

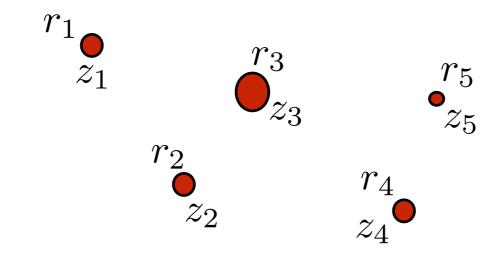
Matthew Hirn, Stéphane Mallat École Normale Supérieure

Nicolas Poilvert
Penn-State

Quantum Chemistry Regression

Compute the atomisation energy y(x) of molecules given

$$x = \{z_k(\text{charge}), r_k(\text{position})\}_{k \le d} \in \mathbb{R}^{2d}$$



- **Regression**: estimate y(x) given N examples $\{x_i, y_i\}_{i \leq N}$
- Curse of dimensionality: since $N \ll 2^d$, a priori hopeless unless dimensionality can be reduced.
 - How to address this problem mathematically?

Linear Regression

• Linear approximation of y(x) in a dictionary $\Phi(x) = {\phi_k(x)}_k$

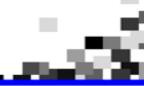
$$f(x) = \langle w, \Phi(x) \rangle = \sum_{k} w_k \phi_k(x)$$

which minimizes the training error $\sum_{i=1}^{N} |f(x_i) - y_i|^2$ with $||w||_2 \le \lambda$ or $||w||_0 \le M$.

• Kernel $K(x, x') = \langle \Phi(x), \Phi(x') \rangle = \sum_{k} \phi_k(x) \phi_k(x')$ $\Rightarrow f(x) = \sum_{i=1}^{N} \alpha_i K(x, x_i)$

Problem: design $\Phi(x)$ to minimize $\mathbb{E}(|f(x) - y(x)|^2)$, $\Phi(x)$ or K(x, x') have same regularity properties as y(x).

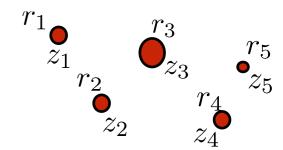
Energy Properties



(Bartok, Csanyi, Kondor)

Atomisation energy y(x) of a molecule $x = \{z_k, r_k\}_{k \leq d}$:

• Invariant to permutations of the index k.



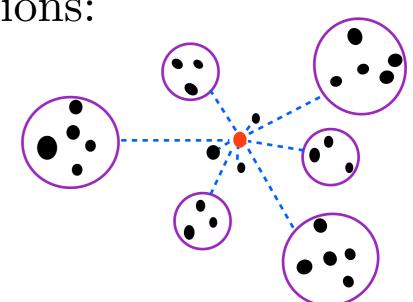
• Invariant to rigid movements of positions $\{r_k\}_k$

• Regular variations relatively to deformations

• Factorization in multiscale local interactions: covalent bounds, Van Der Waal forces...

Can reduce d into $O(\log d)$ interactions

Generic properties: same in images



Overview

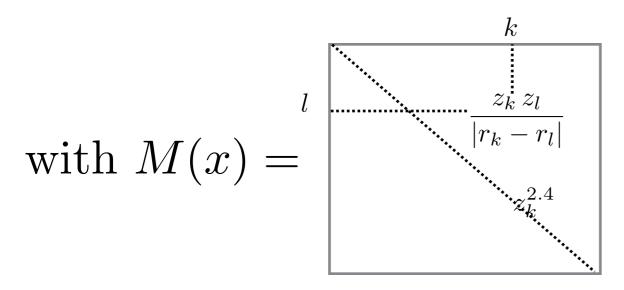


- Coulomb kernel representations
- Density functional approach to representation
- From Fourier to wavelet energy regressions
- Wavelet scattering dictionaries: deep networks without learning
- Numerical energy regression results
- Relations with image classification and deep networks

Coulomb Kernel

(Rupp, Tkatchenko, Muller, von Lilienfeld)

