ML Intro 1: shallow stuff

 $\mathsf{F}.\ \mathsf{No}\acute{\mathrm{e}}^1$

September 4, 2019

Regression

- Supervised learning problem
- Training set: N points (\mathbf{x}_i, y_i) , $\mathbf{x}_i \in \mathbb{R}^n$, $\mathbf{y}_i \in \mathbb{R}$, i = 1, ...N.
- Aim: approximate the equation $f : \mathbb{R}^n \mapsto \mathbb{R}$ underlying the data with a model $\hat{y}(\mathbf{x}; \mathbf{w})$ using parameters $\mathbf{w} \in \mathbb{R}^n$:

$$\hat{y}_i = \hat{y}(\mathbf{x}_i; \mathbf{w}) \approx f(\mathbf{x}_i)$$

• Learning problem: Find w such that we minimize the residuals Δ:

$$\hat{\mathbf{w}} = \arg\min_{\mathbf{w}} \|\mathbf{\Delta}\|$$

defined by

$$\Delta_i = y_i - \hat{y}(\mathbf{x}_i; \mathbf{w}).$$

- Supervised learning problem
- Training set: N points (\mathbf{x}_i, y_i) , $\mathbf{x}_i \in \mathbb{R}^n$, $\mathbf{y}_i \in \mathbb{R}$, i = 1, ...N.
- Aim: approximate the equation $f : \mathbb{R}^n \mapsto \mathbb{R}$ underlying the data with a model $\hat{y}(\mathbf{x}; \mathbf{w})$ using parameters $\mathbf{w} \in \mathbb{R}^n$:

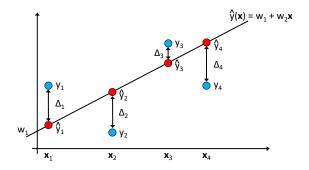
$$\hat{y}_i = \hat{y}(\mathbf{x}_i; \mathbf{w}) \approx f(\mathbf{x}_i)$$

• Learning problem: Find w such that we minimize the residuals Δ:

$$\hat{\mathbf{w}} = rgmin_{\mathbf{w}} \|\mathbf{\Delta}\|$$

defined by

$$\Delta_i = y_i - \hat{y}(\mathbf{x}_i; \mathbf{w}).$$



Example: Fit data with linear function $\hat{y}(\mathbf{x}) = w_1 + w_2 \mathbf{x}$ by finding the parameters $\mathbf{w} = (w_1, w_2)$.

We define $\|\mathbf{\Delta}\|$ using the *p*-norm of $\mathbf{\Delta} \in \mathbb{R}^n$:

$$\|\mathbf{\Delta}\|_p = \left(\sum_{i=1}^n |\Delta_i|^p\right)^{1/p},$$

Choice of *p* determines the type of regression problem:

р	Learning Problem	Name
1	$\min_{\mathbf{w}}\sum_{i=1}^{n} \Delta_{i} $	L^1 (linear) optimization
2	$\min_{\mathbf{w}}\sum_{i=1}^{n}\Delta_{i}^{2}$	Least squares (Gauss ${\sim}1800)$
∞	$\min_{\mathbf{w}} \max_i \Delta_i$	Tschebyscheff regression

- Most supervised machine learning problems can be formulated as the problem to minimize a cost or loss function C(X, Y, θ).
 - $\mathbf{X} \in \mathbb{R}^{N \times n}$ is the matrix of N input data points or features.
 - $\mathbf{Y} \in \mathbb{R}^{N \times I}$ are the labels. A label has / dimensions.
 - Training data: $(\mathbf{X}, \mathbf{Y}) = (\mathbf{x}_i, \mathbf{y}_i)_{i=1,...,N}$
- Here: call θ = w and consider univariate function regression labels can be written as a vector y ∈ ℝ^N.
 We choose the mean squared error as loss function:

$$C(\mathbf{X}, \mathbf{y}, \mathbf{w}) = \frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y}(\mathbf{x}_i; \mathbf{w}))^2$$

• Learning problem: seek w such that the loss function is minimal:

$$\hat{\mathbf{w}} = \arg\min_{\mathbf{w}} \sum_{i=1}^{N} [y_i - \hat{y}(x_i; \mathbf{w})]^2$$

The prefactor N^{-1} has no influence on $\hat{\mathbf{w}}$.

- Most supervised machine learning problems can be formulated as the problem to minimize a cost or loss function C(X, Y, θ).
 - $\mathbf{X} \in \mathbb{R}^{N \times n}$ is the matrix of N input data points or features.
 - $\mathbf{Y} \in \mathbb{R}^{N \times I}$ are the labels. A label has / dimensions.
 - Training data: $(\mathbf{X}, \mathbf{Y}) = (\mathbf{x}_i, \mathbf{y}_i)_{i=1,...,N}$
- Here: call θ = w and consider univariate function regression labels can be written as a vector y ∈ ℝ^N.
 We choose the mean squared error as loss function:

$$C(\mathbf{X}, \mathbf{y}, \mathbf{w}) = \frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y}(\mathbf{x}_i; \mathbf{w}))^2$$

• Learning problem: seek w such that the loss function is minimal:

$$\hat{\mathbf{w}} = \arg\min_{\mathbf{w}} \sum_{i=1}^{N} [y_i - \hat{y}(x_i; \mathbf{w})]^2$$

The prefactor N^{-1} has no influence on $\hat{\mathbf{w}}$.

- Most supervised machine learning problems can be formulated as the problem to minimize a cost or loss function C(X, Y, θ).
 - $\mathbf{X} \in \mathbb{R}^{N \times n}$ is the matrix of N input data points or features.
 - $\mathbf{Y} \in \mathbb{R}^{N \times I}$ are the labels. A label has / dimensions.
 - Training data: $(\mathbf{X}, \mathbf{Y}) = (\mathbf{x}_i, \mathbf{y}_i)_{i=1,...,N}$
- Here: call θ = w and consider univariate function regression labels can be written as a vector y ∈ ℝ^N.
 We choose the mean squared error as loss function:

$$C(\mathbf{X}, \mathbf{y}, \mathbf{w}) = \frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y}(\mathbf{x}_i; \mathbf{w}))^2$$

• Learning problem: seek w such that the loss function is minimal:

$$\hat{\mathbf{w}} = \arg\min_{\mathbf{w}} \sum_{i=1}^{N} [y_i - \hat{y}(x_i; \mathbf{w})]^2$$

The prefactor N^{-1} has no influence on $\hat{\mathbf{w}}$.

Loss function Least-squares regression

Equivalent statistical interpretation (Gauss): Assume that observations y_i are produced from $\hat{y}(\mathbf{x}_i; \mathbf{w})$ with an additive measurement error that is *independent*, *identically distributed (iid)* from a *Normal distribution*.

$$y_i = \hat{y}(\mathbf{x}_i; \mathbf{w}) + \Delta_i \quad \Delta_i \sim \mathcal{N}(0, 1) = \frac{1}{\sqrt{2\pi}} e^{-\Delta_i^2/2}$$

We seek the maximum likelihood estimator $\hat{\mathbf{w}} = \arg \max_{\mathbf{w}} L(\mathbf{X}, \mathbf{Y}, \mathbf{w})$ with

$$L(\mathbf{X}, \mathbf{Y}, \mathbf{w}) = \mathbb{P}[y_1, \dots, y_N \mid \mathbf{w}] = \prod_{i=1}^N \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}(y_i - \hat{y}(\mathbf{x}_i; \mathbf{w}))^2}$$

This is equivalent with:

 $\arg\max L(\mathbf{X},\mathbf{Y},\mathbf{w}) = \arg\max\log L(\mathbf{X},\mathbf{Y},\mathbf{w})$

$$= \arg \max \sum_{i=1}^{N} -\frac{1}{2} (y_i - \hat{y}(\mathbf{x}_i; \mathbf{w}))^2 - \log (\sqrt{2\pi})$$
$$= \arg \min \sum_{i=1}^{N} (y_i - \hat{y}(\mathbf{x}_i; \mathbf{w}))^2$$

Loss function Least-squares regression

Equivalent statistical interpretation (Gauss): Assume that observations y_i are produced from $\hat{y}(\mathbf{x}_i; \mathbf{w})$ with an additive measurement error that is *independent*, *identically distributed (iid)* from a *Normal distribution*.

$$y_i = \hat{y}(\mathbf{x}_i; \mathbf{w}) + \Delta_i \quad \Delta_i \sim \mathcal{N}(0, 1) = \frac{1}{\sqrt{2\pi}} e^{-\Delta_i^2/2}$$

We seek the maximum likelihood estimator $\hat{\mathbf{w}} = \arg \max_{\mathbf{w}} L(\mathbf{X}, \mathbf{Y}, \mathbf{w})$ with

$$L(\mathbf{X}, \mathbf{Y}, \mathbf{w}) = \mathbb{P}[y_1, ..., y_N \mid \mathbf{w}] = \prod_{i=1}^N \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}(y_i - \hat{y}(\mathbf{x}_i; \mathbf{w}))^2}$$

This is equivalent with:

 $\arg\max L(\mathbf{X},\mathbf{Y},\mathbf{w}) = \arg\max\log L(\mathbf{X},\mathbf{Y},\mathbf{w})$

$$= \arg \max \sum_{i=1}^{N} -\frac{1}{2} (y_i - \hat{y}(\mathbf{x}_i; \mathbf{w}))^2 - \log \left(\sqrt{2\pi}\right)$$
$$= \arg \min \sum_{i=1}^{N} (y_i - \hat{y}(\mathbf{x}_i; \mathbf{w}))^2$$

Loss function Least-squares regression

Equivalent statistical interpretation (Gauss): Assume that observations y_i are produced from $\hat{y}(\mathbf{x}_i; \mathbf{w})$ with an additive measurement error that is *independent*, *identically distributed (iid)* from a *Normal distribution*.

$$y_i = \hat{y}(\mathbf{x}_i; \mathbf{w}) + \Delta_i \quad \Delta_i \sim \mathcal{N}(0, 1) = \frac{1}{\sqrt{2\pi}} e^{-\Delta_i^2/2}$$

We seek the maximum likelihood estimator $\hat{\mathbf{w}} = \arg \max_{\mathbf{w}} L(\mathbf{X}, \mathbf{Y}, \mathbf{w})$ with

$$L(\mathbf{X}, \mathbf{Y}, \mathbf{w}) = \mathbb{P}[y_1, ..., y_N \mid \mathbf{w}] = \prod_{i=1}^N \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}(y_i - \hat{y}(\mathbf{x}_i; \mathbf{w}))^2}$$

This is equivalent with:

 $\arg\max L(\mathbf{X},\mathbf{Y},\mathbf{w}) = \arg\max\log L(\mathbf{X},\mathbf{Y},\mathbf{w})$

$$= \arg \max \sum_{i=1}^{N} -\frac{1}{2} (y_i - \hat{y}(\mathbf{x}_i; \mathbf{w}))^2 - \log \left(\sqrt{2\pi}\right)$$
$$= \arg \min \sum_{i=1}^{N} (y_i - \hat{y}(\mathbf{x}_i; \mathbf{w}))^2 \qquad 6/37$$

• In a linear regression problem, the model has the form:

$$\hat{y}(\mathbf{x}_i; \mathbf{w}) = \mathbf{x}_i^\top \mathbf{w} = \sum_{j=1}^n x_{ij} w_j$$

• Matrix notation: $\hat{\mathbf{y}} = \mathbf{X}\mathbf{w}$. Linear least squares (LLS) regression problem:

$$\min_{\mathbf{w}} \|\mathbf{y} - \mathbf{X}\mathbf{w}\|_2^2$$

Featurization: Starting from some initial data r_i ∈ ℝ^d, we define n basis functions or feature functions φ_j : ℝ^d → ℝ. Thus every datapoint is featurized:

$$\mathbf{r}_i \rightarrow \mathbf{x}_i = (\phi_1(\mathbf{r}_i), ..., \phi_n(\mathbf{r}_i))^{\top}.$$

• Our linear regression model then has the form

$$\hat{y}(\mathbf{r}_i; \mathbf{w}) = w_1 \phi_1(\mathbf{r}_i) + \ldots + w_n \phi_n(\mathbf{r}_i)$$

with can be nonlinear in r.

