ score A4 . :‘
e o ®
Encoder (o
Xy Yt
E |8 &0
- S
\ Markov g ¥ ’a ¥ ’r‘ For "r‘:, A e
del o '
X, || Encoder :y moce : ‘ SSSSS - ‘ ‘‘‘‘‘‘ “ ‘‘‘‘‘‘ ‘j/:rTIL:fTﬂTSTK,
= e % : B
£ Je ™ SR 38 MBcereTe
— WY RBYRY |

e e 13/37
Mardt, Pasquali, Wu, Noé, Nature Commun. (2018)

Back to Linear Least Squares

@ In a linear regression problem, the model has the form:

9 w) =T w =Y xjw;

n
j=1

e Matrix notation: § = Xw. Linear least squares (LLS) regression
problem:
. 2
min [ly — Xw/(|3
w

14/37

Validation and hyperparameter selection

o Validation: LLS solution gives us the in-sample training error:

. . R 1 . o
Ein — C(xtram’ ytram7 W) — Ni Hytram _ Xtramw
in

I

but we would like to validate how good the learnt model predicts an
independent data set, i.e. the out-of-sample validation or test
error Eyy:

Eout — C(Xval, yval7 W) _ NL Hyval o XvalvAvH27
out

15/37

Validation and hyperparameter selection

o Validation: LLS solution gives us the in-sample training error:

. . R 1 . o
Ein — C(xtram’ ytram7 W) — Ni Hytram _ Xtramw
in

I

but we would like to validate how good the learnt model predicts an
independent data set, i.e. the out-of-sample validation or test
error Eyy:

Eout — C(Xval, yval7 W) _ NL Hyval o XvalvAvH27
out

o Hyperparameter selection: Hyperparameters cannot not be
obtained from the learning algorithm (here LLS). For example, the
number of type of feature functions ¢ .

15/37

Validation and hyperparameter selection

o Validation: LLS solution gives us the in-sample training error:

I

. o 1 . o
Ein — C(Xtram’ ytram7 W) — N7m Hytram _ Xtramw
but we would like to validate how good the learnt model predicts an
independent data set, i.e. the out-of-sample validation or test
error Eyy:

Eout — C(Xval, yval7 W) _ NL Hyval o XvalvAvH27
out

o Hyperparameter selection: Hyperparameters cannot not be
obtained from the learning algorithm (here LLS). For example, the
number of type of feature functions ¢ .

o Example: The type of function ¢ used for training cannot be
determined by minimizing the training error. For example, the model

1 x=x;

}A/(X)_éwile(x) with 1xi(x)_{0 X # X;

has zero training error, but predicts f(x) = 0 for every point x not in 15/37
the training set.

Underfitting vs. Overfitting

Degree 1 Degree 4 Degree 15
— Model — Model — Model
— True function

ees Samples

— True function
eee Samples

— True function
ees Samples

1From http://scikit-learn.org

16/37

o Data-based validation is an effective way to solve the
hyperparameter selection problem:
o Divide dataset into
o training set (X'in y
o validation set (X' y*?).

train

17/37

o Data-based validation is an effective way to solve the
hyperparameter selection problem:
o Divide dataset into
o training set (Xain ytrain)
o validation set (X' y*?).
@ Learn parameters using the training set:

W= argmin Hytrain _Xtrain‘NH2
w

The resulting residual £, = N ! Hym‘i“ - Xm‘i“vAvH2 is the training
error or training loss.

17/37

o Data-based validation is an effective way to solve the
hyperparameter selection problem:
o Divide dataset into
o training set (Xain ytrain)
o validation set (X' y*?).
@ Learn parameters using the training set:

W= argmin Hytrain _Xtrain‘NH2
w

The resulting residual £, = N ! Hym‘i“ - Xm‘i“vAvH2 is the training
error or training loss.
@ The error of the learnt model in predicting data not used for the
training,
E.. — N—l val Xval o
out = Noyt ||Y Wi,
is called the validation or error/loss. It provides a metric to
validate how well the model generalizes to new data

17/37

o Data-based validation is an effective way to solve the
hyperparameter selection problem:
o Divide dataset into
o training set (Xain ytrain)
o validation set (X' y*?).
@ Learn parameters using the training set:

W= argmin Hytrain _Xtrain‘NH2
w

The resulting residual £, = N ! Hym‘i“ - Xtrai“\ﬁle is the training
error or training loss.

