
1/37

ML Intro 1: shallow stuff

F. Noé1

September 4, 2019

2/37

Regression

Supervised learning problem
Training set: N points (xi , yi), xi ∈ Rn, yi ∈ R, i = 1, ...N.
Aim: approximate the equation f : Rn 7→ R underlying the data with
a model ŷ(x; w) using parameters w ∈ Rn:

ŷi = ŷ(xi ; w)≈ f (xi)

Learning problem: Find w such that we minimize the residuals ∆:

ŵ = arg min
w
‖∆‖

defined by
∆i = yi − ŷ(xi ; w).

2/37

Regression

Supervised learning problem
Training set: N points (xi , yi), xi ∈ Rn, yi ∈ R, i = 1, ...N.
Aim: approximate the equation f : Rn 7→ R underlying the data with
a model ŷ(x; w) using parameters w ∈ Rn:

ŷi = ŷ(xi ; w)≈ f (xi)

Learning problem: Find w such that we minimize the residuals ∆:

ŵ = arg min
w
‖∆‖

defined by
∆i = yi − ŷ(xi ; w).

3/37

Regression

x1

y2

y3

y4

y1

x2 x3 x4

y(x)(=(w1 +(w2x

y4

y3

y2y1

Δ1 Δ2

Δ3
Δ4

w1
^

^

^

^

^

Example: Fit data with linear function ŷ(x) = w1 + w2x by finding the
parameters w = (w1,w2).

4/37

Regression
Specification of the learning problem

We define ‖∆‖ using the p-norm of ∆ ∈ Rn:

‖∆‖p =

(
n
∑
i=1
|∆i |p

)1/p

,

Choice of p determines the type of regression problem:

p Learning Problem Name
1 minw∑

n
i=1 |∆i | L1 (linear) optimization

2 minw∑
n
i=1 ∆2

i Least squares (Gauss ∼1800)
∞ minw maxi ∆i Tschebyscheff regression

5/37

Loss function
Least-squares regression

Most supervised machine learning problems can be formulated as the
problem to minimize a cost or loss function C(X, Y, θ).

X ∈ RN×n is the matrix of N input data points or features.
Y ∈ RN×l are the labels. A label has l dimensions.
Training data: (X,Y) = (xi ,yi)i=1,...,N

Here: call θ = w and consider univariate function regression – labels
can be written as a vector y ∈ RN .
We choose the mean squared error as loss function:

C(X, y,w) =
1
N

N
∑
i=1

(yi − ŷ(xi ; w))2

Learning problem: seek w such that the loss function is minimal:

ŵ = arg min
w

N
∑
i=1

[yi − ŷ(xi ; w)]2

The prefactor N−1 has no influence on ŵ.

5/37

Loss function
Least-squares regression

Most supervised machine learning problems can be formulated as the
problem to minimize a cost or loss function C(X, Y, θ).

X ∈ RN×n is the matrix of N input data points or features.
Y ∈ RN×l are the labels. A label has l dimensions.
Training data: (X,Y) = (xi ,yi)i=1,...,N

Here: call θ = w and consider univariate function regression – labels
can be written as a vector y ∈ RN .
We choose the mean squared error as loss function:

C(X, y,w) =
1
N

N
∑
i=1

(yi − ŷ(xi ; w))2

Learning problem: seek w such that the loss function is minimal:

ŵ = arg min
w

N
∑
i=1

[yi − ŷ(xi ; w)]2

The prefactor N−1 has no influence on ŵ.

5/37

Loss function
Least-squares regression

Most supervised machine learning problems can be formulated as the
problem to minimize a cost or loss function C(X, Y, θ).

X ∈ RN×n is the matrix of N input data points or features.
Y ∈ RN×l are the labels. A label has l dimensions.
Training data: (X,Y) = (xi ,yi)i=1,...,N

Here: call θ = w and consider univariate function regression – labels
can be written as a vector y ∈ RN .
We choose the mean squared error as loss function:

C(X, y,w) =
1
N

N
∑
i=1

(yi − ŷ(xi ; w))2

Learning problem: seek w such that the loss function is minimal:

ŵ = arg min
w

N
∑
i=1

[yi − ŷ(xi ; w)]2

The prefactor N−1 has no influence on ŵ.

6/37

Loss function
Least-squares regression

Equivalent statistical interpretation (Gauss): Assume that
observations yi are produced from ŷ(xi ; w) with an additive measurement
error that is independent, identically distributed (iid) from a Normal
distribution.

yi = ŷ(xi ; w) + ∆i ∆i ∼N (0, 1) =
1√
2π

e−∆2
i /2

We seek the maximum likelihood estimator ŵ = arg maxw L(X, Y,w)
with

L(X, Y,w) = P [y1, ...,yN |w] =
N
∏
i=1

1√
2π

e−
1
2 (yi−ŷ(xi ;w))2

This is equivalent with:
arg maxL(X, Y,w) = arg maxlogL(X, Y,w)

= arg max
N
∑
i=1
−1
2 (yi − ŷ(xi ; w))2− log

(√
2π

)
= arg min

N
∑
i=1

(yi − ŷ(xi ; w))2

6/37

Loss function
Least-squares regression

Equivalent statistical interpretation (Gauss): Assume that
observations yi are produced from ŷ(xi ; w) with an additive measurement
error that is independent, identically distributed (iid) from a Normal
distribution.

yi = ŷ(xi ; w) + ∆i ∆i ∼N (0, 1) =
1√
2π

e−∆2
i /2

We seek the maximum likelihood estimator ŵ = arg maxw L(X, Y,w)
with

L(X, Y,w) = P [y1, ...,yN |w] =
N
∏
i=1

1√
2π

e−
1
2 (yi−ŷ(xi ;w))2

This is equivalent with:
arg maxL(X, Y,w) = arg maxlogL(X, Y,w)

= arg max
N
∑
i=1
−1
2 (yi − ŷ(xi ; w))2− log

(√
2π

)
= arg min

N
∑
i=1

(yi − ŷ(xi ; w))2

6/37

Loss function
Least-squares regression

Equivalent statistical interpretation (Gauss): Assume that
observations yi are produced from ŷ(xi ; w) with an additive measurement
error that is independent, identically distributed (iid) from a Normal
distribution.

yi = ŷ(xi ; w) + ∆i ∆i ∼N (0, 1) =
1√
2π

e−∆2
i /2

We seek the maximum likelihood estimator ŵ = arg maxw L(X, Y,w)
with

L(X, Y,w) = P [y1, ...,yN |w] =
N
∏
i=1

1√
2π

e−
1
2 (yi−ŷ(xi ;w))2

This is equivalent with:
arg maxL(X, Y,w) = arg maxlogL(X, Y,w)

= arg max
N
∑
i=1
−1
2 (yi − ŷ(xi ; w))2− log

(√
2π

)
= arg min

N
∑
i=1

(yi − ŷ(xi ; w))2

7/37

Linear Least Squares Regression
In a linear regression problem, the model has the form:

ŷ(xi ; w) = x>i w =
n
∑
j=1

xijwj

Matrix notation: ŷ = Xw. Linear least squares (LLS) regression
problem:

min
w
‖y−Xw‖22

Featurization: Starting from some initial data ri ∈ Rd , we define n
basis functions or feature functions φj : Rd → R. Thus every
datapoint is featurized:

ri → xi = (φ1(ri), ...,φn(ri))> .