• Coulomb kernel: $K(x, x') = e^{-\lambda \|M(x) - M(x')\|}$



: invariant to rigid mouvements stable to deformations

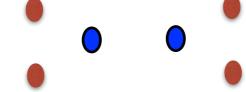
but K(x, x') is not invariant to the molecule indexing

partly fixed with orderings based on column energy

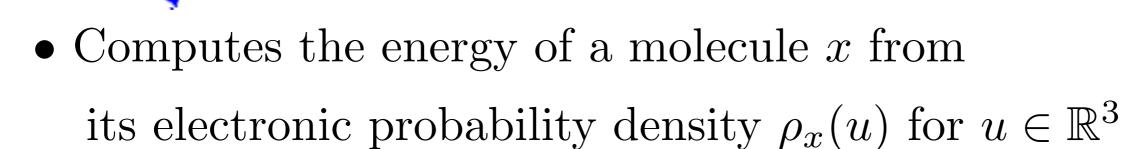
but creates deformation instabilities and non differentiability

for symmetric molecules:

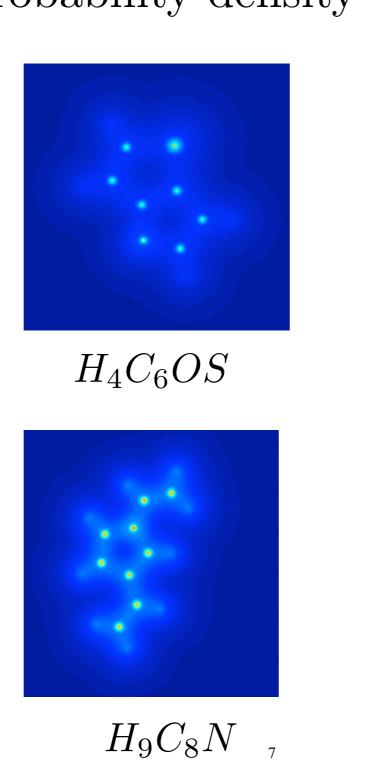
 \Rightarrow no accurate force fields

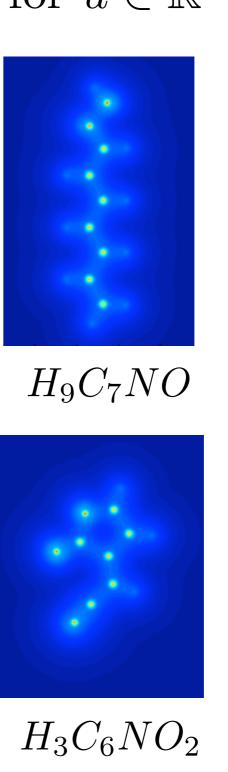


Density Functional Theory



Organic molecules
with
Hydrogne, Carbon
Nitrogen, Oxygen
Sulfur, Chlorine





energy

__Density Functional Theory

Kohn-Sham model:

$$E(\rho) = T(\rho) + \int \rho(u) V(u) + \frac{1}{2} \int \frac{\rho(u)\rho(v)}{|u-v|} dudv + E_{xc}(\rho)$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$
Molecular Kinetic electron-nuclei electron-electron Exchange energy energy attraction Coulomb repulsion correlat. energy

At equilibrium:

energy

$$y(x) = E(\rho_x) = \min_{\rho} E(\rho)$$

- \bullet ρ_x is independent of the atom indexing in x.
- Given ρ_x , we could regress $E(\rho_x)$ in a dictionary $\Phi(\rho_x)$
- Which dictionary? How to approximate ρ_x ?

Coulomb Interactions in Fourier

• Coulomb potential energy:

$$E_C(\rho) = \iint_{\mathbb{R}^6} \rho(u)\rho(v)V(u-v) \, du \, dv$$

with $V(u) = |u|^{-1}$: singular

Diagonalized in Fourier: $\hat{\rho}(\omega) = \int_{\mathbb{R}^3} \rho(u) e^{i\omega \cdot u} du$

$$E_C(\rho) = (2\pi)^{-3} \int_{\mathbb{R}^3} |\hat{\rho}(\omega)|^2 \, \widehat{V}(\omega) \, d\omega$$