@ The error of the learnt model in predicting data not used for the
training,

Eou = No_u:tL Hyval o Xval\ﬁlH2

is called the validation or error/loss. It provides a metric to
validate how well the model generalizes to new data

@ Choose hyperparameters by minimizing the validation error.

(careful: selecting hyperparameters and computing Eyy requires a 17/37
third test set or a more advanced validation routine).

Underfitting vs. Overfitting

Fixed data size

Mean Error

High variance

v

Model Complexity

18/37

Cross-validation

o Pathological division where rare events / outliers are included only in
training or validation set can lead to undesirable behavior.

@ Methods to “shuffle” training and test data to reduce the bias from
the data splitting.

19/37

Cross-validation

o Pathological division where rare events / outliers are included only in
training or validation set can lead to undesirable behavior.

@ Methods to “shuffle” training and test data to reduce the bias from
the data splitting.

o Cross-validation is a simple and widely used approach:

@ Split the data into k nonoverlapping folds (X',y’). The
complementary sets are (X~',y~") with sizes N~'.

19/37

Cross-validation

o Pathological division where rare events / outliers are included only in
training or validation set can lead to undesirable behavior.

@ Methods to “shuffle” training and test data to reduce the bias from
the data splitting.

o Cross-validation is a simple and widely used approach:

@ Split the data into k nonoverlapping folds (X',y’). The
complementary sets are (X~/,y~) with sizes N~/
@ For each fold i:
@ Train learning algorithm on training data:

W' = argmin Hyf’- 7X"IWH2
w
©® Compute validation error:

i

) 1 ..
Eou = 77 Iy =X,

19/37

Cross-validation

o Pathological division where rare events / outliers are included only in
training or validation set can lead to undesirable behavior.

@ Methods to “shuffle” training and test data to reduce the bias from
the data splitting.

o Cross-validation is a simple and widely used approach:

@ Split the data into k nonoverlapping folds (X',y’). The
complementary sets are (X~/,y~) with sizes N~/
@ For each fold i:
@ Train learning algorithm on training data:

W' = argmin Hyf’- 7X"IWH2
w
©® Compute validation error:
i

) 1 ..
Eou = 77 Iy =X,

© Cross-validation error is then given by:

1 k
Eow=7 Y EX.
ok 19/37

Cross-Validation

[eration 11 -{0 000 0/0000000090000000
(heration 2} DOV VGD 000 U990V 99009
m_> ooooooooo-oooo

m oooooooooooooo
1

20/37

LFrom https://en.wikipedia.org/wiki/Cross-validation_(statistics)

Statistical Estimator Theory
Example: Regression
We now explicitly distinguish between the true function f that is sampled
by a given set of observations (x;,y;):
yi=f(x))+4; A;j~.4(0,1)

and the estimator y(x; w).

Learning problem

Learn function f(x) by selecting function y(x) from a hypothesis set .77,
which (in some sense) performs a best approximation y = f.

21/37

Statistical Estimator Theory
Example: Regression
We now explicitly distinguish between the true function f that is sampled
by a given set of observations (x;,y;):
yi=f(x))+4; A;j~.4(0,1)
and the estimator y(x; w).

Learning problem

Learn function f(x) by selecting function y(x) from a hypothesis set .77,
which (in some sense) performs a best approximation y = f.

Prediction problem

| A

How can the learning problem be meaningfully defined if (x) can, in
principle, take any value on unobserved inputs?

21/37

Statistical Estimator Theory
Example: Regression

We now explicitly distinguish between the true function f that is sampled
by a given set of observations (x;,y;):

Vi = f(X,')JrA,' Aj~ JV(O, 1)

and the estimator y(x; w).

Learning problem

Learn function f(x) by selecting function y(x) from a hypothesis set .77,
which (in some sense) performs a best approximation y = f.

| A

Prediction problem

How can the learning problem be meaningfully defined if (x) can, in
principle, take any value on unobserved inputs?