• **Example**: with $\phi = \{1, r, r^2\}$ and $\mathbf{w} = (w_1, w_2, w_3)$ we can fit a quadratic function $f(r) = w_1 + w_2r + w_3r^2$.

• In a linear regression problem, the model has the form:

$$\hat{y}(\mathbf{x}_i; \mathbf{w}) = \mathbf{x}_i^\top \mathbf{w} = \sum_{j=1}^n x_{ij} w_j$$

• Matrix notation: $\hat{\mathbf{y}} = \mathbf{X}\mathbf{w}$. Linear least squares (LLS) regression problem:

$$\min_{\mathbf{w}} \|\mathbf{y} - \mathbf{X}\mathbf{w}\|_2^2$$

Featurization: Starting from some initial data r_i ∈ ℝ^d, we define n basis functions or feature functions φ_j : ℝ^d → ℝ. Thus every datapoint is featurized:

$$\mathbf{r}_i \rightarrow \mathbf{x}_i = (\phi_1(\mathbf{r}_i), ..., \phi_n(\mathbf{r}_i))^\top$$
.

• Our linear regression model then has the form

$$\hat{y}(\mathbf{r}_i; \mathbf{w}) = w_1 \phi_1(\mathbf{r}_i) + \ldots + w_n \phi_n(\mathbf{r}_i)$$

with can be nonlinear in ${\bf r}.$

• **Example**: with $\phi = \{1, r, r^2\}$ and $\mathbf{w} = (w_1, w_2, w_3)$ we can fit a quadratic function $f(r) = w_1 + w_2r + w_3r^2$.

• In a linear regression problem, the model has the form:

$$\hat{y}(\mathbf{x}_i; \mathbf{w}) = \mathbf{x}_i^\top \mathbf{w} = \sum_{j=1}^n x_{ij} w_j$$

• Matrix notation: $\hat{\mathbf{y}} = \mathbf{X}\mathbf{w}$. Linear least squares (LLS) regression problem:

$$\min_{\mathbf{w}} \|\mathbf{y} - \mathbf{X}\mathbf{w}\|_2^2$$

Featurization: Starting from some initial data r_i ∈ ℝ^d, we define n basis functions or feature functions φ_j : ℝ^d → ℝ. Thus every datapoint is featurized:

$$\mathbf{r}_i \rightarrow \mathbf{x}_i = (\phi_1(\mathbf{r}_i), ..., \phi_n(\mathbf{r}_i))^\top$$

• Our linear regression model then has the form

$$\hat{y}(\mathbf{r}_i; \mathbf{w}) = w_1 \phi_1(\mathbf{r}_i) + \ldots + w_n \phi_n(\mathbf{r}_i)$$

with can be nonlinear in r.

• Example: with $\phi = \{1, r, r^2\}$ and $\mathbf{w} = (w_1, w_2, w_3)$ we can fit a quadratic function $f(r) = w_1 + w_2 r + w_3 r^2$. 7/37

The vector $\mathbf{w} \in \mathbb{R}^n$ is the solution to $\min \|\mathbf{y} - \mathbf{X}\mathbf{w}\|_2$ exactly if it fulfills the normal equations

$$\mathbf{X}^{ op}\mathbf{X}\mathbf{w} = \mathbf{X}^{ op}\mathbf{y}$$

The linear regression problem has a unique solution exactly if the rank of **X** is maximal, i.e. $rk(\mathbf{X}) = n$.

Direct inversion (numerically unstable and inefficient):

$$\mathbf{w} = (\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}\mathbf{y} = \mathbf{X}^{+}\mathbf{y}.$$

where **X**⁺ is the Moore-Penrose pseudoinverse of **X**. Defining the covariance matrices

$$\mathbf{C}_{XX} = \mathbf{X}^\top \mathbf{X}$$
$$\mathbf{C}_{XY} = \mathbf{X}^\top \mathbf{y}$$

(here $C_{XY} \in \mathbb{R}^{n \times 1}$, but it is a matrix if we have multiple regression targets) the formal solution can be written as:

$$\mathbf{w} = \mathbf{C}_{XX}^{-1} \mathbf{C}_{XY}.$$
 8/37

The vector $\mathbf{w} \in \mathbb{R}^n$ is the solution to $\min \|\mathbf{y} - \mathbf{X}\mathbf{w}\|_2$ exactly if it fulfills the normal equations

$$\mathbf{X}^{ op}\mathbf{X}\mathbf{w} = \mathbf{X}^{ op}\mathbf{y}$$

The linear regression problem has a unique solution exactly if the rank of **X** is maximal, i.e. $rk(\mathbf{X}) = n$.

Direct inversion (numerically unstable and inefficient):

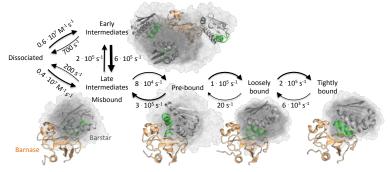
$$\mathbf{w} = (\mathbf{X}^{ op} \mathbf{X})^{-1} \mathbf{X}^{ op} \mathbf{y} = \mathbf{X}^{+} \mathbf{y}.$$

where \mathbf{X}^+ is the Moore-Penrose pseudoinverse of \mathbf{X} . Defining the covariance matrices

$$\mathbf{C}_{XX} = \mathbf{X}^\top \mathbf{X}$$
$$\mathbf{C}_{XY} = \mathbf{X}^\top \mathbf{y}$$

(here $C_{XY} \in \mathbb{R}^{n \times 1}$, but it is a matrix if we have multiple regression targets) the formal solution can be written as:

$$\mathbf{w} = \mathbf{C}_{XX}^{-1} \mathbf{C}_{XY}.$$
 8/37



Plattner, Doerr, De Fabritiis, Noé, Nature Chemistry (2017)

Define feature functions \$\phi_i(\mathbf{x})\$ with \$i = 1,...,n\$. Transform time series:

$$egin{aligned} X_{ij} &= \phi_j(\mathbf{x}_i) \ Y_{ij} &= \phi_j(\mathbf{x}_{i+ au}) \end{aligned}$$

with feature matrices $\mathbf{X}, \mathbf{Y} \in \mathbf{R}^{m \times n}$ and $m = T - \tau$.

• Solve regression problem:

$$\min_{\mathbf{K}} \|\mathbf{Y} - \mathbf{X}\mathbf{K}\|_2$$

in order to parametrize the Markovian dynamical model ${\bf K}$ that describes the time evolution:

$$\mathbf{Y} \approx \mathbf{X}\mathbf{K},$$

or in other words $\mathbf{x}_{t+\tau}^{\top} \approx \mathbf{x}_t^{\top} \mathbf{K}$.

• Solution has the form (MSMs, TICA, EDMD, ...):

$$\mathbf{K} = \left(\mathbf{X}^{\top}\mathbf{X}\right)^{-1}\mathbf{X}^{\top}\mathbf{Y} = \mathbf{C}_{XX}^{-1}\mathbf{C}_{XY}$$

Define feature functions \$\phi_i(\mathbf{x})\$ with \$i = 1,...,n\$. Transform time series:

$$egin{aligned} X_{ij} &= \phi_j(\mathbf{x}_i) \ Y_{ij} &= \phi_j(\mathbf{x}_{i+ au}) \end{aligned}$$

with feature matrices $\mathbf{X}, \mathbf{Y} \in \mathbf{R}^{m \times n}$ and $m = T - \tau$.

• Solve regression problem:

$$\min_{\mathbf{K}} \|\mathbf{Y} - \mathbf{X}\mathbf{K}\|_2$$

in order to parametrize the Markovian dynamical model ${\bf K}$ that describes the time evolution:

$$\mathbf{Y} \approx \mathbf{X}\mathbf{K},$$

or in other words $\mathbf{x}_{t+\tau}^{\top} \approx \mathbf{x}_{t}^{\top} \mathbf{K}$. • Solution has the form (MSMs, TICA, EDMD, ...):

$$\mathbf{K} = \left(\mathbf{X}^{\top} \mathbf{X} \right)^{-1} \mathbf{X}^{\top} \mathbf{Y} = \mathbf{C}_{XX}^{-1} \mathbf{C}_{XY}$$

Define feature functions \$\phi_i(\mathbf{x})\$ with \$i = 1,...,n\$. Transform time series:

$$egin{aligned} X_{ij} &= \phi_j(\mathbf{x}_i) \ Y_{ij} &= \phi_j(\mathbf{x}_{i+ au}) \end{aligned}$$

with feature matrices $\mathbf{X}, \mathbf{Y} \in \mathbf{R}^{m \times n}$ and $m = T - \tau$.

• Solve regression problem:

$$\min_{\mathbf{K}} \|\mathbf{Y} - \mathbf{X}\mathbf{K}\|_2$$

in order to parametrize the Markovian dynamical model ${\bf K}$ that describes the time evolution:

$$\mathbf{Y}\approx\mathbf{X}\mathbf{K},$$

or in other words $\mathbf{x}_{t+\tau}^{\top} \approx \mathbf{x}_t^{\top} \mathbf{K}$.

• Solution has the form (MSMs, TICA, EDMD, ...):

$$\mathbf{K} = \left(\mathbf{X}^{\top}\mathbf{X}\right)^{-1}\mathbf{X}^{\top}\mathbf{Y} = \mathbf{C}_{XX}^{-1}\mathbf{C}_{XY}$$
 10/37

• Partition molecular state space Ω into substates *S*₁,...,*S*_n. Define characteristic functions:

$$\phi_j(\mathbf{x}) = \begin{cases} 1 & \mathbf{x} \in S_j \\ 0 & \text{else.} \end{cases}$$

• Correlation matrices C_{XX} and C_{XY} then evaluate to:

$$(C_{XX})_{ij} = \sum_{t=1}^{m} \phi_i(\mathbf{x}_t) \phi_j(\mathbf{x}_t) = \delta_{ij} N_i$$
(1)

$$(C_{XY})_{ij} = \sum_{t=1}^{m} \phi_i(\mathbf{x}_t) \phi_j(\mathbf{x}_{t+\tau}) = N_{ij}$$
(2)

N_i: number of times the trajectory was in state i
 N_{ij}: number of transitions i → j in time interval τ.
 Markov model K can be written as:

$$K_{ij} = N_{ij} / N_i$$
 11/37

• Partition molecular state space Ω into substates *S*₁,...,*S*_n. Define characteristic functions:

$$\phi_j(\mathbf{x}) = \begin{cases} 1 & \mathbf{x} \in S_j \\ 0 & ext{else.} \end{cases}$$

• Correlation matrices C_{XX} and C_{XY} then evaluate to:

$$(C_{XX})_{ij} = \sum_{t=1}^{m} \phi_i(\mathbf{x}_t) \phi_j(\mathbf{x}_t) = \delta_{ij} N_i$$
(1)

$$(C_{XY})_{ij} = \sum_{t=1}^{m} \phi_i(\mathbf{x}_t) \phi_j(\mathbf{x}_{t+\tau}) = N_{ij}$$
⁽²⁾

- N_i: number of times the trajectory was in state i
- N_{ij} : number of transitions $i \rightarrow j$ in time interval τ .

