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          Linear Regression
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          Energy Properties

• Invariant to permutations of the index k.
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        Overview

• Coulomb kernel representations 

• Density functional approach to representation 

• From Fourier to wavelet energy regressions 

• Wavelet scattering dictionaries: deep networks without learning 

• Numerical energy regression results 

• Relations with image classification and deep networks
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     Coulomb Kernel
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with
Organic molecules

Hydrogne, Carbon
Nitrogen, Oxygen
Sulfur, Chlorine

H4C6OS H9C7NO

H3C6NO2H9C8N

         Density Functional Theory

• Computes the energy of a molecule x from

its electronic probability density ⇢
x

(u) for u 2 R3
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Kohn-Sham model:

E(�) = T (�) +
Z

�(u) V (u) +
1
2

Z
�(u)�(v)
|u� v| dudv + E

xc

(�)

Molecular

energy

At equilibrium:

   Density Functional Theory

Kinetic
energy

electron-electron

Coulomb repulsion

electron-nuclei

attraction

Exchange

correlat. energy
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• Coulomb potential energy:

Coulomb Interactions in Fourier

Diagonalized in Fourier:
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   Coulomb in Fourier Dictionary

�1

�2
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   Large Scale Instabilities
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(Rocklin, Greengard)

Coulomb Multiscale Factorizations

• Multiscale regroupment of interactions:

For an error ✏, interactions can be reduced to O(log ✏) groups

Fast multipoles
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 Scale separation with Wavelets

�1

�2

rotated and dilated:

real parts imaginary parts
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 Wavelet Interference for Densities
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   Sparse Wavelet Regression

For any ✏ > 0 there exists wavelets with

Theorem:

�1

�2
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  Dictionaries for Quantum Energies
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       Atomization Density

Electronic density ⇢
x

(u) Approximate density ⇢̃
x

(u)
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   Sparse Linear Regressions
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x

Regression:

  Fourier and Wavelets Regressions

log2 M

Quantum Energy Regression using Scattering Transforms

the RMSE is due to the fact that a scattering regression has
smaller error outliers.
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Figure 2. Decay of the log RMSE error
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over the larger database of
4357 molecules, as a function of log2(M) in the Fourier (green),
Wavelet (blue) and Scattering (red) regressions. The dotted line
gives the Coulomb regression error for reference.

Table 1 shows that the error of Fourier and wavelet regres-
sion are of the same order although the Fourier dictionary
has 1537 elements and the wavelet dictionary has only 61.
Figure 2 gives the decay of these errors as a function of
M . This exepected error is computed on testing molecules.
The circles on the plot give the estimated value of M which
yield a minimum regression error by cross-validation over
the training set (reported in Table 1). Although the Fourier
and wavelet regressions reach nearly the same minimum
error, the decay is much faster for wavelets. When going
from the smaller to the larger database, the minimum error
of the Fourier and wavelet regressions remain nearly the
same. This shows that the bias error due to the inability of
these dictionaries to precisely regress f(x) is dominating
the variance error corresponding to errors on the regression
coefficients. The Coulomb and Scattering representations
on the other hand, achieve much smaller bias errors on the
larger database.

The number of terms of the scattering regression is M =

591 on the larger database, although the dictionary size is
11071. A very small proportion of scattering invariants are
therefore selected to perform this regression. The chosen
scattering coefficients used for the regression are coeffi-
cients corresponding to scales which fall between the min-
imum and maximum pairwise distances between atoms in
the molecular database. These selected coefficients are thus
adapted to the molecular geometries.

7. Conclusion
This paper introduced a novel intermediate molecular rep-
resentation through the use of a model electron density.
The regression is performed on a scattering transform ap-
plied to a model density built from a linear superposition of
atomic densities. This transform is well adapted to quan-
tum energy regressions because it is invariant to the per-
mutation of atom indices, to isometric transformations, it
is stable to deformations, and it separates multiscale inter-
actions. It is computed with a cascade of wavelet convolu-
tions and modulus non-linearities, as a deep convolutional
network. State-of-the-art regression accuracy is obtained
over two databases of two-dimensional organic molecules,
with a relatively small number of scattering vectors. Under-
standing the relation between the choice of scattering coef-
ficients and the physical and chemical properties of these
molecules is an important issue.

Numerical applications have been carried over planar
molecules, which allows one to restrict the electronic den-
sity to the molecular plane, and thus compute a two-
dimensional scattering transform. A scattering transform
is similarly defined in three dimensions, with the same in-
variance and stability properties. It involves computing a
wavelet transform on the two-dimensional sphere S2 in R3

(Starck et al., 2006) as opposed to the circle S

1. It entails
no mathematical difficulty, but requires appropriate soft-
ware implementations which are being carried out.