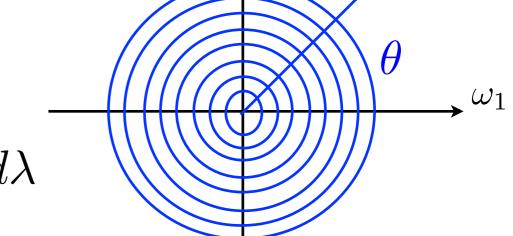
with
$$\widehat{V}(\omega) = 4\pi |\omega|^{-2}$$

Coulomb in Fourier Dictionary

$$E_C(\rho) = C \int |\omega|^{-2} |\hat{\rho}(\omega)|^2 d\omega$$

In polar coordinates $\omega = (\lambda, \theta)$:

$$E_C(\rho) = C \int \lambda^{-2} \left(\int |\hat{\rho}(\lambda, \theta)|^2 d\theta \right) d\lambda$$



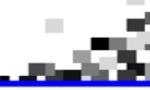
Fourier dictionary:
$$\left(\phi_k(\rho) = \int |\hat{\rho}(k\epsilon, \theta)|^2 d\theta\right)_k$$

Invariant to translations and rotations

$$\Rightarrow E_C(\rho) = \sum_{k=1}^{\epsilon^{-2}} w_k \, \phi_k(\rho) \left(1 + O(\epsilon)\right) \quad \text{with } w_k = C \, k^{-2}$$

Problems: needs $M = \epsilon^{-2}$ terms: not sparse the $\phi_k(\rho)$ are not stable to deformations

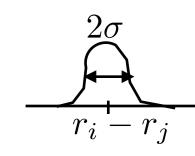
Large Scale Instabilities



- "Classic" translation invariant representations:
 - Autocorrelation: $\Phi \rho(\tau) = \int \rho(u) \rho(u \tau) du$
 - Fourier modulus: $\widehat{\Phi\rho}(\omega) = |\hat{\rho}(\omega)|^2$
- Deformations produce instabilities at large distances:

 $\rho(u)$: bumps of width σ at positions $\{r_i\}_i$

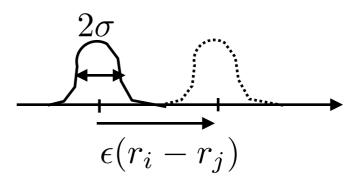
 $\Phi \rho(\tau)$: bumps of width 2σ at positions $\{r_i - r_j\}_{i,j}$



A small deformation changes distances by $\epsilon(r_i - r_j)$

Unstable if $|r_i - r_j| \ge \sigma/\epsilon$

(SOAP: Bartok, Csanyi Kondor)



Coulomb Multiscale Factorizations -

• Multiscale regroupment of interactions:

For an error ϵ , interactions can be reduced to $O(\log \epsilon)$ groups

Fast multipoles (Rocklin, Greengard)

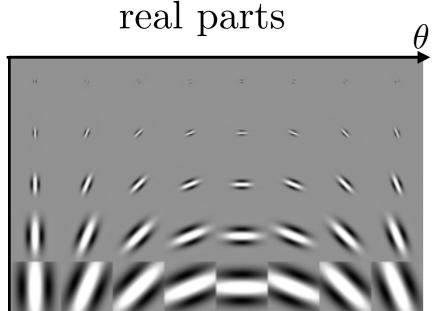
Potential
$$V(u) = |u|^{-1}$$
 \Rightarrow

 $\Rightarrow E_C(\rho)$ can be computed with $O(|\log \epsilon|^2)$ operations.

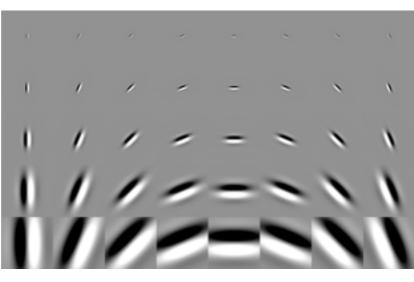
Scale separation with Wavelets

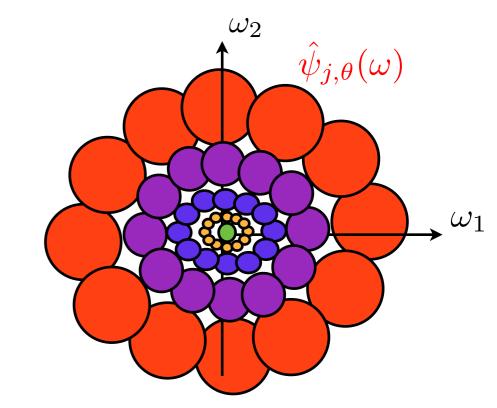
• Complex wavelet: $\psi(u) = g(u)e^{i\xi \cdot u}$, $u = (u_1, u_2)$