Our linear regression model then has the form

ŷ(ri ; w) = w1φ1(ri) + ...+ wnφn(ri)

with can be nonlinear in r.
Example: with φ = {1, r , r2} and w = (w1,w2,w3) we can fit a
quadratic function f (r) = w1 + w2r + w3r2.

7/37

Linear Least Squares Regression
In a linear regression problem, the model has the form:

ŷ(xi ; w) = x>i w =
n
∑
j=1

xijwj

Matrix notation: ŷ = Xw. Linear least squares (LLS) regression
problem:

min
w
‖y−Xw‖22

Featurization: Starting from some initial data ri ∈ Rd , we define n
basis functions or feature functions φj : Rd → R. Thus every
datapoint is featurized:

ri → xi = (φ1(ri), ...,φn(ri))> .

Our linear regression model then has the form

ŷ(ri ; w) = w1φ1(ri) + ...+ wnφn(ri)

with can be nonlinear in r.
Example: with φ = {1, r , r2} and w = (w1,w2,w3) we can fit a
quadratic function f (r) = w1 + w2r + w3r2.

7/37

Linear Least Squares Regression
In a linear regression problem, the model has the form:

ŷ(xi ; w) = x>i w =
n
∑
j=1

xijwj

Matrix notation: ŷ = Xw. Linear least squares (LLS) regression
problem:

min
w
‖y−Xw‖22

Featurization: Starting from some initial data ri ∈ Rd , we define n
basis functions or feature functions φj : Rd → R. Thus every
datapoint is featurized:

ri → xi = (φ1(ri), ...,φn(ri))> .

Our linear regression model then has the form

ŷ(ri ; w) = w1φ1(ri) + ...+ wnφn(ri)

with can be nonlinear in r.
Example: with φ = {1, r , r2} and w = (w1,w2,w3) we can fit a
quadratic function f (r) = w1 + w2r + w3r2.

8/37

Linear Least Squares Regression
Normal equations

The vector w ∈ Rn is the solution to min‖y−Xw‖2 exactly if it fulfills
the normal equations

X>Xw = X>y

The linear regression problem has a unique solution exactly if the rank of
X is maximal, i.e. rk(X) = n.
Direct inversion (numerically unstable and inefficient):

w = (X>X)−1X>y = X+y.

where X+ is the Moore-Penrose pseudoinverse of X.
Defining the covariance matrices

CXX = X>X
CXY = X>y

(here CXY ∈ Rn×1, but it is a matrix if we have multiple regression
targets) the formal solution can be written as:

w = C−1XXCXY .

8/37

Linear Least Squares Regression
Normal equations

The vector w ∈ Rn is the solution to min‖y−Xw‖2 exactly if it fulfills
the normal equations

X>Xw = X>y

The linear regression problem has a unique solution exactly if the rank of
X is maximal, i.e. rk(X) = n.
Direct inversion (numerically unstable and inefficient):

w = (X>X)−1X>y = X+y.

where X+ is the Moore-Penrose pseudoinverse of X.
Defining the covariance matrices

CXX = X>X
CXY = X>y

(here CXY ∈ Rn×1, but it is a matrix if we have multiple regression
targets) the formal solution can be written as:

w = C−1XXCXY .

9/37

Example: Markov models

Barnase	

Barstar	

Dissociated	

Early	

Intermediates	

Late	

Intermediates	
 Pre-­‐bound	
 Loosely	

bound	

Tightly	

bound	

6	
 .	
 105	
 s-­‐1	
 2	
 .	
 105	
 s-­‐1	

8	
 .	
 104	
 s-­‐1	

3	
 .	
 105	
 s-­‐1	

1	
 .	
 105	
 s-­‐1	

20	
 s-­‐1	

2	
 .	
 105	
 s-­‐1	

6	
 .	
 103	
 s-­‐1	

Misbound	

Plattner, Doerr, De Fabritiis, Noé, Nature Chemistry (2017)

10/37

Example: Markov models
Define feature functions φi (x) with i = 1, ...,n. Transform time
series:

Xij = φj(xi)

Yij = φj(xi+τ)

with feature matrices X,Y ∈ Rm×n and m = T − τ.
Solve regression problem:

min
K
‖Y−XK‖2

in order to parametrize the Markovian dynamical model K that
describes the time evolution:

Y≈ XK,

or in other words x>t+τ ≈ x>t K.

Solution has the form (MSMs, TICA, EDMD, ...):

K =
(
X>X

)−1
X>Y = C−1XXCXY

10/37

Example: Markov models
Define feature functions φi (x) with i = 1, ...,n. Transform time
series:

Xij = φj(xi)

Yij = φj(xi+τ)

with feature matrices X,Y ∈ Rm×n and m = T − τ.
Solve regression problem:

min
K
‖Y−XK‖2

in order to parametrize the Markovian dynamical model K that
describes the time evolution:

Y≈ XK,

or in other words x>t+τ ≈ x>t K.

Solution has the form (MSMs, TICA, EDMD, ...):

K =
(
X>X

)−1
X>Y = C−1XXCXY

10/37

Example: Markov models
Define feature functions φi (x) with i = 1, ...,n. Transform time
series:

Xij = φj(xi)

Yij = φj(xi+τ)

with feature matrices X,Y ∈ Rm×n and m = T − τ.
Solve regression problem:

min
K
‖Y−XK‖2

in order to parametrize the Markovian dynamical model K that
describes the time evolution:

Y≈ XK,

or in other words x>t+τ ≈ x>t K.

Solution has the form (MSMs, TICA, EDMD, ...):

K =
(
X>X

)−1
X>Y = C−1XXCXY

11/37

Markov state models
Partition molecular state space Ω into substates S1, ...,Sn. Define
characteristic functions:

φj(x) =

{
1 x ∈ Sj

0 else.

Correlation matrices CXX and CXY then evaluate to:

(CXX)ij =
m
∑
t=1

φi (xt)φj(xt) = δijNi (1)

(CXY)ij =
m
∑
t=1

φi (xt)φj(xt+τ) = Nij (2)

Ni : number of times the trajectory was in state i
Nij : number of transitions i → j in time interval τ.

Markov model K can be written as:

Kij = Nij/Ni

11/37

Markov state models
Partition molecular state space Ω into substates S1, ...,Sn. Define
characteristic functions:

φj(x) =

{
1 x ∈ Sj

0 else.

Correlation matrices CXX and CXY then evaluate to:

(CXX)ij =
m
∑
t=1

φi (xt)φj(xt) = δijNi (1)

(CXY)ij =
m
∑
t=1

φi (xt)φj(xt+τ) = Nij (2)

Ni : number of times the trajectory was in state i
Nij : number of transitions i → j in time interval τ.

Markov model K can be written as:

Kij = Nij/Ni

11/37

Markov state models
Partition molecular state space Ω into substates S1, ...,Sn. Define
characteristic functions:

φj(x) =

{
1 x ∈ Sj

0 else.

Correlation matrices CXX and CXY then evaluate to:

(CXX)ij =
m
∑
t=1

φi (xt)φj(xt) = δijNi (1)

(CXY)ij =
m
∑
t=1

φi (xt)φj(xt+τ) = Nij (2)

Ni : number of times the trajectory was in state i
Nij : number of transitions i → j in time interval τ.