Energy regressions can also provide estimations of forces
through differentiations with respect to atomic positions.
Scattering functions are differentiable and their differential
can be computed analytically. However, the precision of
such estimations remain to be established.
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     Wavelet Dictionary
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            Wavelet Dictionary

Rotations ✓1
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     Scattering Dictionary

Recover translation variability:

Recover rotation variability:
|⇢ ⇤  j1,·(u)|~  l2(✓1)

|⇢ ⇤  j1,✓1 | ⇤  j2,✓2(u)

Rotations ✓1
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     Scattering Dictionary

Recover translation variability:

Recover rotation variability:
|⇢ ⇤  j1,·(u)|~  l2(✓1)

|⇢ ⇤  j1,✓1 | ⇤  j2,✓2(u)

Combine to recover 
roto-translation variabiltiy:

Rotations ✓1

S
cales

j
1

|⇢ ⇤  j1,✓1(u)|

||⇢ ⇤  j1,·| ⇤  j2,✓2(u)~  l2(✓1)|
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   Scattering Second Order

|⇢ ⇤  j1,✓1(u)|, j1 fixed

Rotations ✓2

S
cales

j
2

j1, l2 fixed

||⇢ ⇤  j1,·| ⇤  j2,✓2(u)~  l2(✓1)|
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           Scattering Dictionary
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Quantum Energy Regression using Scattering Transforms

the RMSE is due to the fact that a scattering regression has
smaller error outliers.
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Figure 2. Decay of the log RMSE error
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Table 1 shows that the error of Fourier and wavelet regres-
sion are of the same order although the Fourier dictionary
has 1537 elements and the wavelet dictionary has only 61.
Figure 2 gives the decay of these errors as a function of
M . This exepected error is computed on testing molecules.
The circles on the plot give the estimated value of M which
yield a minimum regression error by cross-validation over
the training set (reported in Table 1). Although the Fourier
and wavelet regressions reach nearly the same minimum
error, the decay is much faster for wavelets. When going
from the smaller to the larger database, the minimum error
of the Fourier and wavelet regressions remain nearly the
same. This shows that the bias error due to the inability of
these dictionaries to precisely regress f(x) is dominating
the variance error corresponding to errors on the regression
coefficients. The Coulomb and Scattering representations
on the other hand, achieve much smaller bias errors on the
larger database.

The number of terms of the scattering regression is M =

591 on the larger database, although the dictionary size is
11071. A very small proportion of scattering invariants are
therefore selected to perform this regression. The chosen
scattering coefficients used for the regression are coeffi-
cients corresponding to scales which fall between the min-
imum and maximum pairwise distances between atoms in
the molecular database. These selected coefficients are thus
adapted to the molecular geometries.

7. Conclusion
This paper introduced a novel intermediate molecular rep-
resentation through the use of a model electron density.
The regression is performed on a scattering transform ap-
plied to a model density built from a linear superposition of
atomic densities. This transform is well adapted to quan-
tum energy regressions because it is invariant to the per-
mutation of atom indices, to isometric transformations, it
is stable to deformations, and it separates multiscale inter-
actions. It is computed with a cascade of wavelet convolu-
tions and modulus non-linearities, as a deep convolutional
network. State-of-the-art regression accuracy is obtained
over two databases of two-dimensional organic molecules,
with a relatively small number of scattering vectors. Under-
standing the relation between the choice of scattering coef-
ficients and the physical and chemical properties of these
molecules is an important issue.

Numerical applications have been carried over planar
molecules, which allows one to restrict the electronic den-
sity to the molecular plane, and thus compute a two-
dimensional scattering transform. A scattering transform
is similarly defined in three dimensions, with the same in-
variance and stability properties. It involves computing a
wavelet transform on the two-dimensional sphere S2 in R3

(Starck et al., 2006) as opposed to the circle S

1. It entails
no mathematical difficulty, but requires appropriate soft-
ware implementations which are being carried out.

Energy regressions can also provide estimations of forces
through differentiations with respect to atomic positions.
Scattering functions are differentiable and their differential
can be computed analytically. However, the precision of
such estimations remain to be established.
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Original images of N2 pixels:

Order m = 2

   Reconstruction from Scattering
Joan Bruna

Reconstruction from {kxk1 , kx ?  �1k1 , k|x ?  �1 | ?  �2k1} : O(log

2
2 N) coe↵.



Original Textures

 Ergodic Texture Reconstructions
Joan Bruna

m = 2, 2

J
= N : reconstruction from O(log

2
2 N) scattering coe↵.



LeCun et. al.

Classification Errors

Joan Bruna

 Digit Classification: MNIST

Linear Classifier
SJx y = f(x)

x



Classification Accuracy

SJx

Data Basis Deep-Net Scat.-2
CalTech-101 85% 80%
CIFAR-10 90% 80%

Rigid Mvt.
computes invariants

  Complex Image Classification

BateauNénuphareMetronome CastoreArbre de Joshua
Ancre

CalTech 101 data-basis:

Linear Classif. yx

Edouard Oyallon



          Conclusion

• Quantum energy regression involves generic invariants to rigid 
movements, stability to deformations, multiscale interactions 

• These properties require scale separations, hence wavelets. 

• Multilayer wavelet scattering create large number of invariants 

• Equivalent to deep networks with predefined wavelet filters 

• Knowing physics provides the invariants: can avoid learning 
representations
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