rotated and dilated: $\psi_{j,\theta}(u) = 2^{-2j} \psi(2^{-j}R_{\theta}u)$



imaginary parts





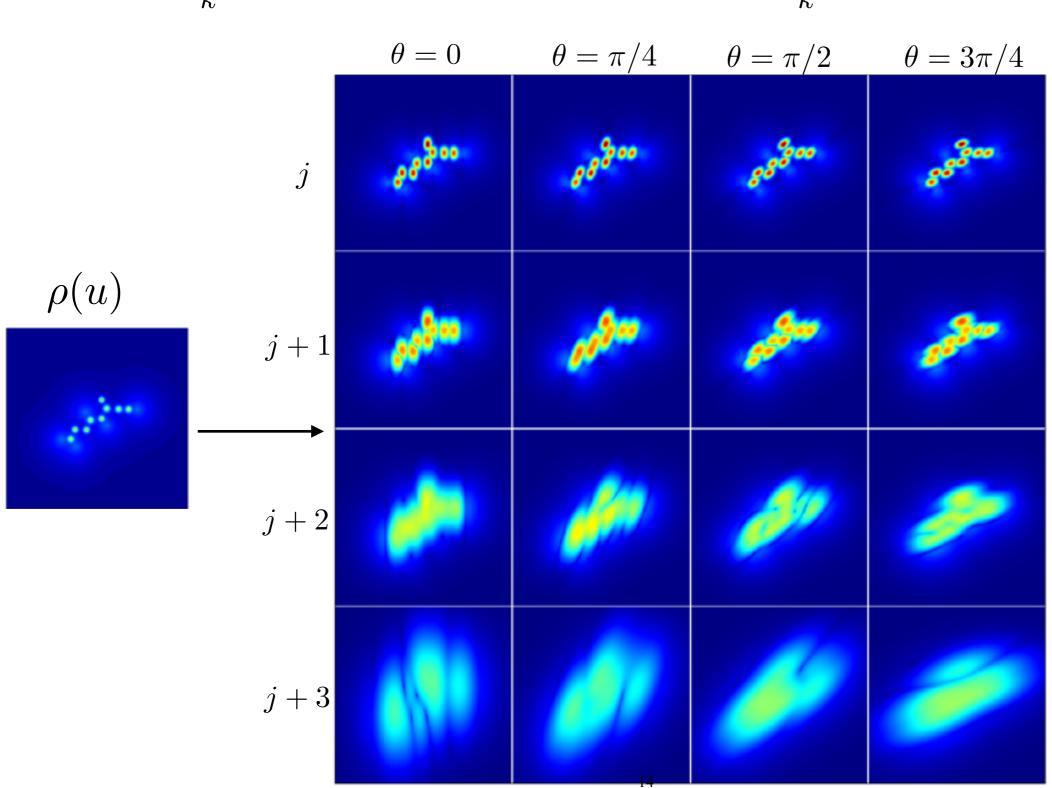
Total charge: $\int \rho(v)dv$

Wavelet coefficients: $\rho \star \psi_{j,\theta}(u) = \int \rho(v) \, \psi_{j,\theta}(u-v) \, dv$

interaction at a scale 2^{j} along a direction θ stable to deformations

Wavelet Interference for Densities - L

$$\rho = \sum_{k} z_{k} \delta(u - r_{k}) \Rightarrow |\rho \star \psi_{j,\theta}(u)| = \left| \sum_{k} z_{k} \psi_{j,\theta}(u - r_{k}) \right|$$