Markov model K can be written as:

Kij = Nij/Ni

12/37

Markov state models
Three different optimization principles. Xij = φj(xi),Yij = φj(xi+τ).

1 Minimum regression error

K̂ = min
K
‖Y−XK‖2

2 Maximum likelihood
K̂ = max

K ∏
i ,j

kNij
ij

3 Variational approach of conformation dynamics: Parametrize
eigenvalue decomposition P = UΛU−1 and maximize eigenvalues by:

max
U
‖M(U)‖2F

with M =
(
U>CXXU

)− 1
2 U>CXYU

(
U>CXXU

)− 1
2 and

Λ = diag(M11, ...,Mnn)

For fixed featurization φ , all three principles result in:

K = C−1XXCXY

12/37

Markov state models
Three different optimization principles. Xij = φj(xi),Yij = φj(xi+τ).

1 Minimum regression error

K̂ = min
K
‖Y−XK‖2

2 Maximum likelihood
K̂ = max

K ∏
i ,j

kNij
ij

3 Variational approach of conformation dynamics: Parametrize
eigenvalue decomposition P = UΛU−1 and maximize eigenvalues by:

max
U
‖M(U)‖2F

with M =
(
U>CXXU

)− 1
2 U>CXYU

(
U>CXXU

)− 1
2 and

Λ = diag(M11, ...,Mnn)

For fixed featurization φ , all three principles result in:

K = C−1XXCXY

12/37

Markov state models
Three different optimization principles. Xij = φj(xi),Yij = φj(xi+τ).

1 Minimum regression error

K̂ = min
K
‖Y−XK‖2

2 Maximum likelihood
K̂ = max

K ∏
i ,j

kNij
ij

3 Variational approach of conformation dynamics: Parametrize
eigenvalue decomposition P = UΛU−1 and maximize eigenvalues by:

max
U
‖M(U)‖2F

with M =
(
U>CXXU

)− 1
2 U>CXYU

(
U>CXXU

)− 1
2 and

Λ = diag(M11, ...,Mnn)

For fixed featurization φ , all three principles result in:

K = C−1XXCXY

13/37

Markov state models with feature learning
For learned featurization φ :

1 Minimum regression error minK ‖Y−XK‖2 = 0 for trivial solution
(e.g., φ = 1)

2 Maximum likelihood maxK∏i ,j kNij
ij = 1 for trivial solution (assign all

configurations to one state).
3 Variational approach of conformation dynamics: Works →
VAMPnets.

e

ba d

xt

xt+τ

yt

yt+τ

P(τ)

Encoder

Encoder

Markov
model

VAMP
score

E

E

c

Mardt, Pasquali, Wu, Noé, Nature Commun. (2018)

14/37

Back to Linear Least Squares

In a linear regression problem, the model has the form:

ŷ(xi ; w) = x>i w =
n
∑
j=1

xijwj

Matrix notation: ŷ = Xw. Linear least squares (LLS) regression
problem:

min
w
‖y−Xw‖22

15/37

Validation and hyperparameter selection
Validation: LLS solution gives us the in-sample training error:

Ein = C(Xtrain, ytrain, ŵ) =
1

Nin

∥∥ytrain−Xtrainŵ
∥∥
2 ,

but we would like to validate how good the learnt model predicts an
independent data set, i.e. the out-of-sample validation or test
error Eout:

Eout = C(Xval, yval, ŵ) =
1

Nout

∥∥yval−Xvalŵ
∥∥
2 ,

Hyperparameter selection: Hyperparameters cannot not be
obtained from the learning algorithm (here LLS). For example, the
number of type of feature functions φ .
Example: The type of function φ used for training cannot be
determined by minimizing the training error. For example, the model

ŷ(x) =
N
∑
i=1

wi1xi (x) with 1xi (x) =

{
1 x = xi

0 x 6= xi

has zero training error, but predicts f (x) = 0 for every point x not in
the training set.

15/37

Validation and hyperparameter selection
Validation: LLS solution gives us the in-sample training error:

Ein = C(Xtrain, ytrain, ŵ) =
1

Nin

∥∥ytrain−Xtrainŵ
∥∥
2 ,

but we would like to validate how good the learnt model predicts an
independent data set, i.e. the out-of-sample validation or test
error Eout:

Eout = C(Xval, yval, ŵ) =
1

Nout

∥∥yval−Xvalŵ
∥∥
2 ,

Hyperparameter selection: Hyperparameters cannot not be
obtained from the learning algorithm (here LLS). For example, the
number of type of feature functions φ .
Example: The type of function φ used for training cannot be
determined by minimizing the training error. For example, the model

ŷ(x) =
N
∑
i=1

wi1xi (x) with 1xi (x) =

{
1 x = xi

0 x 6= xi

has zero training error, but predicts f (x) = 0 for every point x not in
the training set.

15/37

Validation and hyperparameter selection
Validation: LLS solution gives us the in-sample training error:

Ein = C(Xtrain, ytrain, ŵ) =
1

Nin

∥∥ytrain−Xtrainŵ
∥∥
2 ,

but we would like to validate how good the learnt model predicts an
independent data set, i.e. the out-of-sample validation or test
error Eout:

Eout = C(Xval, yval, ŵ) =
1

Nout

∥∥yval−Xvalŵ
∥∥
2 ,

Hyperparameter selection: Hyperparameters cannot not be
obtained from the learning algorithm (here LLS). For example, the
number of type of feature functions φ .
Example: The type of function φ used for training cannot be
determined by minimizing the training error. For example, the model

ŷ(x) =
N
∑
i=1

wi1xi (x) with 1xi (x) =

{
1 x = xi

0 x 6= xi

has zero training error, but predicts f (x) = 0 for every point x not in
the training set.

16/37

Underfitting vs. Overfitting

1

1From http://scikit-learn.org

17/37

Validation

Data-based validation is an effective way to solve the
hyperparameter selection problem:
Divide dataset into

training set (Xtrain,ytrain)
validation set (Xval,yval).

Learn parameters using the training set:

ŵ = arg min
w

∥∥ytrain−Xtrainw
∥∥
2

The resulting residual Ein = N−1in

∥∥ytrain−Xtrainŵ
∥∥
2 is the training

error or training loss.
The error of the learnt model in predicting data not used for the
training,

Eout = N−1out
∥∥yval−Xvalŵ

∥∥
2

is called the validation or error/loss. It provides a metric to
validate how well the model generalizes to new data
Choose hyperparameters by minimizing the validation error.
(careful: selecting hyperparameters and computing Eout requires a
third test set or a more advanced validation routine).

17/37

Validation

Data-based validation is an effective way to solve the
hyperparameter selection problem:
Divide dataset into

training set (Xtrain,ytrain)
validation set (Xval,yval).

Learn parameters using the training set:

ŵ = arg min
w

∥∥ytrain−Xtrainw
∥∥
2

The resulting residual Ein = N−1in

∥∥ytrain−Xtrainŵ
∥∥
2 is the training

error or training loss.
The error of the learnt model in predicting data not used for the
training,

Eout = N−1out
∥∥yval−Xvalŵ

∥∥
2

is called the validation or error/loss. It provides a metric to
validate how well the model generalizes to new data
Choose hyperparameters by minimizing the validation error.
(careful: selecting hyperparameters and computing Eout requires a
third test set or a more advanced validation routine).