• Markov model **K** can be written as:

$$K_{ij} = N_{ij}/N_i 11/37$$

• Partition molecular state space Ω into substates *S*₁,...,*S*_n. Define characteristic functions:

$$\phi_j(\mathbf{x}) = \begin{cases} 1 & \mathbf{x} \in S_j \\ 0 & \text{else.} \end{cases}$$

• Correlation matrices C_{XX} and C_{XY} then evaluate to:

$$(C_{XX})_{ij} = \sum_{t=1}^{m} \phi_i(\mathbf{x}_t) \phi_j(\mathbf{x}_t) = \delta_{ij} N_i$$
(1)

$$(C_{XY})_{ij} = \sum_{t=1}^{m} \phi_i(\mathbf{x}_t) \phi_j(\mathbf{x}_{t+\tau}) = N_{ij}$$
(2)

- N_i: number of times the trajectory was in state i
- N_{ij} : number of transitions $i \rightarrow j$ in time interval τ .

• Markov model K can be written as:

$$K_{ij} = N_{ij}/N_i \qquad 11/37$$

Three different optimization principles. $X_{ij} = \phi_j(\mathbf{x}_i), Y_{ij} = \phi_j(\mathbf{x}_{i+\tau}).$

Minimum regression error

$$\hat{\mathbf{K}} = \min_{\mathbf{K}} \left\| \mathbf{Y} - \mathbf{X} \mathbf{K} \right\|_2$$

e Maximum likelihood

$$\hat{\mathbf{K}} = \max_{\mathbf{K}} \prod_{i,j} k_{ij}^{N_{ij}}$$

Variational approach of conformation dynamics: Parametrize eigenvalue decomposition P = UAU⁻¹ and maximize eigenvalues by:

 $\max_{\mathbf{U}} \|\mathbf{M}(\mathbf{U})\|_F^2$

with $\mathbf{M} = (\mathbf{U}^{\top} \mathbf{C}_{XX} \mathbf{U})^{-\frac{1}{2}} \mathbf{U}^{\top} \mathbf{C}_{XY} \mathbf{U} (\mathbf{U}^{\top} \mathbf{C}_{XX} \mathbf{U})^{-\frac{1}{2}}$ and $\mathbf{\Lambda} = \text{diag}(M_{11}, ..., M_{nn})$

For fixed featurization ϕ , all three principles result in:

$$\mathbf{K} = \mathbf{C}_{XX}^{-1} \mathbf{C}_{XY}$$
^{12/37}

Three different optimization principles. $X_{ij} = \phi_j(\mathbf{x}_i), Y_{ij} = \phi_j(\mathbf{x}_{i+\tau}).$

Minimum regression error

$$\hat{\mathbf{K}} = \min_{\mathbf{K}} \left\| \mathbf{Y} - \mathbf{X} \mathbf{K} \right\|_2$$

Maximum likelihood

$$\hat{\mathbf{K}} = \max_{\mathbf{K}} \prod_{i,j} k_{ij}^{N_{ij}}$$

Variational approach of conformation dynamics: Parametrize eigenvalue decomposition P = UAU⁻¹ and maximize eigenvalues by:

 $\max_{\mathbf{U}} \|\mathbf{M}(\mathbf{U})\|_F^2$

with $\mathbf{M} = (\mathbf{U}^{\top} \mathbf{C}_{XX} \mathbf{U})^{-\frac{1}{2}} \mathbf{U}^{\top} \mathbf{C}_{XY} \mathbf{U} (\mathbf{U}^{\top} \mathbf{C}_{XX} \mathbf{U})^{-\frac{1}{2}}$ and $\mathbf{\Lambda} = \text{diag}(M_{11}, ..., M_{nn})$

For fixed featurization ϕ , all three principles result in:

$$\mathbf{K} = \mathbf{C}_{XX}^{-1} \mathbf{C}_{XY}$$
^{12/37}

Three different optimization principles. $X_{ij} = \phi_j(\mathbf{x}_i), Y_{ij} = \phi_j(\mathbf{x}_{i+\tau}).$

Minimum regression error

$$\hat{\mathbf{K}} = \min_{\mathbf{K}} \left\| \mathbf{Y} - \mathbf{X} \mathbf{K} \right\|_2$$

Maximum likelihood

$$\hat{\mathbf{K}} = \max_{\mathbf{K}} \prod_{i,j} k_{ij}^{N_{ij}}$$

 Variational approach of conformation dynamics: Parametrize eigenvalue decomposition P = UΛU⁻¹ and maximize eigenvalues by:

$$\max_{\mathbf{U}} \|\mathbf{M}(\mathbf{U})\|_F^2$$

with
$$\mathbf{M} = (\mathbf{U}^{\top} \mathbf{C}_{XX} \mathbf{U})^{-\frac{1}{2}} \mathbf{U}^{\top} \mathbf{C}_{XY} \mathbf{U} (\mathbf{U}^{\top} \mathbf{C}_{XX} \mathbf{U})^{-\frac{1}{2}}$$
 and $\mathbf{\Lambda} = \operatorname{diag}(M_{11}, ..., M_{nn})$

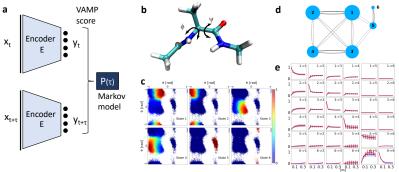
For fixed featurization ϕ , all three principles result in:

$$\mathbf{K} = \mathbf{C}_{XX}^{-1} \mathbf{C}_{XY}$$
 12/37

Markov state models with feature learning

For learned featurization ϕ :

- Minimum regression error $\min_{\mathbf{K}} \|\mathbf{Y} \mathbf{X}\mathbf{K}\|_2 = 0$ for trivial solution (e.g., $\phi = 1$)
- **2** Maximum likelihood max_K $\prod_{i,j} k_{ij}^{N_{ij}} = 1$ for trivial solution (assign all configurations to one state).
- Over the second sec



13/37

Mardt, Pasquali, Wu, Noé, Nature Commun. (2018)

• In a linear regression problem, the model has the form:

$$\hat{y}(\mathbf{x}_i; \mathbf{w}) = \mathbf{x}_i^\top \mathbf{w} = \sum_{j=1}^n x_{ij} w_j$$

• Matrix notation: $\hat{\mathbf{y}} = \mathbf{X}\mathbf{w}$. Linear least squares (LLS) regression problem:

$$\min_{\mathbf{w}} \|\mathbf{y} - \mathbf{X}\mathbf{w}\|_2^2$$

Validation and hyperparameter selection

• Validation: LLS solution gives us the in-sample training error:

$$E_{\text{in}} = C(\mathbf{X}^{\text{train}}, \mathbf{y}^{\text{train}}, \hat{\mathbf{w}}) = \frac{1}{N_{\text{in}}} \|\mathbf{y}^{\text{train}} - \mathbf{X}^{\text{train}} \hat{\mathbf{w}}\|_{2},$$

but we would like to validate how good the learnt model **predicts** an independent data set, i.e. the out-of-sample **validation or test** error E_{out} :

$$E_{\text{out}} = C(\mathbf{X}^{\text{val}}, \mathbf{y}^{\text{val}}, \hat{\mathbf{w}}) = \frac{1}{N_{\text{out}}} \|\mathbf{y}^{\text{val}} - \mathbf{X}^{\text{val}} \hat{\mathbf{w}}\|_{2},$$

- Hyperparameter selection: Hyperparameters cannot not be obtained from the learning algorithm (here LLS). For example, the number of type of feature functions ϕ .
- Example: The type of function φ used for training cannot be determined by minimizing the training error. For example, the model

$$\hat{y}(\mathbf{x}) = \sum_{i=1}^{N} w_i \mathbf{1}_{\mathbf{x}_i}(\mathbf{x}) \quad \text{with} \quad \mathbf{1}_{\mathbf{x}_i}(\mathbf{x}) = \begin{cases} 1 & \mathbf{x} = \mathbf{x}_i \\ 0 & \mathbf{x} \neq \mathbf{x}_i \end{cases}$$

has zero training error, but predicts f(x) = 0 for every point x not in 15/37 the training set.

Validation and hyperparameter selection

• Validation: LLS solution gives us the in-sample training error:

$$E_{\text{in}} = C(\mathbf{X}^{\text{train}}, \mathbf{y}^{\text{train}}, \hat{\mathbf{w}}) = \frac{1}{N_{\text{in}}} \|\mathbf{y}^{\text{train}} - \mathbf{X}^{\text{train}} \hat{\mathbf{w}}\|_{2},$$

but we would like to validate how good the learnt model **predicts** an independent data set, i.e. the out-of-sample **validation or test** error E_{out} :

$$E_{\text{out}} = C(\mathbf{X}^{\text{val}}, \mathbf{y}^{\text{val}}, \hat{\mathbf{w}}) = \frac{1}{N_{\text{out}}} \left\| \mathbf{y}^{\text{val}} - \mathbf{X}^{\text{val}} \hat{\mathbf{w}} \right\|_{2},$$

- Hyperparameter selection: Hyperparameters cannot not be obtained from the learning algorithm (here LLS). For example, the number of type of feature functions ϕ .
- **Example**: The type of function ϕ used for training cannot be determined by minimizing the training error. For example, the model

$$\hat{y}(\mathbf{x}) = \sum_{i=1}^{N} w_i \mathbf{1}_{\mathbf{x}_i}(\mathbf{x}) \quad \text{with} \quad \mathbf{1}_{\mathbf{x}_i}(\mathbf{x}) = \begin{cases} 1 & \mathbf{x} = \mathbf{x}_i \\ 0 & \mathbf{x} \neq \mathbf{x}_i \end{cases}$$

has zero training error, but predicts f(x) = 0 for every point x not in 15/37 the training set.

Validation and hyperparameter selection

• Validation: LLS solution gives us the in-sample training error:

$$E_{\text{in}} = C(\mathbf{X}^{\text{train}}, \mathbf{y}^{\text{train}}, \hat{\mathbf{w}}) = \frac{1}{N_{\text{in}}} \|\mathbf{y}^{\text{train}} - \mathbf{X}^{\text{train}} \hat{\mathbf{w}}\|_{2},$$

but we would like to validate how good the learnt model **predicts** an independent data set, i.e. the out-of-sample **validation or test** error E_{out} :

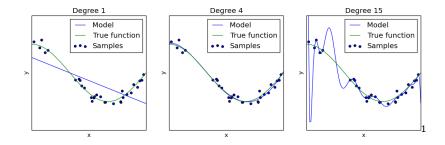
$$E_{\text{out}} = C(\mathbf{X}^{\text{val}}, \mathbf{y}^{\text{val}}, \hat{\mathbf{w}}) = \frac{1}{N_{\text{out}}} \left\| \mathbf{y}^{\text{val}} - \mathbf{X}^{\text{val}} \hat{\mathbf{w}} \right\|_{2},$$

- Hyperparameter selection: Hyperparameters cannot not be obtained from the learning algorithm (here LLS). For example, the number of type of feature functions ϕ .
- Example: The type of function φ used for training cannot be determined by minimizing the training error. For example, the model

$$\hat{y}(\mathbf{x}) = \sum_{i=1}^{N} w_i \mathbf{1}_{\mathbf{x}_i}(\mathbf{x}) \quad \text{with} \quad \mathbf{1}_{\mathbf{x}_i}(\mathbf{x}) = \begin{cases} 1 & \mathbf{x} = \mathbf{x}_i \\ 0 & \mathbf{x} \neq \mathbf{x}_i \end{cases}$$

has zero training error, but predicts $f(\mathbf{x}) = 0$ for every point \mathbf{x} not in $\frac{15}{37}$ the training set.