$$|\rho \star \psi_{j,\theta}(u)|$$

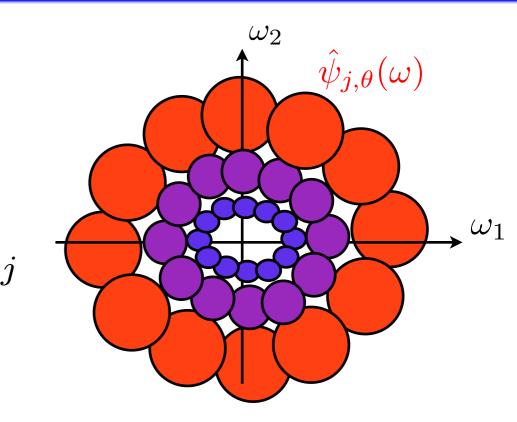
Sparse Wavelet Regression

Wavelet dictionary:

$$\left\{\phi_j(\rho) = \int_0^{2\pi} \int_{\mathbb{R}^2} |\rho \star \psi_{j,\theta}(u)|^2 du d\theta\right\}_j$$

Translation and rotation invariant

Stable to deformations



Theorem: For any $\epsilon > 0$ there exists wavelets with

$$E_C(\rho) = \sum_{j} v_j \, \phi_j(\rho) \Big(1 + O(\epsilon) \Big)$$

with a sparse regression of $M = O(|\log \epsilon|^2)$ terms.

Dictionaries for Quantum Energies-

- The coulomb energy term $E_C(\rho)$ is quadratic in ρ
- \bullet Chemical bound energy rather increase linearly with ρ

- Fourier dictionary:

$$\phi_k^1(\rho) = \int |\hat{\rho}(k\epsilon, \theta)| d\theta \text{ and } \phi_k^2(\rho) = \int |\hat{\rho}(k\epsilon, \theta)|^2 d\theta$$

In numerics: 1500 vectors

- Wavelet dictionary:

$$\phi_j^1(\rho) = \iint |\rho \star \psi_{j,\theta}| \, du d\theta \text{ and } \phi_j^2(\rho) = \iint |\rho \star \psi_{j,\theta}|^2 \, du d\theta$$

In numerics: 60 vectors

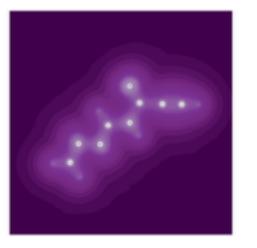
Atomization Density

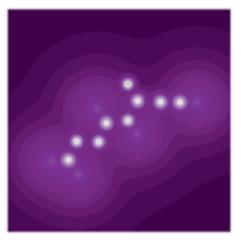
- We do not know the electronic density ρ_x at equilibrium.
- The electronic density ρ_x of $x = \{z_k, r_k\}_{k \leq d}$ is approximated by the sum of the densities of all atoms:

$$\tilde{\rho}_x(u) = \sum_{k=1}^d \rho_{z_k}(u - r_k)$$

Electronic density $\rho_x(u)$

Approximate density $\tilde{\rho}_x(u)$





• Fourier and Wavelet dictionaries: $\{\phi_k^1(\tilde{\rho}_x), \phi_k^2(\tilde{\rho}_x)\}_k$

Sparse Linear Regressions

• Sparse regression in a dictionary $\{\phi_k(\tilde{\rho}_x)\}_k$ by selecting M dictionary vectors:

$$f_M(x) = \sum_{m=1}^{M} w_m \, \phi_{k_m}(\tilde{\rho}_x)$$

which minimise the error $\sum_{i=1}^{N} |f_M(x_i) - y_i|^2$

- Greedy selection of the $\{\phi_{k_m}(\tilde{\rho}_x)\}_{m\leq M}$, one at a time, with an orthogonal least square pursuit which decorelate vectors.
- \bullet Cross-validation on M.