17/37

Validation

Data-based validation is an effective way to solve the
hyperparameter selection problem:
Divide dataset into

training set (Xtrain,ytrain)
validation set (Xval,yval).

Learn parameters using the training set:

ŵ = arg min
w

∥∥ytrain−Xtrainw
∥∥
2

The resulting residual Ein = N−1in

∥∥ytrain−Xtrainŵ
∥∥
2 is the training

error or training loss.
The error of the learnt model in predicting data not used for the
training,

Eout = N−1out
∥∥yval−Xvalŵ

∥∥
2

is called the validation or error/loss. It provides a metric to
validate how well the model generalizes to new data
Choose hyperparameters by minimizing the validation error.
(careful: selecting hyperparameters and computing Eout requires a
third test set or a more advanced validation routine).

17/37

Validation

Data-based validation is an effective way to solve the
hyperparameter selection problem:
Divide dataset into

training set (Xtrain,ytrain)
validation set (Xval,yval).

Learn parameters using the training set:

ŵ = arg min
w

∥∥ytrain−Xtrainw
∥∥
2

The resulting residual Ein = N−1in

∥∥ytrain−Xtrainŵ
∥∥
2 is the training

error or training loss.
The error of the learnt model in predicting data not used for the
training,

Eout = N−1out
∥∥yval−Xvalŵ

∥∥
2

is called the validation or error/loss. It provides a metric to
validate how well the model generalizes to new data
Choose hyperparameters by minimizing the validation error.
(careful: selecting hyperparameters and computing Eout requires a
third test set or a more advanced validation routine).

18/37

Underfitting vs. Overfitting

19/37

Cross-validation

Pathological division where rare events / outliers are included only in
training or validation set can lead to undesirable behavior.
Methods to “shuffle” training and test data to reduce the bias from
the data splitting.
Cross-validation is a simple and widely used approach:

1 Split the data into k nonoverlapping folds (Xi ,yi). The
complementary sets are (X−i ,y−i) with sizes N−i .

2 For each fold i :
1 Train learning algorithm on training data:

ŵi = argmin
w

∥∥y−i −X−iw
∥∥
2

2 Compute validation error:

E i
out =

1
N−i

∥∥yi −Xi ŵi∥∥
2

3 Cross-validation error is then given by:

Eout =
1
k

k
∑
i=1

Ek
out.

19/37

Cross-validation

Pathological division where rare events / outliers are included only in
training or validation set can lead to undesirable behavior.
Methods to “shuffle” training and test data to reduce the bias from
the data splitting.
Cross-validation is a simple and widely used approach:

1 Split the data into k nonoverlapping folds (Xi ,yi). The
complementary sets are (X−i ,y−i) with sizes N−i .

2 For each fold i :
1 Train learning algorithm on training data:

ŵi = argmin
w

∥∥y−i −X−iw
∥∥
2

2 Compute validation error:

E i
out =

1
N−i

∥∥yi −Xi ŵi∥∥
2

3 Cross-validation error is then given by:

Eout =
1
k

k
∑
i=1

Ek
out.

19/37

Cross-validation

Pathological division where rare events / outliers are included only in
training or validation set can lead to undesirable behavior.
Methods to “shuffle” training and test data to reduce the bias from
the data splitting.
Cross-validation is a simple and widely used approach:

1 Split the data into k nonoverlapping folds (Xi ,yi). The
complementary sets are (X−i ,y−i) with sizes N−i .

2 For each fold i :
1 Train learning algorithm on training data:

ŵi = argmin
w

∥∥y−i −X−iw
∥∥
2

2 Compute validation error:

E i
out =

1
N−i

∥∥yi −Xi ŵi∥∥
2

3 Cross-validation error is then given by:

Eout =
1
k

k
∑
i=1

Ek
out.

19/37

Cross-validation

Pathological division where rare events / outliers are included only in
training or validation set can lead to undesirable behavior.
Methods to “shuffle” training and test data to reduce the bias from
the data splitting.
Cross-validation is a simple and widely used approach:

1 Split the data into k nonoverlapping folds (Xi ,yi). The
complementary sets are (X−i ,y−i) with sizes N−i .

2 For each fold i :
1 Train learning algorithm on training data:

ŵi = argmin
w

∥∥y−i −X−iw
∥∥
2

2 Compute validation error:

E i
out =

1
N−i

∥∥yi −Xi ŵi∥∥
2

3 Cross-validation error is then given by:

Eout =
1
k

k
∑
i=1

Ek
out.

20/37

Cross-Validation

1

1From https://en.wikipedia.org/wiki/Cross-validation_(statistics)

21/37

Statistical Estimator Theory
Example: Regression

We now explicitly distinguish between the true function f that is sampled
by a given set of observations (xi ,yi):

yi = f (xi) + ∆i ∆i ∼N (0, 1)

and the estimator ŷ(x; w).

Learning problem
Learn function f (x) by selecting function ŷ(x) from a hypothesis set H ,
which (in some sense) performs a best approximation ŷ ≈ f .

Prediction problem
How can the learning problem be meaningfully defined if f (x) can, in
principle, take any value on unobserved inputs?

Answer: a meaningful definition of learning is that the fitted model will
perform approximately as well in predicting unseen data as it did in
approximating training data (Ein ≈ Eout).

21/37

Statistical Estimator Theory
Example: Regression

We now explicitly distinguish between the true function f that is sampled
by a given set of observations (xi ,yi):

yi = f (xi) + ∆i ∆i ∼N (0, 1)

and the estimator ŷ(x; w).

Learning problem
Learn function f (x) by selecting function ŷ(x) from a hypothesis set H ,
which (in some sense) performs a best approximation ŷ ≈ f .

Prediction problem
How can the learning problem be meaningfully defined if f (x) can, in
principle, take any value on unobserved inputs?

Answer: a meaningful definition of learning is that the fitted model will
perform approximately as well in predicting unseen data as it did in
approximating training data (Ein ≈ Eout).

21/37

Statistical Estimator Theory
Example: Regression

We now explicitly distinguish between the true function f that is sampled
by a given set of observations (xi ,yi):

yi = f (xi) + ∆i ∆i ∼N (0, 1)

and the estimator ŷ(x; w).

Learning problem
Learn function f (x) by selecting function ŷ(x) from a hypothesis set H ,
which (in some sense) performs a best approximation ŷ ≈ f .

Prediction problem
How can the learning problem be meaningfully defined if f (x) can, in
principle, take any value on unobserved inputs?

Answer: a meaningful definition of learning is that the fitted model will
perform approximately as well in predicting unseen data as it did in
approximating training data (Ein ≈ Eout).

22/37

Statistical Learning Theory
Ein, Eout, Bias and Variance for a given Model trained for different N

1

We assume that the true function f is sufficiently complicated so that we
cannot learn it exactly, i.e.

N
∑
i=1

(f (xi)− ŷ(xi ; w))2 > 0 ∀w

Even in the limit N → ∞ we maintain an asymptotic error Ein = Eout,
called the model bias → property of the function class H .

1From Mehta et al, arXiv:1803.08823v1

23/37

Statistical Learning Theory
Ein, Eout, Bias and Variance for a given Model as a Function of N

1

Typical behavior:
Ein increases with N towards the model bias.
Eout decreases with increasing N as more cases are observed and
thus covered by the model.
The generalization gap Eout−Ein (due to overfitting) decreases
with increasing N.