Answer: a meaningful definition of learning is that the fitted model will
perform approximately as well in predicting unseen data as it did in

approximating training data (E, &~ Eou). 21/37

Statistical Learning Theory

Ein, Eout, Bias and Variance for a given Model trained for different N

Variance

Error
T
I
I

’’’’’

Number of data points 1

We assume that the true function f is sufficiently complicated so that we
cannot learn it exactly, i.e.

N

Y (F(xi) — 9(xi; w))? >0 Yw

i=1
Even in the limit N — c we maintain an asymptotic error E;, = Eyy,
called the model bias — property of the function class 7.

1From Mehta et al, arXiv:1803.08823v1

22/37

Statistical Learning Theory

Ein, Eout, Bias and Variance for a given Model as a Function of N

Variance

Error
T
I
I

Number of data points 1

Typical behavior:
@ E;, increases with N towards the model bias.
@ E,yt decreases with increasing N as more cases are observed and
thus covered by the model.
e The generalization gap E,, — E;, (due to overfitting) decreases
with increasing . 23/37

1From Mehta et al, arXiv:1803.08823v1

Statistical Learning Theory

Ein, Eout, Bias and Variance for a given Model as a Function of N

Variance

8l) 5T T
- I B
7 ©
- 3
Ein
Number of data points 1
Insights:
@ It is not sufficient to minimize Ej,, as Eyy may be large. —
regularization.

@ As the true bias is not practically available, one minimizes Egyy.
24/37

1From Mehta et al, arXiv:1803.08823v1

Statistical Learning Theory
Bias-variance tradeoff

High variance, x X

low-bias model X

X x X
\ & i//True model

X
X
X
X

X
X
X

> X X

X
X *®
XX x X|*
X
X X x Y
X x\ Low variance,

Xx xx X high-bias model 1

e Bias-variance tradeoff: For fixed N, the more/less expressive the
model, the larger/smaller the fluctuations, respectively.

25/37

1From Mehta et al, arXiv:1803.08823v1

Statistical Learning Theory
Bias-variance tradeoff

High variance, X X ™
low-bias model X X

X x X
\ X 7 5 True model
X X
x®'x X
X
x X @ s
X
X X x Y
X x\ Low variance,

xXxx X high-bias model 1

e Bias-variance tradeoff: For fixed N, the more/less expressive the
model, the larger/smaller the fluctuations, respectively.

@ To minimize E,y, it is sometimes better to use a more-biased model
with small variance than a less-biased model with large variance.

25/37

1From Mehta et al, arXiv:1803.08823v1

Statistical Learning Theory
Bias-variance tradeoff

High variance, x X

low-bias model X

X x X
\ & i//True model

X
X
X
X

X
X
X

> X X

X
X *®
XX x X|*
X
X X x Y
X x\ Low variance,

Xx xx X high-bias model 1

e Bias-variance tradeoff: For fixed N, the more/less expressive the
model, the larger/smaller the fluctuations, respectively.

@ To minimize E,y, it is sometimes better to use a more-biased model
with small variance than a less-biased model with large variance.

@ Asymptotically, i.e. with increasing training set size N, complex
models will perform better than simpler models as they have reduced
bias.

25/37

1From Mehta et al, arXiv:1803.08823v1

Statistical Learning Theory
Bias-variance tradeoff

High variance, x X

low-bias model X

X x X
\ & i//True model

X
X
X
X

X
X
X

> X X

X
X *®
XX x X|*
X
X X x Y
X x\ Low variance,

Xx xx X high-bias model 1

e Bias-variance tradeoff: For fixed N, the more/less expressive the
model, the larger/smaller the fluctuations, respectively.

@ To minimize E,y, it is sometimes better to use a more-biased model
with small variance than a less-biased model with large variance.

@ Asymptotically, i.e. with increasing training set size N, complex
models will perform better than simpler models as they have reduced
bias.

@ Optimal model selection depends on the amount of training data N.
25/37

1From Mehta et al, arXiv:1803.08823v1

Bias-Variance decomposition

Task: for a given estimator, e.g. LLS, model the behavior of the
out-of-sample MSE without knowing the true function f:

Eout — C(Xle, del Ale _ ||del . yvzﬂH;’

where X¥ = (x}2, .. XX‘}I) are the features of the validation set, y** are

the corresponding observations and §*¥ are the predictions of the
estimator.