Underfitting vs. Overfitting



¹From http://scikit-learn.org

- **Data-based validation** is an effective way to solve the hyperparameter selection problem:
- Divide dataset into
 - training set (X^{train}, y^{train})
 - validation set (X^{val}, y^{val}) .
- Learn parameters using the training set:

$$\hat{\mathbf{w}} = \arg\min_{\mathbf{w}} \left\| \mathbf{y}^{\text{train}} - \mathbf{X}^{\text{train}} \mathbf{w} \right\|_2$$

The resulting residual $E_{in} = N_{in}^{-1} \| \mathbf{y}^{\text{train}} - \mathbf{X}^{\text{train}} \hat{\mathbf{w}} \|_2$ is the **training error** or **training loss**.

• The error of the learnt model in predicting data not used for the training,

$$E_{\text{out}} = N_{\text{out}}^{-1} \left\| \mathbf{y}^{\text{val}} - \mathbf{X}^{\text{val}} \hat{\mathbf{w}} \right\|_2$$

is called the **validation** or **error/loss**. It provides a metric to validate how well the model generalizes to new data

• **Choose hyperparameters** by minimizing the validation error. (careful: selecting hyperparameters *and* computing *E*_{out} requires a third *test set* or a more advanced validation routine).

- **Data-based validation** is an effective way to solve the hyperparameter selection problem:
- Divide dataset into
 - training set (X^{train}, y^{train})
 - validation set $(\mathbf{X}^{val}, \mathbf{y}^{val})$.
- Learn parameters using the training set:

$$\hat{\mathbf{w}} = \arg\min_{\mathbf{w}} \left\| \mathbf{y}^{\text{train}} - \mathbf{X}^{\text{train}} \mathbf{w} \right\|_2$$

The resulting residual $E_{in} = N_{in}^{-1} \| \mathbf{y}^{train} - \mathbf{X}^{train} \hat{\mathbf{w}} \|_2$ is the training error or training loss.

• The error of the learnt model in predicting data not used for the training,

$$E_{\text{out}} = N_{\text{out}}^{-1} \left\| \mathbf{y}^{\text{val}} - \mathbf{X}^{\text{val}} \hat{\mathbf{w}} \right\|_2$$

is called the **validation** or **error/loss**. It provides a metric to validate how well the model generalizes to new data

• **Choose hyperparameters** by minimizing the validation error. (careful: selecting hyperparameters *and* computing *E*_{out} requires a third *test set* or a more advanced validation routine).

- **Data-based validation** is an effective way to solve the hyperparameter selection problem:
- Divide dataset into
 - training set (X^{train}, y^{train})
 - validation set (X^{val}, y^{val}) .
- Learn parameters using the training set:

$$\hat{\mathbf{w}} = \arg\min_{\mathbf{w}} \left\| \mathbf{y}^{\text{train}} - \mathbf{X}^{\text{train}} \mathbf{w} \right\|_2$$

The resulting residual $E_{in} = N_{in}^{-1} \| \mathbf{y}^{train} - \mathbf{X}^{train} \hat{\mathbf{w}} \|_2$ is the training error or training loss.

• The error of the learnt model in predicting data not used for the training,

$$E_{\text{out}} = N_{\text{out}}^{-1} \left\| \mathbf{y}^{\text{val}} - \mathbf{X}^{\text{val}} \hat{\mathbf{w}} \right\|_2$$

is called the **validation** or **error/loss**. It provides a metric to validate how well the model generalizes to new data

• **Choose hyperparameters** by minimizing the validation error. (careful: selecting hyperparameters *and* computing *E*_{out} requires a **17/37** third *test set* or a more advanced validation routine).

- **Data-based validation** is an effective way to solve the hyperparameter selection problem:
- Divide dataset into
 - training set (X^{train}, y^{train})
 - validation set (X^{val}, y^{val}) .
- Learn parameters using the training set:

$$\hat{\mathbf{w}} = \arg\min_{\mathbf{w}} \left\| \mathbf{y}^{\text{train}} - \mathbf{X}^{\text{train}} \mathbf{w} \right\|_2$$

The resulting residual $E_{in} = N_{in}^{-1} \| \mathbf{y}^{train} - \mathbf{X}^{train} \hat{\mathbf{w}} \|_2$ is the training error or training loss.

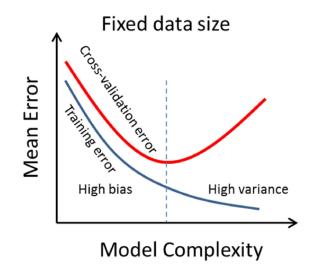
• The error of the learnt model in predicting data not used for the training,

$$E_{\text{out}} = N_{\text{out}}^{-1} \left\| \mathbf{y}^{\text{val}} - \mathbf{X}^{\text{val}} \hat{\mathbf{w}} \right\|_2$$

is called the **validation** or **error/loss**. It provides a metric to validate how well the model generalizes to new data

• **Choose hyperparameters** by minimizing the validation error. (careful: selecting hyperparameters *and* computing E_{out} requires a 17/37 third *test set* or a more advanced validation routine).

Underfitting vs. Overfitting



- Pathological division where rare events / outliers are included only in training or validation set can lead to undesirable behavior.
- Methods to "shuffle" training and test data to reduce the bias from the data splitting.
- Cross-validation is a simple and widely used approach:
 - Split the data into k nonoverlapping folds (X', y'). The complementary sets are (X⁻ⁱ, y⁻ⁱ) with sizes N⁻ⁱ.
 - For each fold i:
 - Train learning algorithm on training data:

$$\hat{\mathbf{w}}^{i} = \arg\min_{\mathbf{w}} \left\| \mathbf{y}^{-i} - \mathbf{X}^{-i} \mathbf{w} \right\|_{2}$$

Compute validation error:

$$E_{\text{out}}^{i} = \frac{1}{N^{-i}} \left\| \mathbf{y}^{i} - \mathbf{X}^{i} \hat{\mathbf{w}}^{i} \right\|_{2}$$

Cross-validation error is then given by:

$$E_{\text{out}} = \frac{1}{k} \sum_{i=1}^{k} E_{\text{out}}^{k}.$$

- Pathological division where rare events / outliers are included only in training or validation set can lead to undesirable behavior.
- Methods to "shuffle" training and test data to reduce the bias from the data splitting.
- **Cross-validation** is a simple and widely used approach:
 - Split the data into k nonoverlapping folds (Xⁱ, yⁱ). The complementary sets are $(\mathbf{X}^{-i}, \mathbf{y}^{-i})$ with sizes N^{-i} .

$$\hat{\mathbf{w}}^{i} = \arg\min_{\mathbf{w}} \left\| \mathbf{y}^{-i} - \mathbf{X}^{-i} \mathbf{w} \right\|_{2}$$

$$E_{\text{out}}^{i} = \frac{1}{N^{-i}} \left\| \mathbf{y}^{i} - \mathbf{X}^{i} \hat{\mathbf{w}}^{i} \right\|_{2}$$

$$E_{\rm out} = \frac{1}{k} \sum_{i=1}^{k} E_{\rm out}^k.$$

- Pathological division where rare events / outliers are included only in training or validation set can lead to undesirable behavior.
- Methods to "shuffle" training and test data to reduce the bias from the data splitting.
- Cross-validation is a simple and widely used approach:
 - Split the data into k nonoverlapping folds (Xⁱ, yⁱ). The complementary sets are (X⁻ⁱ, y⁻ⁱ) with sizes N⁻ⁱ.

Por each fold i:

Train learning algorithm on training data:

$$\hat{\mathbf{w}}^{i} = \arg\min_{\mathbf{w}} \left\| \mathbf{y}^{-i} - \mathbf{X}^{-i} \mathbf{w} \right\|_{2}$$

Ompute validation error:

$$E_{\text{out}}^{i} = \frac{1}{N^{-i}} \left\| \mathbf{y}^{i} - \mathbf{X}^{i} \hat{\mathbf{w}}^{i} \right\|_{2}$$

Cross-validation er

$$E_{\rm out} = \frac{1}{k} \sum_{i=1}^{k} E_{\rm out}^k.$$

- Pathological division where rare events / outliers are included only in training or validation set can lead to undesirable behavior.
- Methods to "shuffle" training and test data to reduce the bias from the data splitting.
- **Cross-validation** is a simple and widely used approach:
 - Split the data into k nonoverlapping folds (Xⁱ, yⁱ). The complementary sets are $(\mathbf{X}^{-i}, \mathbf{y}^{-i})$ with sizes N^{-i} .

Por each fold i:

Train learning algorithm on training data:

$$\hat{\mathbf{w}}^{i} = \arg\min_{\mathbf{w}} \left\| \mathbf{y}^{-i} - \mathbf{X}^{-i} \mathbf{w} \right\|_{2}$$

Compute validation error: 2

$$E_{\text{out}}^{i} = \frac{1}{N^{-i}} \left\| \mathbf{y}^{i} - \mathbf{X}^{i} \hat{\mathbf{w}}^{i} \right\|_{2}$$

Cross-validation error is then given by:

$$E_{\mathrm{out}} = rac{1}{k} \sum_{i=1}^{k} E_{\mathrm{out}}^{k}.$$

¹From https://en.wikipedia.org/wiki/Cross-validation_(statistics)

Statistical Estimator Theory Example: Regression

We now explicitly distinguish between the true function f that is sampled by a given set of observations (\mathbf{x}_i, y_i) :

$$y_i = f(\mathbf{x}_i) + \Delta_i \quad \Delta_i \sim \mathcal{N}(0, 1)$$

and the estimator $\hat{y}(x; w)$.

Learning problem

Learn function $f(\mathbf{x})$ by selecting function $\hat{y}(\mathbf{x})$ from a hypothesis set \mathcal{H} , which (in some sense) performs a best approximation $\hat{y} \approx f$.

Prediction problem

How can the learning problem be meaningfully defined if f(x) can, in principle, take any value on *unobserved* inputs?

Answer: a meaningful definition of learning is that the fitted model will perform approximately as well in predicting unseen data as it did in approximating training data ($E_{\rm in} \approx E_{\rm out}$).

Statistical Estimator Theory Example: Regression

We now explicitly distinguish between the true function f that is sampled by a given set of observations (\mathbf{x}_i, y_i) :

$$y_i = f(\mathbf{x}_i) + \Delta_i \quad \Delta_i \sim \mathcal{N}(0, 1)$$

and the estimator $\hat{y}(x; w)$.

Learning problem

Learn function $f(\mathbf{x})$ by selecting function $\hat{y}(\mathbf{x})$ from a hypothesis set \mathcal{H} , which (in some sense) performs a best approximation $\hat{y} \approx f$.

Prediction problem

How can the learning problem be meaningfully defined if f(x) can, in principle, take any value on *unobserved* inputs?

Answer: a meaningful definition of learning is that the fitted model will perform approximately as well in predicting unseen data as it did in approximating training data ($E_{\rm in} \approx E_{\rm out}$).