1From Mehta et al, arXiv:1803.08823v1

24/37

Statistical Learning Theory
Ein, Eout, Bias and Variance for a given Model as a Function of N

1

Insights:
It is not sufficient to minimize Ein, as Eout may be large. →
regularization.
As the true bias is not practically available, one minimizes Eout.

1From Mehta et al, arXiv:1803.08823v1

25/37

Statistical Learning Theory
Bias-variance tradeoff

1

Bias-variance tradeoff: For fixed N, the more/less expressive the
model, the larger/smaller the fluctuations, respectively.
To minimize Eout, it is sometimes better to use a more-biased model
with small variance than a less-biased model with large variance.
Asymptotically, i.e. with increasing training set size N, complex
models will perform better than simpler models as they have reduced
bias.
Optimal model selection depends on the amount of training data N.

1From Mehta et al, arXiv:1803.08823v1

25/37

Statistical Learning Theory
Bias-variance tradeoff

1

Bias-variance tradeoff: For fixed N, the more/less expressive the
model, the larger/smaller the fluctuations, respectively.
To minimize Eout, it is sometimes better to use a more-biased model
with small variance than a less-biased model with large variance.
Asymptotically, i.e. with increasing training set size N, complex
models will perform better than simpler models as they have reduced
bias.
Optimal model selection depends on the amount of training data N.

1From Mehta et al, arXiv:1803.08823v1

25/37

Statistical Learning Theory
Bias-variance tradeoff

1

Bias-variance tradeoff: For fixed N, the more/less expressive the
model, the larger/smaller the fluctuations, respectively.
To minimize Eout, it is sometimes better to use a more-biased model
with small variance than a less-biased model with large variance.
Asymptotically, i.e. with increasing training set size N, complex
models will perform better than simpler models as they have reduced
bias.
Optimal model selection depends on the amount of training data N.

1From Mehta et al, arXiv:1803.08823v1

25/37

Statistical Learning Theory
Bias-variance tradeoff

1

Bias-variance tradeoff: For fixed N, the more/less expressive the
model, the larger/smaller the fluctuations, respectively.
To minimize Eout, it is sometimes better to use a more-biased model
with small variance than a less-biased model with large variance.
Asymptotically, i.e. with increasing training set size N, complex
models will perform better than simpler models as they have reduced
bias.
Optimal model selection depends on the amount of training data N.

1From Mehta et al, arXiv:1803.08823v1

26/37

Bias-Variance decomposition
Task: for a given estimator, e.g. LLS, model the behavior of the
out-of-sample MSE without knowing the true function f :

Eout = C(Xval, yval, ŷval) =
∥∥yval− ŷval∥∥2

2 ,

where Xval = (xval
1 , ...,xval

N)> are the features of the validation set, yval are
the corresponding observations and ŷval are the predictions of the
estimator.
Idea: Compute expected Eout of given estimator ŷ on all data
y = f (x) + ε drawn from the true model f (x) with following approach:

1 Fix observation points xi
2 Repeat:

1 Run experiment, observe training data (X,ytrain) = (xi ,y train
i)i=1,...N

and train the estimator ŷ(x).
2 Repeat experiment, observe validation data

(X,yval) = (xi ,yval
i)i=1,...N .

3 Compute expectation E over observations ytrain and yval by averaging
over noise realizations.

E
[
C(X, yval, ŷval)

]
= E

[
N
∑
i=1

(
yval

i (xi)− ŷ(xi)
)2]

26/37

Bias-Variance decomposition
Task: for a given estimator, e.g. LLS, model the behavior of the
out-of-sample MSE without knowing the true function f :

Eout = C(Xval, yval, ŷval) =
∥∥yval− ŷval∥∥2

2 ,

where Xval = (xval
1 , ...,xval

N)> are the features of the validation set, yval are
the corresponding observations and ŷval are the predictions of the
estimator.
Idea: Compute expected Eout of given estimator ŷ on all data
y = f (x) + ε drawn from the true model f (x) with following approach:

1 Fix observation points xi
2 Repeat:

1 Run experiment, observe training data (X,ytrain) = (xi ,y train
i)i=1,...N

and train the estimator ŷ(x).
2 Repeat experiment, observe validation data

(X,yval) = (xi ,yval
i)i=1,...N .

3 Compute expectation E over observations ytrain and yval by averaging
over noise realizations.

E
[
C(X, yval, ŷval)

]
= E

[
N
∑
i=1

(
yval

i (xi)− ŷ(xi)
)2]

26/37

Bias-Variance decomposition
Task: for a given estimator, e.g. LLS, model the behavior of the
out-of-sample MSE without knowing the true function f :

Eout = C(Xval, yval, ŷval) =
∥∥yval− ŷval∥∥2

2 ,

where Xval = (xval
1 , ...,xval

N)> are the features of the validation set, yval are
the corresponding observations and ŷval are the predictions of the
estimator.
Idea: Compute expected Eout of given estimator ŷ on all data
y = f (x) + ε drawn from the true model f (x) with following approach:

1 Fix observation points xi
2 Repeat:

1 Run experiment, observe training data (X,ytrain) = (xi ,y train
i)i=1,...N

and train the estimator ŷ(x).
2 Repeat experiment, observe validation data

(X,yval) = (xi ,yval
i)i=1,...N .

3 Compute expectation E over observations ytrain and yval by averaging
over noise realizations.

E
[
C(X, yval, ŷval)

]
= E

[
N
∑
i=1

(
yval

i (xi)− ŷ(xi)
)2]

27/37

Bias-Variance decomposition

Expected out-of-sample error, i.e. the expected loss of our model can
be decomposed as:

Eout = E

[
N
∑
i=1

(
yval

i (xi)− ŷ(xi)
)2]

= Bias2 + Var + Noise.

with ȳi = E [ŷ(xi)] we have:

Noise =
N
∑
i=1

E
[(

yval
i (xi)− f (xi)

)2]
=

N
∑
i=1

E
[
ε
2]= σ

2
ε

Var =
N
∑
i=1

E
[
(ŷ(xi)− ȳi)

2
]

Bias2 =
N
∑
i=1

(f (xi)− ȳi)
2

27/37

Bias-Variance decomposition

Expected out-of-sample error, i.e. the expected loss of our model can
be decomposed as:

Eout = E

[
N
∑
i=1

(
yval

i (xi)− ŷ(xi)
)2]

= Bias2 + Var + Noise.

with ȳi = E [ŷ(xi)] we have:

Noise =
N
∑
i=1

E
[(

yval
i (xi)− f (xi)

)2]
=

N
∑
i=1

E
[
ε
2]= σ

2
ε

Var =
N
∑
i=1

E
[
(ŷ(xi)− ȳi)

2
]

Bias2 =
N
∑
i=1

(f (xi)− ȳi)
2

28/37

Bias-Variance decomposition

Combining these expressions, we see that the expected out-of-sample
error, i.e. the expected loss of our model can be decomposed as:

Eout = E

[
N
∑
i=1

(
yval

i (xi)− ŷ(xi)
)2]

= Bias2 + Var + Noise.