26,37

Bias-Variance decomposition

Task: for a given estimator, e.g. LLS, model the behavior of the
out-of-sample MSE without knowing the true function f:

Eout — C(XVd17 del Ale _ ||del . yvzﬂH;’

where X¥ = (x}2, .. XX‘}I) are the features of the validation set, y** are
the corresponding observations and §*¥ are the predictions of the
estimator.
Idea: Compute expected E,y of given estimator y on all
drawn from the with following approach:
© Fix observation points x;
© Repeat:
© Run experiment, observe training data (X,y"™") = (x,,y}ra‘“) =1..N
and train the estimator §(x).
@ Repeat experiment observe validation data

Xy = (xi v)iz,

26,37

Bias-Variance decomposition

Task: for a given estimator, e.g. LLS, model the behavior of the
out-of-sample MSE without knowing the true function f:

Eout — C(XVd17 del Ale _ ||del . yvzﬂH;’

where X¥ = (x}2, .. XX‘}I) are the features of the validation set, y** are
the corresponding observations and §*¥ are the predictions of the

estimator.
Idea: Compute expected E,y of given estimator y on all
drawn from the with following approach:
© Fix observation points x;
© Repeat:
© Run experiment, observe training data (X,y"™") = (x,,y}ra‘“) =1..N

and train the estimator §(x).
@ Repeat experiment observe validation data

(Xoy™) = (xi, v)ir, |
© Compute expectation E over observations y™in and y¥a by averaging
over noise realizations.

E [C(X yvdl Avdl)] E

(v (xi) —?(x,-))Z] 26/37

Bias-Variance decomposition

Expected out-of-sample error, i.e. the expected loss of our model can
be decomposed as:

™M=

Eout =K

(y,val()—?(xi))Z] = Bias? + Var + Noise.

Il
—

27/37

Bias-Variance decomposition

Expected out-of-sample error, i.e. the expected loss of our model can
be decomposed as:

Eout =K

™M=

Il
—

i

(r™(x)—?(xi))Z] = Bias? + Var + Noise.

with y; = E[§(x;)] we have:

N N
Noise —,;E [(7™ (x/) — F(x7))] = /:ZlE [82] =0}
N

Var =Y E[(7(x)) 7)?]

27/37

Bias-Variance decomposition

Combining these expressions, we see that the expected out-of-sample
error, i.e. the expected loss of our model can be decomposed as:

N
Z Val /))2] = Bias® + Var + Noise.

out -

@ The optimal model minimizes the expected loss by balancing bias
and variance.

28/37

Bias-Variance decomposition

Combining these expressions, we see that the expected out-of-sample
error, i.e. the expected loss of our model can be decomposed as:

N
Z Val /))2] = Bias® + Var + Noise.

out -

@ The optimal model minimizes the expected loss by balancing bias
and variance.

@ A model is underfitting the data if bias is too high.
@ A model is overfitting the data if variance is too high.

28/37

Bias-Variance decomposition

Combining these expressions, we see that the expected out-of-sample
error, i.e. the expected loss of our model can be decomposed as:

N
Z Val /))2] = Bias® + Var + Noise.

out -

@ The optimal model minimizes the expected loss by balancing bias
and variance.

A model is underfitting the data if bias is too high.

A model is overfitting the data if variance is too high.

Since data is often limited, a simple model with a finite bias (i.e. an
asymptotic error) may be preferable to a complex model with a high
variance.

28/37

Bias-Variance decomposition

Combining these expressions, we see that the expected out-of-sample
error, i.e. the expected loss of our model can be decomposed as:

N
Z Yal(x;) = 9 (%)) 2] = Bias? + Var + Noise.

out -

@ The optimal model minimizes the expected loss by balancing bias
and variance.

A model is underfitting the data if bias is too high.

A model is overfitting the data if variance is too high.

Since data is often limited, a simple model with a finite bias (i.e. an
asymptotic error) may be preferable to a complex model with a high
variance.