Statistical Estimator Theory Example: Regression

We now explicitly distinguish between the true function f that is sampled by a given set of observations (\mathbf{x}_i, y_i) :

$$y_i = f(\mathbf{x}_i) + \Delta_i \quad \Delta_i \sim \mathcal{N}(0, 1)$$

and the estimator $\hat{y}(x; w)$.

Learning problem

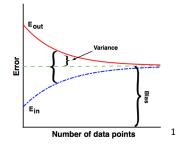
Learn function $f(\mathbf{x})$ by selecting function $\hat{y}(\mathbf{x})$ from a hypothesis set \mathcal{H} , which (in some sense) performs a best approximation $\hat{y} \approx f$.

Prediction problem

How can the learning problem be meaningfully defined if f(x) can, in principle, take any value on *unobserved* inputs?

Answer: a meaningful definition of learning is that the fitted model will perform approximately as well in predicting unseen data as it did in approximating training data ($E_{\rm in} \approx E_{\rm out}$).

 $E_{\rm in}$, $E_{\rm out}$, Bias and Variance for a given Model trained for different N



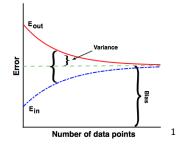
We assume that the true function f is sufficiently complicated so that we cannot learn it exactly, i.e.

$$\sum_{i=1}^{N} \left(f(\mathbf{x}_i) - \hat{\mathbf{y}}(\mathbf{x}_i; \mathbf{w})
ight)^2 > 0 \ orall \mathbf{w}$$

Even in the limit $N \to \infty$ we maintain an **asymptotic error** $E_{in} = E_{out}$, called the **model bias** \to property of the function class \mathscr{H} . 22/37

¹From Mehta et al, arXiv:1803.08823v1

Statistical Learning Theory E_{in} , E_{out} , Bias and Variance for a given Model as a Function of N

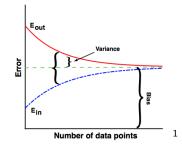


Typical behavior:

- $E_{\rm in}$ increases with N towards the model bias.
- E_{out} decreases with increasing N as more cases are observed and thus covered by the model.
- The generalization gap $E_{out} E_{in}$ (due to overfitting) decreases with increasing *N*.

¹From Mehta et al, arXiv:1803.08823v1

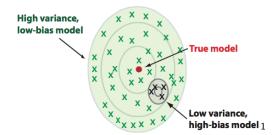
Statistical Learning Theory E_{in} , E_{out} , Bias and Variance for a given Model as a Function of N



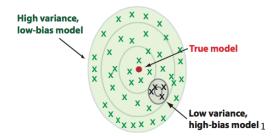
Insights:

- It is not sufficient to minimize $E_{in},$ as E_{out} may be large. \rightarrow regularization.
- As the true bias is not practically available, one minimizes E_{out}.

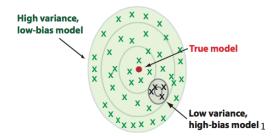
¹From Mehta et al, arXiv:1803.08823v1



- **Bias-variance tradeoff**: For fixed *N*, the more/less expressive the model, the larger/smaller the fluctuations, respectively.
- To minimize E_{out} , it is sometimes better to use a more-biased model with small variance than a less-biased model with large variance.
- Asymptotically, i.e. with increasing training set size *N*, complex models will perform better than simpler models as they have reduced bias.
- Optimal model selection depends on the amount of training data N.

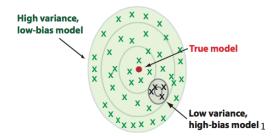


- **Bias-variance tradeoff**: For fixed *N*, the more/less expressive the model, the larger/smaller the fluctuations, respectively.
- To minimize E_{out} , it is sometimes better to use a more-biased model with small variance than a less-biased model with large variance.
- Asymptotically, i.e. with increasing training set size *N*, complex models will perform better than simpler models as they have reduced bias.
- Optimal model selection depends on the amount of training data N.



- **Bias-variance tradeoff**: For fixed *N*, the more/less expressive the model, the larger/smaller the fluctuations, respectively.
- To minimize E_{out} , it is sometimes better to use a more-biased model with small variance than a less-biased model with large variance.
- Asymptotically, i.e. with increasing training set size *N*, complex models will perform better than simpler models as they have reduced bias.
- Optimal model selection depends on the amount of training data N.

¹From Mehta et al, arXiv:1803.08823v1



- **Bias-variance tradeoff**: For fixed *N*, the more/less expressive the model, the larger/smaller the fluctuations, respectively.
- To minimize E_{out} , it is sometimes better to use a more-biased model with small variance than a less-biased model with large variance.
- Asymptotically, i.e. with increasing training set size *N*, complex models will perform better than simpler models as they have reduced bias.
- Optimal model selection depends on the amount of training data N.

¹From Mehta et al, arXiv:1803.08823v1

Bias-Variance decomposition

Task: for a given estimator, e.g. LLS, model the behavior of the out-of-sample MSE without knowing the true function f:

$$E_{\text{out}} = C(\mathbf{X}^{\text{val}}, \mathbf{y}^{\text{val}}, \hat{\mathbf{y}}^{\text{val}}) = \|\mathbf{y}^{\text{val}} - \hat{\mathbf{y}}^{\text{val}}\|_{2}^{2},$$

where $\mathbf{X}^{val} = (\mathbf{x}_1^{val}, ..., \mathbf{x}_N^{val})^{\top}$ are the features of the validation set, \mathbf{y}^{val} are the corresponding observations and $\hat{\mathbf{y}}^{val}$ are the predictions of the estimator.

Idea: Compute **expected** E_{out} of given estimator \hat{y} on all data

- $y = f(\mathbf{x}) + \varepsilon$ drawn from the true model $f(\mathbf{x})$ with following approach:
 - Fix observation points x_i

Repeat:

9 Run experiment, observe training data $(X_i)_{i}^{mm} = (x_i)_i^{mm} = (x_i)_i^{mm} = (x_i)_i^{mm}$ and train the estimator $\mathcal{Y}(\kappa)$.

Repeat experiment, observe validation data.

 $(X, y^{m}) = (X_i, y_i^{m})_{i=1,...N}$

 Compute expectation E over observations y^{train} and y^{val} by averaging over noise realizations.

$$\mathbb{E}\left[\mathcal{C}(\mathbf{X},\mathbf{y}^{\text{val}},\hat{\mathbf{y}}^{\text{val}})\right] = \mathbb{E}\left[\sum_{i=1}^{N}\left(y_{i}^{\text{val}}(\mathsf{x}_{i}) - \hat{y}(\mathsf{x}_{i})\right)^{2}\right]$$

Bias-Variance decomposition

Task: for a given estimator, e.g. LLS, model the behavior of the out-of-sample MSE without knowing the true function f:

$$E_{\text{out}} = C(\mathbf{X}^{\text{val}}, \mathbf{y}^{\text{val}}, \hat{\mathbf{y}}^{\text{val}}) = \|\mathbf{y}^{\text{val}} - \hat{\mathbf{y}}^{\text{val}}\|_{2}^{2},$$

where $\mathbf{X}^{val} = (\mathbf{x}_1^{val}, ..., \mathbf{x}_N^{val})^{\top}$ are the features of the validation set, \mathbf{y}^{val} are the corresponding observations and $\hat{\mathbf{y}}^{val}$ are the predictions of the estimator.

Idea: Compute expected E_{out} of given estimator \hat{y} on all data

 $y = f(\mathbf{x}) + \varepsilon$ drawn from the true model $f(\mathbf{x})$ with following approach:

- Fix observation points x_i
- 2 Repeat:
 - Run experiment, observe training data $(\mathbf{X}, \mathbf{y}^{\text{train}}) = (\mathbf{x}_i, y_i^{\text{train}})_{i=1,...N}$ and train the estimator $\hat{y}(\mathbf{x})$.
 - **@** Repeat experiment, observe validation data $(\mathbf{X}, \mathbf{y}^{val}) = (\mathbf{x}_i, y_i^{val})_{i=1}$ N.
- $\textcircled{\ } \textbf{O} \quad \textbf{Compute expectation } \mathbb{E} \text{ over observations } \mathbf{y}^{train} \text{ and } \mathbf{y}^{val} \text{ by averaging over noise realizations.} \\$

$$\mathbb{E}\left[C(\mathbf{X}, \mathbf{y}^{\text{val}}, \hat{\mathbf{y}}^{\text{val}})\right] = \mathbb{E}\left[\sum_{i=1}^{N} \left(y_i^{\text{val}}(\mathbf{x}_i) - \hat{y}(\mathbf{x}_i)\right)^2\right]$$

Bias-Variance decomposition

Task: for a given estimator, e.g. LLS, model the behavior of the out-of-sample MSE without knowing the true function f:

$$E_{\text{out}} = C(\mathbf{X}^{\text{val}}, \mathbf{y}^{\text{val}}, \hat{\mathbf{y}}^{\text{val}}) = \|\mathbf{y}^{\text{val}} - \hat{\mathbf{y}}^{\text{val}}\|_{2}^{2},$$

where $\mathbf{X}^{val} = (\mathbf{x}_1^{val}, ..., \mathbf{x}_N^{val})^{\top}$ are the features of the validation set, \mathbf{y}^{val} are the corresponding observations and $\hat{\mathbf{y}}^{val}$ are the predictions of the estimator.

Idea: Compute expected E_{out} of given estimator \hat{y} on all data

 $y = f(\mathbf{x}) + \varepsilon$ drawn from the true model $f(\mathbf{x})$ with following approach:

- Fix observation points x_i
- 2 Repeat:
 - **1** Run experiment, observe training data $(\mathbf{X}, \mathbf{y}^{\text{train}}) = (\mathbf{x}_i, y_i^{\text{train}})_{i=1,...N}$ and train the estimator $\hat{y}(\mathbf{x})$.
 - Repeat experiment, observe validation data
 (X, y^{val}) = (x_i, y^{val}_i)_{i=1,...N}.
- $\textcircled{\ } \textbf{O} \quad \textbf{Compute expectation } \mathbb{E} \text{ over observations } \textbf{y}^{train} \text{ and } \textbf{y}^{val} \text{ by averaging over noise realizations.} \\$

$$\mathbb{E}\left[C(\mathbf{X}, \mathbf{y}^{\text{val}}, \hat{\mathbf{y}}^{\text{val}})\right] = \mathbb{E}\left[\sum_{i=1}^{N} \left(y_i^{\text{val}}(\mathbf{x}_i) - \hat{y}(\mathbf{x}_i)\right)^2\right]$$
 26/37

Expected out-of-sample error, i.e. the **expected loss** of our model can be decomposed as:

$$E_{\text{out}} = \mathbb{E}\left[\sum_{i=1}^{N} \left(y_i^{\text{val}}(\mathbf{x}_i) - \hat{y}(\mathbf{x}_i)\right)^2\right] = \text{Bias}^2 + \text{Var} + \text{Noise}.$$

with $\bar{y}_i = \mathbb{E}[\hat{y}(\mathbf{x}_i)]$ we have:

Noise
$$= \sum_{i=1}^{N} \mathbb{E}\left[\left(y_{i}^{\text{val}}(\mathbf{x}_{i}) - f(\mathbf{x}_{i})\right)^{2}\right] = \sum_{i=1}^{N} \mathbb{E}\left[\varepsilon^{2}\right] = \sigma_{\varepsilon}^{2}$$
$$\text{Var} = \sum_{i=1}^{N} \mathbb{E}\left[\left(\hat{y}(\mathbf{x}_{i}) - \bar{y}_{i}\right)^{2}\right]$$
$$\text{Bias}^{2} = \sum_{i=1}^{N} \left(f(\mathbf{x}_{i}) - \bar{y}_{i}\right)^{2}$$