The optimal model minimizes the expected loss by balancing bias
and variance.
A model is underfitting the data if bias is too high.
A model is overfitting the data if variance is too high.
Since data is often limited, a simple model with a finite bias (i.e. an
asymptotic error) may be preferable to a complex model with a high
variance.
Optimal choice depends on the amount of data available. The more
data, the more complex models are optimal.

28/37

Bias-Variance decomposition

Combining these expressions, we see that the expected out-of-sample
error, i.e. the expected loss of our model can be decomposed as:

Eout = E

[
N
∑
i=1

(
yval

i (xi)− ŷ(xi)
)2]

= Bias2 + Var + Noise.

The optimal model minimizes the expected loss by balancing bias
and variance.
A model is underfitting the data if bias is too high.
A model is overfitting the data if variance is too high.
Since data is often limited, a simple model with a finite bias (i.e. an
asymptotic error) may be preferable to a complex model with a high
variance.
Optimal choice depends on the amount of data available. The more
data, the more complex models are optimal.

28/37

Bias-Variance decomposition

Combining these expressions, we see that the expected out-of-sample
error, i.e. the expected loss of our model can be decomposed as:

Eout = E

[
N
∑
i=1

(
yval

i (xi)− ŷ(xi)
)2]

= Bias2 + Var + Noise.

The optimal model minimizes the expected loss by balancing bias
and variance.
A model is underfitting the data if bias is too high.
A model is overfitting the data if variance is too high.
Since data is often limited, a simple model with a finite bias (i.e. an
asymptotic error) may be preferable to a complex model with a high
variance.
Optimal choice depends on the amount of data available. The more
data, the more complex models are optimal.

28/37

Bias-Variance decomposition

Combining these expressions, we see that the expected out-of-sample
error, i.e. the expected loss of our model can be decomposed as:

Eout = E

[
N
∑
i=1

(
yval

i (xi)− ŷ(xi)
)2]

= Bias2 + Var + Noise.

The optimal model minimizes the expected loss by balancing bias
and variance.
A model is underfitting the data if bias is too high.
A model is overfitting the data if variance is too high.
Since data is often limited, a simple model with a finite bias (i.e. an
asymptotic error) may be preferable to a complex model with a high
variance.
Optimal choice depends on the amount of data available. The more
data, the more complex models are optimal.

29/37

Statistical Learning Theory
Ein and Eout as a function of model complexity

Model complexity is a property of the function class H . For
example, model complexity increases with the number of free
parameters (e.g. higher-order polynomials are more complex than
the linear model).
Behavior for fixed N:

Model complexity

Er
ro

r

Mean prediction error

Bias2 Variance

Noise

29/37

Statistical Learning Theory
Ein and Eout as a function of model complexity

Model complexity is a property of the function class H . For
example, model complexity increases with the number of free
parameters (e.g. higher-order polynomials are more complex than
the linear model).
Behavior for fixed N:

Model complexity

Er
ro

r

Mean prediction error

Bias2 Variance

Noise

30/37

Practical workflow

For complex estimators (e.g. neural networks), exhaustive
hyperparameter search is unfeasible.
Typical approach:

31/37

Regularization
Regularized LLS: add penalty term on w with suitable norm:

min‖y−Xw‖22 + λ ‖w‖ .

Purpose:
Statistical: reduce expressiveness of model by reducing fluctuations
of w. Allows to control the bias-variance tradeoff via λ .
Numerical: regularized solutions often numerically better behaved.
Structural: e.g., induce sparsity in solution.

Regularization method depends on penalty type:
Regularization type Penalty term Prior Solution methods

Tikhonov regularization
Ridge regression

‖w‖22 Normal Closed form

Lasso regression ‖w‖1 Laplace Proximal gradient descent
l0 regularization ‖w‖0 - Forward selection,

Backward elimination
Elastic nets (1−α)‖w‖1 +

α ‖w‖2

- Proximal gradient descent

31/37

Regularization
Regularized LLS: add penalty term on w with suitable norm:

min‖y−Xw‖22 + λ ‖w‖ .

Purpose:
Statistical: reduce expressiveness of model by reducing fluctuations
of w. Allows to control the bias-variance tradeoff via λ .
Numerical: regularized solutions often numerically better behaved.
Structural: e.g., induce sparsity in solution.

Regularization method depends on penalty type:
Regularization type Penalty term Prior Solution methods

Tikhonov regularization
Ridge regression

‖w‖22 Normal Closed form

Lasso regression ‖w‖1 Laplace Proximal gradient descent
l0 regularization ‖w‖0 - Forward selection,

Backward elimination
Elastic nets (1−α)‖w‖1 +

α ‖w‖2

- Proximal gradient descent

31/37

Regularization
Regularized LLS: add penalty term on w with suitable norm:

min‖y−Xw‖22 + λ ‖w‖ .

Purpose:
Statistical: reduce expressiveness of model by reducing fluctuations
of w. Allows to control the bias-variance tradeoff via λ .
Numerical: regularized solutions often numerically better behaved.
Structural: e.g., induce sparsity in solution.

Regularization method depends on penalty type:
Regularization type Penalty term Prior Solution methods

Tikhonov regularization
Ridge regression

‖w‖22 Normal Closed form

Lasso regression ‖w‖1 Laplace Proximal gradient descent
l0 regularization ‖w‖0 - Forward selection,

Backward elimination
Elastic nets (1−α)‖w‖1 +

α ‖w‖2

- Proximal gradient descent

32/37

L2 (Ridge) Regularization
We would like to work in high-dimensional feature spaces

ri → xi = (φ1(ri), ...,φn(ri))> .

However, this leads to danger of overfitting. To avoid overfitting, we
penalize the norm of the solution:

min‖y−Xw‖22 + λ ‖w‖22 ,

where λ is a hyperparameter.
Taking derivatives and setting them to zero yields the solution:

w =
(

λ I+X>X
)−1

X>y

= C̃−1XXCXY

This is equal to the direct solution of the normal equations, only that we
use the so-called shrinkage estimator for the covariance matrix:

C̃XX = λ I+X>X

32/37

L2 (Ridge) Regularization
We would like to work in high-dimensional feature spaces

ri → xi = (φ1(ri), ...,φn(ri))> .

However, this leads to danger of overfitting. To avoid overfitting, we
penalize the norm of the solution:

min‖y−Xw‖22 + λ ‖w‖22 ,

where λ is a hyperparameter.
Taking derivatives and setting them to zero yields the solution:

w =
(

λ I+X>X
)−1

X>y

= C̃−1XXCXY

This is equal to the direct solution of the normal equations, only that we
use the so-called shrinkage estimator for the covariance matrix:

C̃XX = λ I+X>X

32/37

L2 (Ridge) Regularization
We would like to work in high-dimensional feature spaces

ri → xi = (φ1(ri), ...,φn(ri))> .

However, this leads to danger of overfitting. To avoid overfitting, we
penalize the norm of the solution:

min‖y−Xw‖22 + λ ‖w‖22 ,

where λ is a hyperparameter.
Taking derivatives and setting them to zero yields the solution:

w =
(

λ I+X>X
)−1

X>y

= C̃−1XXCXY

This is equal to the direct solution of the normal equations, only that we
use the so-called shrinkage estimator for the covariance matrix:

C̃XX = λ I+X>X

32/37

L2 (Ridge) Regularization
We would like to work in high-dimensional feature spaces

ri → xi = (φ1(ri), ...,φn(ri))> .