@ Optimal choice depends on the amount of data available. The more
data, the more complex models are optimal.
28/37

Statistical Learning Theory

E;n, and Eyy as a function of model complexity

@ Model complexity is a property of the function class ##. For
example, model complexity increases with the number of free
parameters (e.g. higher-order polynomials are more complex than
the linear model).

Mean prediction error

Bias? Variance

Error

v

Model complexity 29/37

Statistical Learning Theory

E;n, and Eyy as a function of model complexity

@ Model complexity is a property of the function class ##. For
example, model complexity increases with the number of free
parameters (e.g. higher-order polynomials are more complex than
the linear model).

@ Behavior for fixed N:

A

Mean prediction error

Bias? Variance

Error

v

29/37

Model complexity

Practical workflow

For complex estimators (e.g. neural networks), exhaustive
hyperparameter search is unfeasible.
Typical approach:

| Establish proxy for optimal error rate (e.g. expert performance) |

| € '

Yes

Bigger model
Training error high? - Triign longer

Underfitting | New model architecture

No -
v u
Yes
Validation error high? |msssssssssp | More data
Overfitting Regularization
New model architecture
No
DONE!

30,37

Regularization

Regularized LLS: add penalty term on w with suitable norm:

. 2
min [y — Xw|[5 + A |lw].

31/37

Regularization

Regularized LLS: add penalty term on w with suitable norm:
: 2
min|ly — Xwl[3 + A4 |lwl].

Purpose:

o Statistical: reduce expressiveness of model by reducing fluctuations
of w. Allows to control the bias-variance tradeoff via A.

@ Numerical: regularized solutions often numerically better behaved.

@ Structural: e.g., induce sparsity in solution.

31/3

Regularization

Regularized LLS: add penalty term on w with suitable norm:

Purpose:

. 2
min [y — Xw|[5 + A |lw].

o Statistical: reduce expressiveness of model by reducing fluctuations
of w. Allows to control the bias-variance tradeoff via A.

@ Numerical: regularized solutions often numerically better behaved.

e Structural: e.g.,

induce sparsity in solution.

Regularization method depends on penalty type:

37

’ Regularization type ‘ Penalty term ‘ Prior Solution methods
Tikhonov regularization | [w|3 Normal | Closed form
Ridge regression
Lasso regression [lwlly Laplace | Proximal gradient descent
lp regularization [lwllo - Forward selection,

Backward elimination
Elastic nets 1—a)|wl;+ - Proximal gradient descg,rit/
o |wll,

L2 (Ridge) Regularization

We would like to work in high-dimensional feature spaces

ri— X;j = ((]51(!’,'), ...,(I)n(l’,’))T.

32/37

L2 (Ridge) Regularization

We would like to work in high-dimensional feature spaces

ri— X;j = ((]51(!’,'), ...,(I)n(l’,’))T.

However, this leads to danger of overfitting. To avoid overfitting, we
penalize the norm of the solution:

. 2 2
min [y — Xw([3 + 4 [|w]3,

where A is a hyperparameter.

32/37

L2 (Ridge) Regularization
We would like to work in high-dimensional feature spaces

ri— X;j = ((]51(!’,'), ...,(I)n(l’,’))T.

However, this leads to danger of overfitting. To avoid overfitting, we
penalize the norm of the solution:

. 2 2
min [y — Xw([3 + 4 [|w]3,

where A is a hyperparameter.
Taking derivatives and setting them to zero yields the solution:

w= (M + XTX) B Xy

= CxCxy

32/37

L2 (Ridge) Regularization

We would like to work in high-dimensional feature spaces

ri— X;j = ((]51(!’,'), ...,(I)n(l’,’))T.

However, this leads to danger of overfitting. To avoid overfitting, we
penalize the norm of the solution:

. 2 2
min [y — Xw([3 + 4 [|w]3,

where A is a hyperparameter.
Taking derivatives and setting them to zero yields the solution:

-1
w= (M JrXTX) Xy
=CxCxy

This is equal to the direct solution of the normal equations, only that we
use the so-called shrinkage estimator for the covariance matrix:

Cxx = A1+ XX 32/37

Sparsity-inducing Regularization

o LO regularization
. 2
min[ly — Xwl|3 + 2 [lwllo,

Most extreme way to enforce sparsity. Magnitude of the coefficients
of w does not matter, we only want to minimize the number of
non-zero entries. This regularization function is not commonly used
in practice, as it is very difficult to solve.