Expected out-of-sample error, i.e. the **expected loss** of our model can be decomposed as:

$$E_{\text{out}} = \mathbb{E}\left[\sum_{i=1}^{N} \left(y_i^{\text{val}}(\mathbf{x}_i) - \hat{y}(\mathbf{x}_i)\right)^2\right] = \text{Bias}^2 + \text{Var} + \text{Noise}.$$

with $\bar{y}_i = \mathbb{E}\left[\hat{y}(\mathbf{x}_i)\right]$ we have:

Noise
$$= \sum_{i=1}^{N} \mathbb{E}\left[\left(y_{i}^{\text{val}}(\mathbf{x}_{i}) - f(\mathbf{x}_{i})\right)^{2}\right] = \sum_{i=1}^{N} \mathbb{E}\left[\varepsilon^{2}\right] = \sigma_{\varepsilon}^{2}$$
$$\text{Var} = \sum_{i=1}^{N} \mathbb{E}\left[\left(\hat{y}(\mathbf{x}_{i}) - \bar{y}_{i}\right)^{2}\right]$$
$$\text{Bias}^{2} = \sum_{i=1}^{N} \left(f(\mathbf{x}_{i}) - \bar{y}_{i}\right)^{2}$$

$$E_{\text{out}} = \mathbb{E}\left[\sum_{i=1}^{N} \left(y_i^{\text{val}}(\mathbf{x}_i) - \hat{y}(\mathbf{x}_i)\right)^2\right] = \text{Bias}^2 + \text{Var} + \text{Noise}.$$

- The optimal model minimizes the expected loss by balancing bias and variance.
- A model is **underfitting** the data if bias is too high.
- A model is **overfitting** the data if variance is too high.
- Since data is often limited, a simple model with a finite bias (i.e. an asymptotic error) may be preferable to a complex model with a high variance.
- Optimal choice depends on the amount of data available. The more data, the more complex models are optimal.

$$E_{\text{out}} = \mathbb{E}\left[\sum_{i=1}^{N} \left(y_i^{\text{val}}(\mathbf{x}_i) - \hat{y}(\mathbf{x}_i)\right)^2\right] = \text{Bias}^2 + \text{Var} + \text{Noise}.$$

- The optimal model minimizes the expected loss by balancing bias and variance.
- A model is **underfitting** the data if bias is too high.
- A model is **overfitting** the data if variance is too high.
- Since data is often limited, a simple model with a finite bias (i.e. an asymptotic error) may be preferable to a complex model with a high variance.
- Optimal choice depends on the amount of data available. The more data, the more complex models are optimal.

$$E_{\text{out}} = \mathbb{E}\left[\sum_{i=1}^{N} \left(y_i^{\text{val}}(\mathbf{x}_i) - \hat{y}(\mathbf{x}_i)\right)^2\right] = \text{Bias}^2 + \text{Var} + \text{Noise}.$$

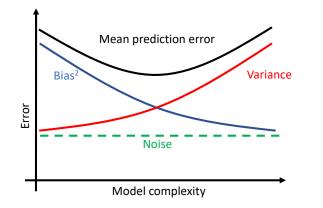
- The optimal model minimizes the expected loss by balancing bias and variance.
- A model is **underfitting** the data if bias is too high.
- A model is **overfitting** the data if variance is too high.
- Since data is often limited, a simple model with a finite bias (i.e. an asymptotic error) may be preferable to a complex model with a high variance.
- Optimal choice depends on the amount of data available. The more data, the more complex models are optimal.

$$E_{\text{out}} = \mathbb{E}\left[\sum_{i=1}^{N} \left(y_i^{\text{val}}(\mathbf{x}_i) - \hat{y}(\mathbf{x}_i)\right)^2\right] = \text{Bias}^2 + \text{Var} + \text{Noise}.$$

- The optimal model minimizes the expected loss by balancing bias and variance.
- A model is **underfitting** the data if bias is too high.
- A model is **overfitting** the data if variance is too high.
- Since data is often limited, a simple model with a finite bias (i.e. an asymptotic error) may be preferable to a complex model with a high variance.
- Optimal choice depends on the amount of data available. The more data, the more complex models are optimal.

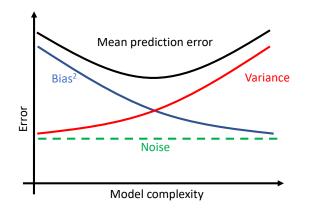
Statistical Learning Theory *E*_{in} and *E*_{out} as a function of model complexity

- Model complexity is a property of the function class \mathcal{H} . For example, model complexity increases with the number of free parameters (e.g. higher-order polynomials are more complex than the linear model).
- Behavior for fixed N:



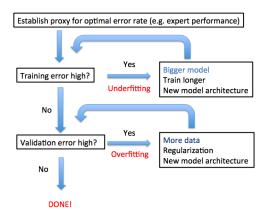
Statistical Learning Theory *E*_{in} and *E*_{out} as a function of model complexity

- Model complexity is a property of the function class \mathcal{H} . For example, model complexity increases with the number of free parameters (e.g. higher-order polynomials are more complex than the linear model).
- Behavior for fixed N:



For complex estimators (e.g. neural networks), exhaustive hyperparameter search is unfeasible.

Typical approach:



Regularization

Regularized LLS: add penalty term on \boldsymbol{w} with suitable norm:

$$\min \|\mathbf{y} - \mathbf{X}\mathbf{w}\|_2^2 + \lambda \|\mathbf{w}\|.$$

Purpose:

- **Statistical**: reduce expressiveness of model by reducing fluctuations of **w**. Allows to control the bias-variance tradeoff via λ.
- Numerical: regularized solutions often numerically better behaved.
- **Structural**: e.g., induce sparsity in solution.

Regularization method depends on penalty type:

Regularization type	Penalty term	Prior	Solution methods
Tikhonov regularization Ridge regression	$\ w\ _{2}^{2}$	Normal	Closed form
Lasso regression	$\ \mathbf{w}\ _1$	Laplace	Proximal gradient descent
<i>I</i> ₀ regularization	w ₀		Forward selection,
			Backward elimination
Elastic nets	$(1-\alpha) \ \mathbf{w}\ _1 + \alpha \ \mathbf{w}\ _2$		Proximal gradient descent 31/37

Regularized LLS: add penalty term on \boldsymbol{w} with suitable norm:

$$\min \|\mathbf{y} - \mathbf{X}\mathbf{w}\|_2^2 + \lambda \|\mathbf{w}\|.$$

Purpose:

- **Statistical**: reduce expressiveness of model by reducing fluctuations of **w**. Allows to control the bias-variance tradeoff via λ.
- Numerical: regularized solutions often numerically better behaved.
- Structural: e.g., induce sparsity in solution.

Regularization method depends on penalty type:

Regularization type	Penalty term	Prior	Solution methods
Tikhonov regularization Ridge regression	$\ \mathbf{w}\ _{2}^{2}$	Normal	Closed form
Lasso regression	w ₁	Laplace	Proximal gradient descent
<i>l</i> ₀ regularization	w ₀		Forward selection, Backward elimination
Elastic nets	$ \begin{array}{c} (1-\alpha) \ \mathbf{w}\ _1 + \\ \alpha \ \mathbf{w}\ _2 \end{array} $		Proximal gradient descent 31/37

Regularized LLS: add penalty term on \boldsymbol{w} with suitable norm:

$$\min \|\mathbf{y} - \mathbf{X}\mathbf{w}\|_2^2 + \lambda \|\mathbf{w}\|.$$

Purpose:

- **Statistical**: reduce expressiveness of model by reducing fluctuations of **w**. Allows to control the bias-variance tradeoff via λ.
- Numerical: regularized solutions often numerically better behaved.
- Structural: e.g., induce sparsity in solution.

Regularization method depends on penalty type:

Regularization type	Penalty term	Prior	Solution methods
Tikhonov regularization	$\ \mathbf{w}\ _{2}^{2}$	Normal	Closed form
Ridge regression			
Lasso regression	$\ \mathbf{w}\ _1$	Laplace	Proximal gradient descent
<i>I</i> ₀ regularization	$\ \mathbf{w}\ _0$	-	Forward selection,
			Backward elimination
Elastic nets	$(1-\alpha) \ \mathbf{w}\ _1 +$	-	Proximal gradient descent /37
	$ \begin{array}{c c} (1-\alpha) \ \mathbf{w}\ _1 + \\ \alpha \ \mathbf{w}\ _2 \end{array} $		51/51

We would like to work in high-dimensional feature spaces

$$\mathbf{r}_i \rightarrow \mathbf{x}_i = (\phi_1(\mathbf{r}_i), ..., \phi_n(\mathbf{r}_i))^\top$$
.

However, this leads to danger of overfitting. To avoid overfitting, we penalize the norm of the solution:

$$\min \|\mathbf{y} - \mathbf{X}\mathbf{w}\|_2^2 + \lambda \|\mathbf{w}\|_2^2,$$

where λ is a hyperparameter.

Taking derivatives and setting them to zero yields the solution:

$$\mathbf{w} = \left(\lambda \mathbf{I} + \mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{y}$$
$$= \tilde{\mathbf{C}}_{XX}^{-1} \mathbf{C}_{XY}$$

$$\tilde{\mathbf{C}}_{XX} = \lambda \mathbf{I} + \mathbf{X}^{\mathsf{T}} \mathbf{X}$$
 32/37

We would like to work in high-dimensional feature spaces

$$\mathbf{r}_i \rightarrow \mathbf{x}_i = (\phi_1(\mathbf{r}_i), ..., \phi_n(\mathbf{r}_i))^\top$$
.

However, this leads to danger of overfitting. To avoid overfitting, we penalize the norm of the solution:

$$\min \|\mathbf{y} - \mathbf{X}\mathbf{w}\|_2^2 + \lambda \|\mathbf{w}\|_2^2,$$

where λ is a hyperparameter.

Taking derivatives and setting them to zero yields the solution:

$$\mathbf{w} = \left(\lambda \mathbf{I} + \mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{y}$$
$$= \tilde{\mathbf{C}}_{XX}^{-1} \mathbf{C}_{XY}$$

$$\tilde{\mathbf{C}}_{XX} = \lambda \mathbf{I} + \mathbf{X}^{\top} \mathbf{X} \qquad 32/37$$

We would like to work in high-dimensional feature spaces

$$\mathbf{r}_i \rightarrow \mathbf{x}_i = (\phi_1(\mathbf{r}_i), ..., \phi_n(\mathbf{r}_i))^\top$$
.

However, this leads to danger of overfitting. To avoid overfitting, we penalize the norm of the solution:

$$\min \|\mathbf{y} - \mathbf{X}\mathbf{w}\|_2^2 + \lambda \|\mathbf{w}\|_2^2,$$

where λ is a hyperparameter.

Taking derivatives and setting them to zero yields the solution:

$$\mathbf{w} = \left(\lambda \mathbf{I} + \mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{y}$$
$$= \tilde{\mathbf{C}}_{XX}^{-1} \mathbf{C}_{XY}$$

$$\tilde{\mathsf{C}}_{XX} = \lambda \mathbf{I} + \mathbf{X}^{\mathsf{T}} \mathbf{X}$$
 32/37

We would like to work in high-dimensional feature spaces

$$\mathbf{r}_i \rightarrow \mathbf{x}_i = (\phi_1(\mathbf{r}_i), ..., \phi_n(\mathbf{r}_i))^\top$$
.