However, this leads to danger of overfitting. To avoid overfitting, we
penalize the norm of the solution:

min‖y−Xw‖22 + λ ‖w‖22 ,

where λ is a hyperparameter.
Taking derivatives and setting them to zero yields the solution:

w =
(

λ I+X>X
)−1

X>y

= C̃−1XXCXY

This is equal to the direct solution of the normal equations, only that we
use the so-called shrinkage estimator for the covariance matrix:

C̃XX = λ I+X>X

33/37

Sparsity-inducing Regularization

L0 regularization

min‖y−Xw‖22 + λ ‖w‖0 ,

Most extreme way to enforce sparsity. Magnitude of the coefficients
of w does not matter, we only want to minimize the number of
non-zero entries. This regularization function is not commonly used
in practice, as it is very difficult to solve.
L1 regularization, e.g. using the least absolute selection and
shrinkage (LASSO) method.

min‖y−Xw‖22 + λ ‖w‖1 ,

Elastic net

min‖y−Xw‖22 + λ

[
(1−α)‖w‖1 + α ‖w‖22

]
,

Where α switches between the two extremes α = 0 (L1
regularization) and α = 1 (Ridge regression).

33/37

Sparsity-inducing Regularization

L0 regularization

min‖y−Xw‖22 + λ ‖w‖0 ,

Most extreme way to enforce sparsity. Magnitude of the coefficients
of w does not matter, we only want to minimize the number of
non-zero entries. This regularization function is not commonly used
in practice, as it is very difficult to solve.
L1 regularization, e.g. using the least absolute selection and
shrinkage (LASSO) method.

min‖y−Xw‖22 + λ ‖w‖1 ,

Elastic net

min‖y−Xw‖22 + λ

[
(1−α)‖w‖1 + α ‖w‖22

]
,

Where α switches between the two extremes α = 0 (L1
regularization) and α = 1 (Ridge regression).

33/37

Sparsity-inducing Regularization

L0 regularization

min‖y−Xw‖22 + λ ‖w‖0 ,

Most extreme way to enforce sparsity. Magnitude of the coefficients
of w does not matter, we only want to minimize the number of
non-zero entries. This regularization function is not commonly used
in practice, as it is very difficult to solve.
L1 regularization, e.g. using the least absolute selection and
shrinkage (LASSO) method.

min‖y−Xw‖22 + λ ‖w‖1 ,

Elastic net

min‖y−Xw‖22 + λ

[
(1−α)‖w‖1 + α ‖w‖22

]
,

Where α switches between the two extremes α = 0 (L1
regularization) and α = 1 (Ridge regression).

34/37

Kernel Regression

Replace each data point with feature vector: xi → φ(xi).
dim(φ) can be much higher than dim(xi) (even ∞).

→ How do we compute or invert X>X ?
→ How do we avoid overfitting?

Kernel trick: allows us to work with either X>X or XX>, whichever
is more convenient (lower-dimensional).
Kernel ridge regression can be written as:

w =
(

λ I+X>X
)−1

X>y = X>
(
XX>+ λ I

)−1
y,

or, equivalently:

w = ∑
i

αixi

α =
(
XX>+ λ I

)−1
y

34/37

Kernel Regression

Replace each data point with feature vector: xi → φ(xi).
dim(φ) can be much higher than dim(xi) (even ∞).

→ How do we compute or invert X>X ?
→ How do we avoid overfitting?

Kernel trick: allows us to work with either X>X or XX>, whichever
is more convenient (lower-dimensional).
Kernel ridge regression can be written as:

w =
(

λ I+X>X
)−1

X>y = X>
(
XX>+ λ I

)−1
y,

or, equivalently:

w = ∑
i

αixi

α =
(
XX>+ λ I

)−1
y

34/37

Kernel Regression

Replace each data point with feature vector: xi → φ(xi).
dim(φ) can be much higher than dim(xi) (even ∞).

→ How do we compute or invert X>X ?
→ How do we avoid overfitting?

Kernel trick: allows us to work with either X>X or XX>, whichever
is more convenient (lower-dimensional).
Kernel ridge regression can be written as:

w =
(

λ I+X>X
)−1

X>y = X>
(
XX>+ λ I

)−1
y,

or, equivalently:

w = ∑
i

αixi

α =
(
XX>+ λ I

)−1
y

34/37

Kernel Regression

Replace each data point with feature vector: xi → φ(xi).
dim(φ) can be much higher than dim(xi) (even ∞).

→ How do we compute or invert X>X ?
→ How do we avoid overfitting?

Kernel trick: allows us to work with either X>X or XX>, whichever
is more convenient (lower-dimensional).
Kernel ridge regression can be written as:

w =
(

λ I+X>X
)−1

X>y = X>
(
XX>+ λ I

)−1
y,

or, equivalently:

w = ∑
i

αixi

α =
(
XX>+ λ I

)−1
y

35/37

Kernel Regression

Kernel ridge regression

w = ∑
i

αixi

α =
(
XX>+ λ I

)−1
y

Solution w lies in span{xi}i=1...N , even if dim(φ) = ∞.
Predicted value ỹ for test point x̃:

ỹ = y(XX>+ λ I)−1Xx̃

Key ideas:
Never perform the feature transformation Xi = (φ1(xi), ...,φ1(xi))
explicitly. Instead, define kernel function that models scalar product
between feature vectors:

k(xi ,xj) = X>i Xj = 〈Xi , Xj 〉

Use the kernel matrix K= XX> ∈ RN×N , Kij = k(xi ,xj)

35/37

Kernel Regression

Kernel ridge regression

w = ∑
i

αixi

α =
(
XX>+ λ I

)−1
y

Solution w lies in span{xi}i=1...N , even if dim(φ) = ∞.
Predicted value ỹ for test point x̃:

ỹ = y(XX>+ λ I)−1Xx̃

Key ideas:
Never perform the feature transformation Xi = (φ1(xi), ...,φ1(xi))
explicitly. Instead, define kernel function that models scalar product
between feature vectors:

k(xi ,xj) = X>i Xj = 〈Xi , Xj 〉

Use the kernel matrix K= XX> ∈ RN×N , Kij = k(xi ,xj)

35/37

Kernel Regression

Kernel ridge regression

w = ∑
i

αixi

α =
(
XX>+ λ I

)−1
y

Solution w lies in span{xi}i=1...N , even if dim(φ) = ∞.
Predicted value ỹ for test point x̃:

ỹ = y(XX>+ λ I)−1Xx̃

Key ideas:
Never perform the feature transformation Xi = (φ1(xi), ...,φ1(xi))
explicitly. Instead, define kernel function that models scalar product
between feature vectors:

k(xi ,xj) = X>i Xj = 〈Xi , Xj 〉

Use the kernel matrix K= XX> ∈ RN×N , Kij = k(xi ,xj)

36/37

Kernel Regression
Kernel ridge regression

w = ∑
i

αixi

α = (K+ λ I)−1 y

Predicted value ỹ for test point x̃:

ỹ = y(K+ λ I)−1κ(x̃)

with κ(x̃) = [k(x1,x), ...,k(xN ,x)]>

Properties:
Useful when the feature space is huge or even infinite. Many
relatively simple choices have huge or infinite feature spaces
associated to them.
Kernel trick defines very powerful feature transformations and thus
solve very nonlinear problems without having to carry out the feature
transformation.
Computing full kernel matrix can be prohitively expensive. Many
tricks can reduce the complexity, e.g. Nyström approximation.
Regularization is very important: Kernel methods are prone to
overfitting.