33/37

Sparsity-inducing Regularization

o LO regularization
. 2
min[ly — Xwl|3 + 2 [lwllo,

Most extreme way to enforce sparsity. Magnitude of the coefficients
of w does not matter, we only want to minimize the number of
non-zero entries. This regularization function is not commonly used
in practice, as it is very difficult to solve.

o L1 regularization, e.g. using the least absolute selection and
shrinkage (LASSO) method.

. 2
min [ly — Xwl[3 + 4 [|wl|;,

33/37

Sparsity-inducing Regularization

o LO regularization
. 2
min[ly — Xwl|3 + 2 [lwllo,

Most extreme way to enforce sparsity. Magnitude of the coefficients
of w does not matter, we only want to minimize the number of
non-zero entries. This regularization function is not commonly used
in practice, as it is very difficult to solve.

o L1 regularization, e.g. using the least absolute selection and
shrinkage (LASSO) method.

. 2
min |y — Xw[3 + 2wl
o Elastic net
. 2 2
minly —Xw|3 +2 [(1 @) lwll; + o |w3]

Where o switches between the two extremes ot =0 (L1

regularization) and @ =1 (Ridge regression). 33/31

Kernel Regression

@ Replace each data point with feature vector: x; — ¢(x;).

34/37

Kernel Regression

@ Replace each data point with feature vector: x; — ¢(x;).
@ dim(¢) can be much higher than dim(x;) (even).

o — How do we compute or invert XX ?
o — How do we avoid overfitting?

34/37

Kernel Regression

@ Replace each data point with feature vector: x; — ¢(x;).
@ dim(¢) can be much higher than dim(x;) (even).

o — How do we compute or invert XX ?
o — How do we avoid overfitting?

e Kernel trick: allows us to work with either XTX or XX, whichever
is more convenient (lower-dimensional).

34/37

Kernel Regression

@ Replace each data point with feature vector: x; — ¢(x;).
@ dim(¢) can be much higher than dim(x;) (even).

o — How do we compute or invert XX ?
o — How do we avoid overfitting?

e Kernel trick: allows us to work with either XTX or XX, whichever
is more convenient (lower-dimensional).

o Kernel ridge regression can be written as:
Ty Ty T -1
w= (M+x x) XTy=xX" (xxT+M) Y,
or, equivalently:
W = Z(X,'X,'

o= (XXT—FM)Ay
34/37

Kernel Regression

o Kernel ridge regression
wW = Z O X
i

o= (XXT-i-M)_ly

e Solution w lies in span{x;};—1. .y, even if dim(¢§) = oo.

35,37

Kernel Regression

o Kernel ridge regression
wW = Z O X
i
T -1
o= (xx +M> y
e Solution w lies in span{x;};—1. .y, even if dim(¢§) = oo.

o Predicted value ¥ for test point X:

7 =y(XXT + A1) IXx

35,37

Kernel Regression

o Kernel ridge regression
wW = Z O X
i

o= (XXT-i-M)_ly

e Solution w lies in span{x;};—1. .y, even if dim(¢§) = oo.

o Predicted value ¥ for test point X:
7 =y(XXT + A1) IXx

o Key ideas:
o Never perform the feature transformation X; = (¢1(x;), ..., 91(x;))
explicitly. Instead, define kernel function that models scalar product
between feature vectors:

k(X,‘,Xj) = X;er = <X,’, XJ'>
35/37
o Use the kernel matrix K =XXT € RV*N | K = k(x;,x;)

Kernel Regression

o Kernel ridge regression
W = ZOC,'X,‘
i
a=(K+Al) 1ty
@ Predicted value y for test point X:
7= y(K+ A1) "'k(%)

with k(%) = [k(x1,%), ..., k(xn,x)] "

36,37

Kernel Regression

o Kernel ridge regression
W = Z o X;
i
a=(K+Al) 1ty
@ Predicted value y for test point X:
7= y(K+ A1) "'k(%)

with (%) = [k(x1,X), ..., k(xn,x)] "
o Properties:

36,37

Kernel Regression

o Kernel ridge regression
W = Z o X;
i
a=(K+Al) 1ty
@ Predicted value y for test point X:
7= y(K+ A1) "'k(%)

with (%) = [k(x1,X), ..., k(xn,x)] "
o Properties:
o Useful when the feature space is huge or even infinite. Many
relatively simple choices have huge or infinite feature spaces
associated to them.