However, this leads to danger of overfitting. To avoid overfitting, we penalize the norm of the solution:

$$\min \|\mathbf{y} - \mathbf{X}\mathbf{w}\|_2^2 + \lambda \|\mathbf{w}\|_2^2,$$

where λ is a hyperparameter.

Taking derivatives and setting them to zero yields the solution:

$$\begin{split} \mathbf{w} &= \left(\lambda \mathbf{I} + \mathbf{X}^{\top} \mathbf{X} \right)^{-1} \mathbf{X}^{\top} \mathbf{y} \\ &= \tilde{\mathbf{C}}_{XX}^{-1} \mathbf{C}_{XY} \end{split}$$

$$\tilde{\mathbf{C}}_{XX} = \lambda \mathbf{I} + \mathbf{X}^{\top} \mathbf{X}$$
 32/37

L0 regularization

$$\min \|\mathbf{y} - \mathbf{X}\mathbf{w}\|_2^2 + \lambda \|\mathbf{w}\|_0,$$

Most extreme way to enforce sparsity. Magnitude of the coefficients of \mathbf{w} does not matter, we only want to minimize the number of non-zero entries. This regularization function is not commonly used in practice, as it is very difficult to solve.

• L1 regularization, e.g. using the least absolute selection and shrinkage (LASSO) method.

$$\min \|\mathbf{y} - \mathbf{X}\mathbf{w}\|_2^2 + \lambda \|\mathbf{w}\|_1,$$

• Elastic net

$$\min \|\mathbf{y} - \mathbf{X}\mathbf{w}\|_2^2 + \lambda \left[(1 - \alpha) \|\mathbf{w}\|_1 + \alpha \|\mathbf{w}\|_2^2 \right],$$

Where α switches between the two extremes $\alpha = 0$ (L1 regularization) and $\alpha = 1$ (Ridge regression).

Sparsity-inducing Regularization

L0 regularization

$$\min \|\mathbf{y} - \mathbf{X}\mathbf{w}\|_2^2 + \lambda \|\mathbf{w}\|_0,$$

Most extreme way to enforce sparsity. Magnitude of the coefficients of \mathbf{w} does not matter, we only want to minimize the number of non-zero entries. This regularization function is not commonly used in practice, as it is very difficult to solve.

• L1 regularization, e.g. using the least absolute selection and shrinkage (LASSO) method.

$$\min \|\mathbf{y} - \mathbf{X}\mathbf{w}\|_2^2 + \lambda \|\mathbf{w}\|_1,$$

• Elastic net

$$\min \|\mathbf{y} - \mathbf{X}\mathbf{w}\|_2^2 + \lambda \left[(1 - \alpha) \|\mathbf{w}\|_1 + \alpha \|\mathbf{w}\|_2^2 \right],$$

Where α switches between the two extremes $\alpha = 0$ (L1 regularization) and $\alpha = 1$ (Ridge regression).

L0 regularization

$$\min \|\mathbf{y} - \mathbf{X}\mathbf{w}\|_2^2 + \lambda \|\mathbf{w}\|_0,$$

Most extreme way to enforce sparsity. Magnitude of the coefficients of \mathbf{w} does not matter, we only want to minimize the number of non-zero entries. This regularization function is not commonly used in practice, as it is very difficult to solve.

• L1 regularization, e.g. using the least absolute selection and shrinkage (LASSO) method.

$$\min \|\mathbf{y} - \mathbf{X}\mathbf{w}\|_2^2 + \lambda \|\mathbf{w}\|_1,$$

Elastic net

$$\min \|\mathbf{y} - \mathbf{X}\mathbf{w}\|_2^2 + \lambda \left[(1 - \alpha) \|\mathbf{w}\|_1 + \alpha \|\mathbf{w}\|_2^2 \right],$$

Where α switches between the two extremes $\alpha = 0$ (L1 regularization) and $\alpha = 1$ (Ridge regression).

- Replace each data point with feature vector: $\mathbf{x}_i \rightarrow \phi(\mathbf{x}_i)$.
- dim(ϕ) can be much higher than dim(\mathbf{x}_i) (even ∞).
 - → How do we compute or invert X⁺X
 - \rightarrow How do we avoid overfitting?
- Kernel trick: allows us to work with either X[⊤]X or XX[⊤], whichever is more convenient (lower-dimensional).
- Kernel ridge regression can be written as:

$$\mathbf{w} = \left(\lambda \mathbf{I} + \mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{y} = \mathbf{X}^{\top} \left(\mathbf{X} \mathbf{X}^{\top} + \lambda \mathbf{I}\right)^{-1} \mathbf{y},$$

or, equivalently:

$$\begin{split} \mathbf{w} &= \sum_{i} \alpha_{i} \mathbf{x}_{i} \\ \alpha &= \left(\mathbf{X} \mathbf{X}^{\top} + \lambda \mathbf{I} \right)^{-1} \mathbf{y} \end{split}$$

- Replace each data point with feature vector: $\mathbf{x}_i \rightarrow \phi(\mathbf{x}_i)$.
- dim(ϕ) can be much higher than dim(\mathbf{x}_i) (even ∞).
 - $\bullet \ \rightarrow \mbox{ How do we compute or invert } {\bm X}^{\top} {\bm X} \ ?$
 - ullet \to How do we avoid overfitting?
- Kernel trick: allows us to work with either X[⊤]X or XX[⊤], whichever is more convenient (lower-dimensional).
- Kernel ridge regression can be written as:

$$\mathbf{w} = \left(\lambda \mathbf{I} + \mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{y} = \mathbf{X}^{\top} \left(\mathbf{X} \mathbf{X}^{\top} + \lambda \mathbf{I}\right)^{-1} \mathbf{y},$$

or, equivalently:

$$\mathbf{w} = \sum_{i} \alpha_{i} \mathbf{x}_{i}$$
$$\alpha = \left(\mathbf{X}\mathbf{X}^{\top} + \lambda \mathbf{I}\right)^{-1} \mathbf{y}$$

- Replace each data point with feature vector: $\mathbf{x}_i \rightarrow \phi(\mathbf{x}_i)$.
- dim(ϕ) can be much higher than dim(\mathbf{x}_i) (even ∞).
 - \rightarrow How do we compute or invert **X**^T**X** ?
 - ullet \to How do we avoid overfitting?
- Kernel trick: allows us to work with either X[⊤]X or XX[⊤], whichever is more convenient (lower-dimensional).
- Kernel ridge regression can be written as:

$$\mathbf{w} = \left(\lambda \mathbf{I} + \mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{y} = \mathbf{X}^{\top} \left(\mathbf{X} \mathbf{X}^{\top} + \lambda \mathbf{I}\right)^{-1} \mathbf{y},$$

or, equivalently:

$$\mathbf{w} = \sum_{i} \alpha_{i} \mathbf{x}_{i}$$
$$\alpha = \left(\mathbf{X}\mathbf{X}^{\top} + \lambda \mathbf{I}\right)^{-1} \mathbf{y}$$

- Replace each data point with feature vector: $\mathbf{x}_i \rightarrow \phi(\mathbf{x}_i)$.
- dim(ϕ) can be much higher than dim(\mathbf{x}_i) (even ∞).
 - \rightarrow How do we compute or invert $\mathbf{X}^{\top}\mathbf{X}$?
 - $\bullet \ \rightarrow \ {\sf How} \ {\sf do} \ {\sf we} \ {\sf avoid} \ {\sf overfitting}?$
- Kernel trick: allows us to work with either X[⊤]X or XX[⊤], whichever is more convenient (lower-dimensional).
- Kernel ridge regression can be written as:

$$\mathbf{w} = \left(\lambda \mathbf{I} + \mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{y} = \mathbf{X}^{\top} \left(\mathbf{X} \mathbf{X}^{\top} + \lambda \mathbf{I}\right)^{-1} \mathbf{y},$$

or, equivalently:

$$\mathbf{w} = \sum_{i} lpha_i \mathbf{x}_i$$
 $lpha = \left(\mathbf{X}\mathbf{X}^ op + \lambda \mathbf{I}
ight)^{-1} \mathbf{y}$

• Kernel ridge regression

$$\mathbf{w} = \sum_{i} lpha_i \mathbf{x}_i$$
 $lpha = \left(\mathbf{X}\mathbf{X}^{ op} + \lambda \mathbf{I}
ight)^{-1} \mathbf{y}$

• Solution w lies in span $\{\mathbf{x}_i\}_{i=1...N}$, even if dim $(\phi) = \infty$.

• Predicted value \tilde{y} for test point $\tilde{\mathbf{x}}$:

$$\tilde{y} = \mathbf{y} (\mathbf{X}\mathbf{X}^{\top} + \lambda \mathbf{I})^{-1} \mathbf{X} \tilde{\mathbf{x}}$$

• Key ideas:

 Never perform the feature transformation X_i = (φ₁(x_i),..., φ₁(x_i)) explicitly. Instead, define kernel function that models scalar product between feature vectors:

$$k(\mathbf{x}_i,\mathbf{x}_j) = \mathbf{X}_i^\top \mathbf{X}_j = \langle \mathbf{X}_i, \mathbf{X}_j \rangle$$

• Use the kernel matrix $\mathbf{K} = \mathbf{X}\mathbf{X}^{ op} \in \mathbb{R}^{N imes N}, \; K_{ij} = k(\mathbf{x}_i, \mathbf{x}_j)$

• Kernel ridge regression

$$\mathbf{w} = \sum_{i} lpha_i \mathbf{x}_i$$
 $lpha = \left(\mathbf{X}\mathbf{X}^{ op} + \lambda \mathbf{I}
ight)^{-1} \mathbf{y}$

• Solution w lies in span $\{x_i\}_{i=1...N}$, even if dim $(\phi) = \infty$.

• Predicted value \tilde{y} for test point $\tilde{\mathbf{x}}$:

$$\tilde{y} = \mathbf{y} (\mathbf{X}\mathbf{X}^{\top} + \lambda \mathbf{I})^{-1} \mathbf{X} \tilde{\mathbf{x}}$$

• Key ideas:

 Never perform the feature transformation X_i = (φ₁(x_i),..., φ₁(x_i)) explicitly. Instead, define kernel function that models scalar product between feature vectors:

$$k(\mathbf{x}_i, \mathbf{x}_j) = \mathbf{X}_i^\top \mathbf{X}_j = \langle \mathbf{X}_i, \mathbf{X}_j \rangle$$

• Use the kernel matrix $\mathbf{K} = \mathbf{X}\mathbf{X}^{\top} \in \mathbb{R}^{N \times N}$, $K_{ij} = k(\mathbf{x}_i, \mathbf{x}_j)$

Kernel ridge regression

$$\mathbf{w} = \sum_{i} lpha_i \mathbf{x}_i$$
 $lpha = \left(\mathbf{X}\mathbf{X}^{ op} + \lambda \mathbf{I}
ight)^{-1} \mathbf{y}$

• Solution w lies in span $\{x_i\}_{i=1...N}$, even if dim $(\phi) = \infty$.