36/37

Kernel Regression
Kernel ridge regression

w = ∑
i

αixi

α = (K+ λ I)−1 y

Predicted value ỹ for test point x̃:

ỹ = y(K+ λ I)−1κ(x̃)

with κ(x̃) = [k(x1,x), ...,k(xN ,x)]>

Properties:
Useful when the feature space is huge or even infinite. Many
relatively simple choices have huge or infinite feature spaces
associated to them.
Kernel trick defines very powerful feature transformations and thus
solve very nonlinear problems without having to carry out the feature
transformation.
Computing full kernel matrix can be prohitively expensive. Many
tricks can reduce the complexity, e.g. Nyström approximation.
Regularization is very important: Kernel methods are prone to
overfitting.

36/37

Kernel Regression
Kernel ridge regression

w = ∑
i

αixi

α = (K+ λ I)−1 y

Predicted value ỹ for test point x̃:

ỹ = y(K+ λ I)−1κ(x̃)

with κ(x̃) = [k(x1,x), ...,k(xN ,x)]>

Properties:
Useful when the feature space is huge or even infinite. Many
relatively simple choices have huge or infinite feature spaces
associated to them.
Kernel trick defines very powerful feature transformations and thus
solve very nonlinear problems without having to carry out the feature
transformation.
Computing full kernel matrix can be prohitively expensive. Many
tricks can reduce the complexity, e.g. Nyström approximation.
Regularization is very important: Kernel methods are prone to
overfitting.

36/37

Kernel Regression
Kernel ridge regression

w = ∑
i

αixi

α = (K+ λ I)−1 y

Predicted value ỹ for test point x̃:

ỹ = y(K+ λ I)−1κ(x̃)

with κ(x̃) = [k(x1,x), ...,k(xN ,x)]>

Properties:
Useful when the feature space is huge or even infinite. Many
relatively simple choices have huge or infinite feature spaces
associated to them.
Kernel trick defines very powerful feature transformations and thus
solve very nonlinear problems without having to carry out the feature
transformation.
Computing full kernel matrix can be prohitively expensive. Many
tricks can reduce the complexity, e.g. Nyström approximation.
Regularization is very important: Kernel methods are prone to
overfitting.

36/37

Kernel Regression
Kernel ridge regression

w = ∑
i

αixi

α = (K+ λ I)−1 y

Predicted value ỹ for test point x̃:

ỹ = y(K+ λ I)−1κ(x̃)

with κ(x̃) = [k(x1,x), ...,k(xN ,x)]>

Properties:
Useful when the feature space is huge or even infinite. Many
relatively simple choices have huge or infinite feature spaces
associated to them.
Kernel trick defines very powerful feature transformations and thus
solve very nonlinear problems without having to carry out the feature
transformation.
Computing full kernel matrix can be prohitively expensive. Many
tricks can reduce the complexity, e.g. Nyström approximation.
Regularization is very important: Kernel methods are prone to
overfitting.

36/37

Kernel Regression
Kernel ridge regression

w = ∑
i

αixi

α = (K+ λ I)−1 y

Predicted value ỹ for test point x̃:

ỹ = y(K+ λ I)−1κ(x̃)

with κ(x̃) = [k(x1,x), ...,k(xN ,x)]>

Properties:
Useful when the feature space is huge or even infinite. Many
relatively simple choices have huge or infinite feature spaces
associated to them.
Kernel trick defines very powerful feature transformations and thus
solve very nonlinear problems without having to carry out the feature
transformation.
Computing full kernel matrix can be prohitively expensive. Many
tricks can reduce the complexity, e.g. Nyström approximation.
Regularization is very important: Kernel methods are prone to
overfitting.

37/37

Example: polynomial kernels

A kernel function corresponds to an inner product in a feature space
based on the feature mapping φ(·), without having to execute this
feature mapping explicitly:

k(x1, x2) = 〈φ(x1), φ(x2)〉.

For degree-d polynomials, the polynomial kernel is defined as

k(x1, x2) = (x>1 x2 + c)d

For d = 2 its feature mapping is given by:

φ2(x) =
[
x2
1 , ..., x2

n ,
√
2x1x2, ...,

√
2xn−1xn,

√
2cx1, ...,

√
2cxn, c

]>
When the input features are binary-valued (booleans), then the
features correspond to logical conjunctions of input features1.

1Yoav Goldberg and Michael Elhadad (2008). splitSVM: Fast, Space-Efficient,
non-Heuristic, Polynomial Kernel Computation for NLP Applications. Proc. ACL-08:
HLT.

37/37

Example: polynomial kernels

A kernel function corresponds to an inner product in a feature space
based on the feature mapping φ(·), without having to execute this
feature mapping explicitly:

k(x1, x2) = 〈φ(x1), φ(x2)〉.

For degree-d polynomials, the polynomial kernel is defined as

k(x1, x2) = (x>1 x2 + c)d

For d = 2 its feature mapping is given by:

φ2(x) =
[
x2
1 , ..., x2

n ,
√
2x1x2, ...,

√
2xn−1xn,

√
2cx1, ...,

√
2cxn, c

]>
When the input features are binary-valued (booleans), then the
features correspond to logical conjunctions of input features1.

1Yoav Goldberg and Michael Elhadad (2008). splitSVM: Fast, Space-Efficient,
non-Heuristic, Polynomial Kernel Computation for NLP Applications. Proc. ACL-08:
HLT.

37/37

Example: polynomial kernels

A kernel function corresponds to an inner product in a feature space
based on the feature mapping φ(·), without having to execute this
feature mapping explicitly:

k(x1, x2) = 〈φ(x1), φ(x2)〉.

For degree-d polynomials, the polynomial kernel is defined as

k(x1, x2) = (x>1 x2 + c)d

For d = 2 its feature mapping is given by:

φ2(x) =
[
x2
1 , ..., x2

n ,
√
2x1x2, ...,

√
2xn−1xn,

√
2cx1, ...,

√
2cxn, c

]>
When the input features are binary-valued (booleans), then the
features correspond to logical conjunctions of input features1.

1Yoav Goldberg and Michael Elhadad (2008). splitSVM: Fast, Space-Efficient,
non-Heuristic, Polynomial Kernel Computation for NLP Applications. Proc. ACL-08:
HLT.

37/37

Example: polynomial kernels

A kernel function corresponds to an inner product in a feature space
based on the feature mapping φ(·), without having to execute this
feature mapping explicitly:

k(x1, x2) = 〈φ(x1), φ(x2)〉.

For degree-d polynomials, the polynomial kernel is defined as

k(x1, x2) = (x>1 x2 + c)d

For d = 2 its feature mapping is given by:

φ2(x) =
[
x2
1 , ..., x2

n ,
√
2x1x2, ...,

√
2xn−1xn,

√
2cx1, ...,

√
2cxn, c

]>
When the input features are binary-valued (booleans), then the
features correspond to logical conjunctions of input features1.

1Yoav Goldberg and Michael Elhadad (2008). splitSVM: Fast, Space-Efficient,
non-Heuristic, Polynomial Kernel Computation for NLP Applications. Proc. ACL-08:
HLT.