36,37

Kernel Regression

o Kernel ridge regression
W = Z o X;
i
a=(K+Al) 1ty
@ Predicted value y for test point X:
7= y(K+ A1) "'k(%)

with (%) = [k(x1,X), ..., k(xn,x)] "
o Properties:

o Useful when the feature space is huge or even infinite. Many
relatively simple choices have huge or infinite feature spaces
associated to them.

o Kernel trick defines very powerful feature transformations and thus
solve very nonlinear problems without having to carry out the feature

transformation.

36,37

Kernel Regression

o Kernel ridge regression
W = Z o X;
i
a=(K+Al) 1ty
@ Predicted value y for test point X:
7= y(K+ A1) "'k(%)

with (%) = [k(x1,X), ..., k(xn,x)] "
o Properties:

o Useful when the feature space is huge or even infinite. Many
relatively simple choices have huge or infinite feature spaces
associated to them.

o Kernel trick defines very powerful feature transformations and thus
solve very nonlinear problems without having to carry out the feature
transformation.

o Computing full kernel matrix can be prohitively expensive. Many
tricks can reduce the complexity, e.g. Nystrom approximation.

36,37

Kernel Regression

o Kernel ridge regression
W = Z o X;
i
a=(K+Al) 1ty
@ Predicted value y for test point X:
7= y(K+ A1) "'k(%)

with (%) = [k(x1,X), ..., k(xn,x)] "
o Properties:

o Useful when the feature space is huge or even infinite. Many
relatively simple choices have huge or infinite feature spaces
associated to them.

o Kernel trick defines very powerful feature transformations and thus
solve very nonlinear problems without having to carry out the feature
transformation.

o Computing full kernel matrix can be prohitively expensive. Many
tricks can reduce the complexity, e.g. Nystrom approximation.

o Regularization is very important: Kernel methods are prone to
overfitting.

36,37

Example: polynomial kernels

@ A kernel function corresponds to an inner product in a feature space
based on the feature mapping ¢(-), without having to execute this
feature mapping explicitly:

k(x1, x2) = (9(x1), §(x2))-

37/37

Example: polynomial kernels

@ A kernel function corresponds to an inner product in a feature space
based on the feature mapping ¢(-), without having to execute this
feature mapping explicitly:

k(x1,x2) = (#(x1), §(x2))-
o For degree-d polynomials, the polynomial kernel is defined as

k(x1,x2) = (xlsz + c)d

37/37

Example: polynomial kernels

@ A kernel function corresponds to an inner product in a feature space
based on the feature mapping ¢(-), without having to execute this
feature mapping explicitly:

k(x1,x2) = (#(x1), §(x2))-
o For degree-d polynomials, the polynomial kernel is defined as
k(x1,%2) = (X X2 + c)d

@ For d =2 its feature mapping is given by:

Pa(x) = xl,.. X,,,\fqu,.. V2xp— 1Xn, V2¢x1, ..., V2¢xp, €

37/37

Example: polynomial kernels

@ A kernel function corresponds to an inner product in a feature space
based on the feature mapping ¢(-), without having to execute this
feature mapping explicitly:

k(x1,x2) = (#(x1), §(x2))-
o For degree-d polynomials, the polynomial kernel is defined as
k(x1,%2) = (X X2 + c)d

@ For d =2 its feature mapping is given by:

Pa(x) = xl,.. X,,,\fqu,.. V2xp— 1Xn, V2¢x1, ..., V2¢xp, €

@ When the input features are binary-valued (booleans), then the

features correspond to logical conjunctions of input features?.

1Yoav Goldberg and Michael Elhadad (2008). splitSVM: Fast, Space-Efficient, 37/37
non-Heuristic, Polynomial Kernel Computation for NLP Applications. Proc. ACL-08:
HLT.