• Predicted value \tilde{y} for test point $\tilde{\mathbf{x}}$:

$$ilde{y} = \mathsf{y}(\mathsf{X}\mathsf{X}^ op + \lambda\mathsf{I})^{-1}\mathsf{X} ilde{\mathsf{x}}$$

Key ideas:

Never perform the feature transformation X_i = (φ₁(x_i),...,φ₁(x_i)) explicitly. Instead, define kernel function that models scalar product between feature vectors:

$$\begin{aligned} k(\mathbf{x}_i,\mathbf{x}_j) &= \mathbf{X}_i^\top \mathbf{X}_j = \langle \mathbf{X}_i,\mathbf{X}_j \rangle \\ \bullet \text{ Use the kernel matrix } \mathbf{K} &= \mathbf{X}\mathbf{X}^\top \in \mathbb{R}^{N \times N}, \ \mathcal{K}_{ij} = k(\mathbf{x}_i,\mathbf{x}_j) \end{aligned}$$

Kernel ridge regression

$$\mathbf{w} = \sum_i lpha_i \mathbf{x}_i$$
 $lpha = (\mathbf{K} + \lambda \mathbf{I})^{-1} \mathbf{y}$

• Predicted value \tilde{y} for test point $\tilde{\mathbf{x}}$:

$$\tilde{y} = \mathbf{y}(\mathbf{K} + \lambda \mathbf{I})^{-1} \kappa(\tilde{\mathbf{x}})$$

with $\kappa(\tilde{\mathbf{x}}) = [k(\mathbf{x}_1, \mathbf{x}), ..., k(\mathbf{x}_N, \mathbf{x})]^\top$

- Properties:
 - Useful when the feature space is huge or even infinite. Many relatively simple choices have huge or infinite feature spaces associated to them.
 - Kernel trick defines very powerful feature transformations and thus solve very nonlinear problems without having to carry out the feature transformation.
 - Computing full kernel matrix can be prohitively expensive. Many tricks can reduce the complexity, e.g. Nyström approximation.
 - Regularization is very important: Kernel methods are prone to overfitting.

Kernel ridge regression

$$\mathbf{w} = \sum_i lpha_i \mathbf{x}_i$$
 $lpha = (\mathbf{K} + \lambda \mathbf{I})^{-1} \mathbf{y}$

• Predicted value \tilde{y} for test point $\tilde{\mathbf{x}}$:

$$\tilde{y} = \mathbf{y}(\mathbf{K} + \lambda \mathbf{I})^{-1} \kappa(\tilde{\mathbf{x}})$$

with $\kappa(\tilde{\mathbf{x}}) = [k(\mathbf{x}_1, \mathbf{x}), ..., k(\mathbf{x}_N, \mathbf{x})]^{ op}$

- Properties:
 - Useful when the feature space is huge or even infinite. Many relatively simple choices have huge or infinite feature spaces associated to them.
 - Kernel trick defines very powerful feature transformations and thus solve very nonlinear problems without having to carry out the feature transformation.
 - Computing full kernel matrix can be prohitively expensive. Many tricks can reduce the complexity, e.g. Nyström approximation.
 - Regularization is very important: Kernel methods are prone to overfitting.

Kernel ridge regression

$$\mathbf{w} = \sum_i lpha_i \mathbf{x}_i$$
 $lpha = (\mathbf{K} + \lambda \mathbf{I})^{-1} \mathbf{y}$

• Predicted value \tilde{y} for test point $\tilde{\mathbf{x}}$:

$$\tilde{y} = \mathbf{y}(\mathbf{K} + \lambda \mathbf{I})^{-1} \kappa(\tilde{\mathbf{x}})$$

with $\kappa(\tilde{\mathbf{x}}) = [k(\mathbf{x}_1, \mathbf{x}), ..., k(\mathbf{x}_N, \mathbf{x})]^\top$

- Properties:
 - Useful when the feature space is huge or even infinite. Many relatively simple choices have huge or infinite feature spaces associated to them.
 - Kernel trick defines very powerful feature transformations and thus solve very nonlinear problems without having to carry out the feature transformation.
 - Computing full kernel matrix can be prohitively expensive. Many tricks can reduce the complexity, e.g. Nyström approximation.
 - Regularization is very important: Kernel methods are prone to overfitting.

Kernel ridge regression

$$\mathbf{w} = \sum_i lpha_i \mathbf{x}_i$$
 $lpha = (\mathbf{K} + \lambda \mathbf{I})^{-1} \mathbf{y}$

• Predicted value \tilde{y} for test point $\tilde{\mathbf{x}}$:

$$\tilde{y} = \mathbf{y}(\mathbf{K} + \lambda \mathbf{I})^{-1} \kappa(\tilde{\mathbf{x}})$$

with $\kappa(\mathbf{\tilde{x}}) = [k(\mathbf{x}_1, \mathbf{x}), ..., k(\mathbf{x}_N, \mathbf{x})]^{ op}$

- Properties:
 - Useful when the feature space is huge or even infinite. Many relatively simple choices have huge or infinite feature spaces associated to them.
 - Kernel trick defines very powerful feature transformations and thus solve very nonlinear problems without having to carry out the feature transformation.
 - Computing full kernel matrix can be prohitively expensive. Many tricks can reduce the complexity, e.g. Nyström approximation.
 - Regularization is very important: Kernel methods are prone to overfitting.

Kernel ridge regression

$$\mathbf{w} = \sum_i lpha_i \mathbf{x}_i$$
 $lpha = (\mathbf{K} + \lambda \mathbf{I})^{-1} \mathbf{y}$

• Predicted value \tilde{y} for test point $\tilde{\mathbf{x}}$:

$$\tilde{y} = \mathbf{y}(\mathbf{K} + \lambda \mathbf{I})^{-1} \kappa(\tilde{\mathbf{x}})$$

with $\kappa(\tilde{\mathbf{x}}) = [k(\mathbf{x}_1, \mathbf{x}), ..., k(\mathbf{x}_N, \mathbf{x})]^{ op}$

- Properties:
 - Useful when the feature space is huge or even infinite. Many relatively simple choices have huge or infinite feature spaces associated to them.
 - Kernel trick defines very powerful feature transformations and thus solve very nonlinear problems without having to carry out the feature transformation.
 - Computing full kernel matrix can be prohitively expensive. Many tricks can reduce the complexity, e.g. Nyström approximation.
 - Regularization is very important: Kernel methods are prone to overfitting.

Kernel ridge regression

$$\mathbf{w} = \sum_i lpha_i \mathbf{x}_i$$
 $lpha = (\mathbf{K} + \lambda \mathbf{I})^{-1} \mathbf{y}$

• Predicted value \tilde{y} for test point $\tilde{\mathbf{x}}$:

$$\tilde{y} = \mathbf{y}(\mathbf{K} + \lambda \mathbf{I})^{-1} \kappa(\tilde{\mathbf{x}})$$

with $\kappa(\tilde{\mathbf{x}}) = [k(\mathbf{x}_1, \mathbf{x}), ..., k(\mathbf{x}_N, \mathbf{x})]^\top$

- Properties:
 - Useful when the feature space is huge or even infinite. Many relatively simple choices have huge or infinite feature spaces associated to them.
 - Kernel trick defines very powerful feature transformations and thus solve very nonlinear problems without having to carry out the feature transformation.
 - Computing full kernel matrix can be prohitively expensive. Many tricks can reduce the complexity, e.g. Nyström approximation.
 - Regularization is very important: Kernel methods are prone to overfitting.

 A kernel function corresponds to an inner product in a feature space based on the feature mapping φ(·), without having to execute this feature mapping explicitly:

$$k(\mathbf{x}_1, \mathbf{x}_2) = \langle \phi(\mathbf{x}_1), \phi(\mathbf{x}_2) \rangle.$$

• For degree-d polynomials, the polynomial kernel is defined as

$$k(\mathbf{x}_1, \mathbf{x}_2) = (\mathbf{x}_1^\top \mathbf{x}_2 + c)^d$$

• For d = 2 its feature mapping is given by:

$$\phi_2(\mathbf{x}) = \left[x_1^2, ..., x_n^2, \sqrt{2}x_1x_2, ..., \sqrt{2}x_{n-1}x_n, \sqrt{2}cx_1, ..., \sqrt{2}cx_n, c\right]^{\top}$$

• When the input features are binary-valued (booleans), then the features correspond to logical conjunctions of input features¹.

¹Yoav Goldberg and Michael Elhadad (2008). splitSVM: Fast, Space-Efficient, non-Heuristic, Polynomial Kernel Computation for NLP Applications. Proc. ACL-08: HLT.

 A kernel function corresponds to an inner product in a feature space based on the feature mapping φ(·), without having to execute this feature mapping explicitly:

$$k(\mathbf{x}_1, \mathbf{x}_2) = \langle \phi(\mathbf{x}_1), \phi(\mathbf{x}_2) \rangle.$$

• For degree-d polynomials, the polynomial kernel is defined as

$$k(\mathbf{x}_1,\mathbf{x}_2) = (\mathbf{x}_1^\top \mathbf{x}_2 + c)^d$$

• For d = 2 its feature mapping is given by:

$$\phi_2(\mathbf{x}) = \left[x_1^2, \dots, x_n^2, \sqrt{2}x_1x_2, \dots, \sqrt{2}x_{n-1}x_n, \sqrt{2}cx_1, \dots, \sqrt{2}cx_n, c\right]^{\top}$$

• When the input features are binary-valued (booleans), then the features correspond to logical conjunctions of input features¹.

¹Yoav Goldberg and Michael Elhadad (2008). splitSVM: Fast, Space-Efficient, non-Heuristic, Polynomial Kernel Computation for NLP Applications. Proc. ACL-08: HLT.

 A kernel function corresponds to an inner product in a feature space based on the feature mapping φ(·), without having to execute this feature mapping explicitly:

$$k(\mathbf{x}_1, \mathbf{x}_2) = \langle \phi(\mathbf{x}_1), \phi(\mathbf{x}_2) \rangle.$$

• For degree-d polynomials, the polynomial kernel is defined as

$$k(\mathbf{x}_1,\mathbf{x}_2) = (\mathbf{x}_1^\top \mathbf{x}_2 + c)^d$$

• For d = 2 its feature mapping is given by:

$$\phi_2(\mathbf{x}) = \left[x_1^2, ..., x_n^2, \sqrt{2}x_1x_2, ..., \sqrt{2}x_{n-1}x_n, \sqrt{2c}x_1, ..., \sqrt{2c}x_n, c\right]^{\top}$$

• When the input features are binary-valued (booleans), then the features correspond to logical conjunctions of input features¹.

¹Yoav Goldberg and Michael Elhadad (2008). splitSVM: Fast, Space-Efficient, non-Heuristic, Polynomial Kernel Computation for NLP Applications. Proc. ACL-08: HLT.

 A kernel function corresponds to an inner product in a feature space based on the feature mapping φ(·), without having to execute this feature mapping explicitly:

$$k(\mathbf{x}_1, \mathbf{x}_2) = \langle \phi(\mathbf{x}_1), \phi(\mathbf{x}_2) \rangle.$$

• For degree-d polynomials, the polynomial kernel is defined as

$$k(\mathbf{x}_1,\mathbf{x}_2) = (\mathbf{x}_1^\top \mathbf{x}_2 + c)^d$$

• For d = 2 its feature mapping is given by:

$$\phi_2(\mathbf{x}) = \left[x_1^2, ..., x_n^2, \sqrt{2}x_1x_2, ..., \sqrt{2}x_{n-1}x_n, \sqrt{2c}x_1, ..., \sqrt{2c}x_n, c\right]^\top$$

• When the input features are binary-valued (booleans), then the features correspond to logical conjunctions of input features¹.

 $^{^1}$ Yoav Goldberg and Michael Elhadad (2008). splitSVM: Fast, Space-Efficient, 37/37 non-Heuristic, Polynomial Kernel Computation for NLP Applications. Proc. ACL-08: HLT.