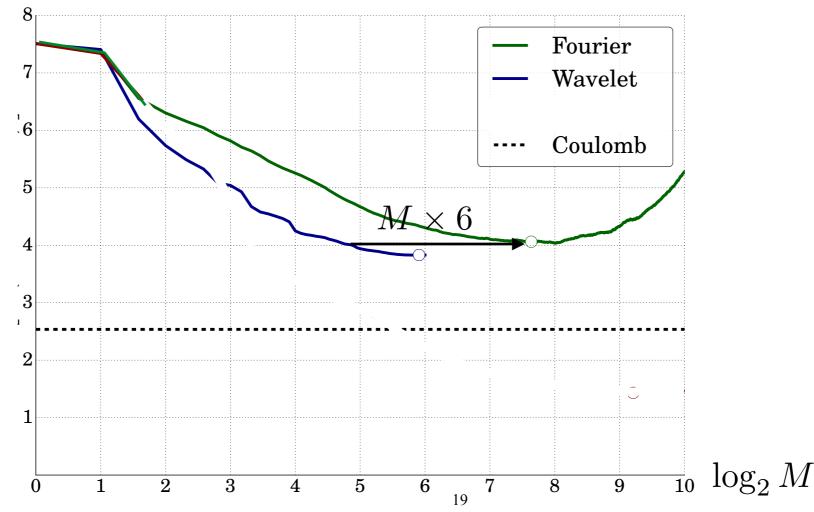
Fourier and Wavelets Regressions -

Data basis $\{x_i, y_i = E(\rho_{x_i})\}_{i \leq N}$ of 4357 planar molecules

Regression:
$$f_M(x) = \sum_{m=1}^{M} w_m \, \phi_{k_m}(\tilde{\rho}_x)$$

Testing error

$$2^{-1}\log_2 \mathbb{E}[f_M(x) - y(x)]^2$$



Energy Regression Results

$$f_M(x) = \sum_{m=1}^{M} w_m \, \phi_{k_m}(\tilde{\rho}_x)$$

RMS testing error $(\mathbb{E}|f_M(x)-y(x)|^2)^{1/2}$ in kcal/mol:

Training size	Fourier	Wavelet	Coulomb
4357	16.7	14.2	5.8
454 (QM7)	16.1	15.4	20.5

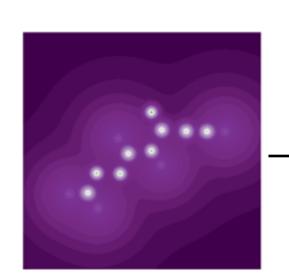
$$MSE = bias + variance$$

For Fourier and Wavelet the bias dominates the error:

- Fourier dictionary not stable to deformations, not multiscale
- Wavelet dictionary too small: 60 vectors.

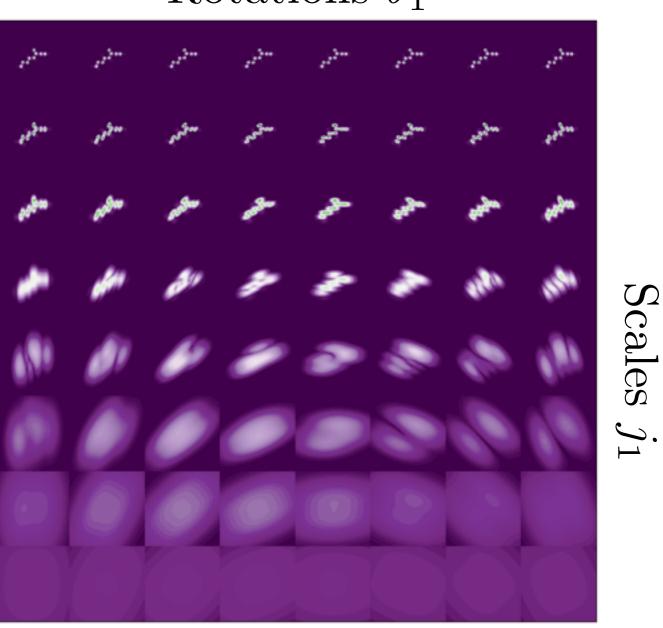
Wavelet Dictionary

Rotations θ_1



 $\rho(u)$

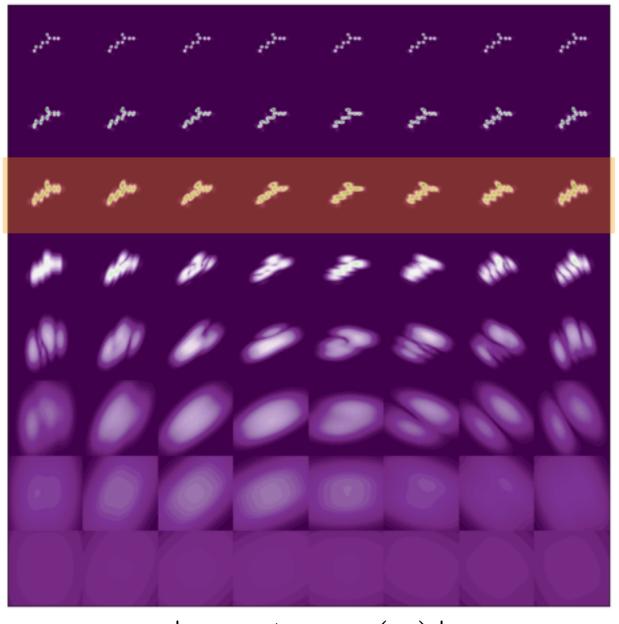
$$|\rho * \psi_{j_1,\theta_1}(u)|$$



Wavelet Dictionary

1st network layer

Rotations θ_1

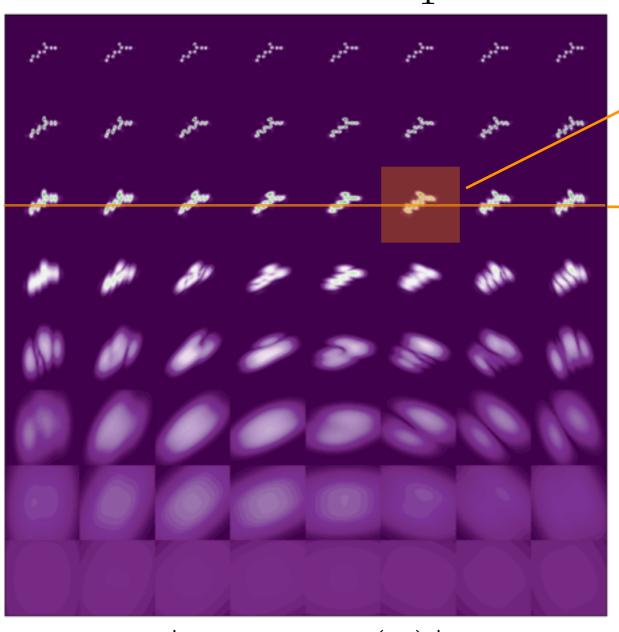


$$|\rho * \psi_{j_1,\theta_1}(u)|$$

Scales
$$j_1$$
.
$$\phi_{j_1}^1(\rho) = \int_{\mathbb{R}^2} \int_0^{2\pi} |\rho * \psi_{j_1,\theta_1}(u)| \, d\theta_1 \, du$$

Scattering Dictionary

Rotations θ_1



$$|\rho * \psi_{j_1,\theta_1}(u)|$$

2nd Order Interferences

Recover translation variability:

$$|\rho * \psi_{j_1,\theta_1}| * \psi_{j_2,\theta_2}(u)$$

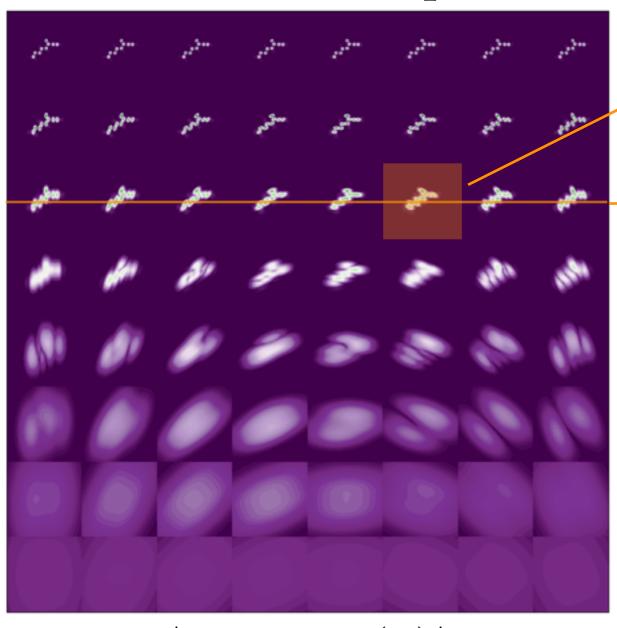
Recover rotation variability:

$$|\rho * \psi_{j_1,.}(u)| \circledast \overline{\psi}_{l_2}(\theta_1)$$

Scales

Scattering Dictionary

Rotations θ_1



 $|\rho * \psi_{j_1,\theta_1}(u)|$

2nd Order Interferences

Recover translation variability:

$$|\rho * \psi_{j_1,\theta_1}| * \psi_{j_2,\theta_2}(u)$$

Recover rotation variability:

$$|\rho * \psi_{j_1,.}(u)| \circledast \overline{\psi}_{l_2}(\theta_1)$$

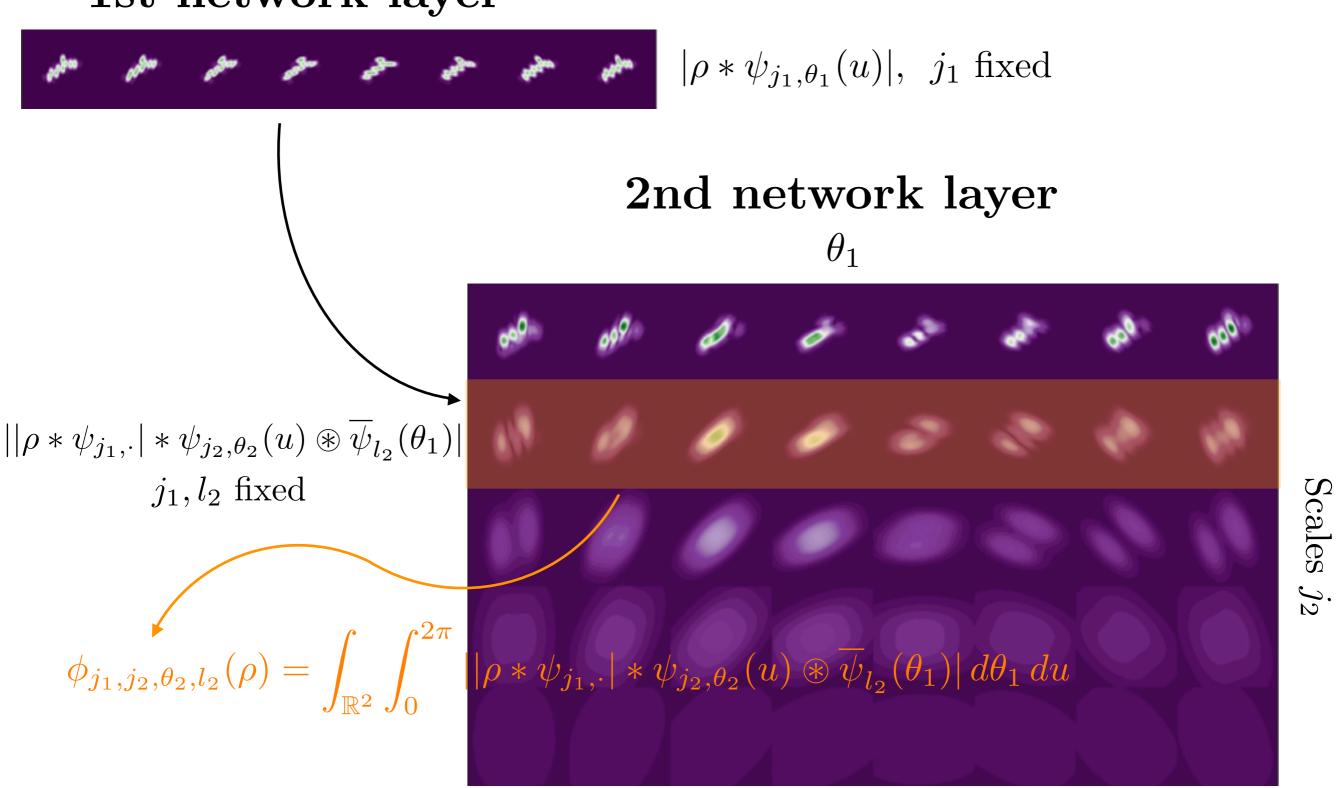
Combine to recover roto-translation variabiltiy:

$$||\rho * \psi_{j_1,.}| * \psi_{j_2,\theta_2}(u) \circledast \overline{\psi}_{l_2}(\theta_1)|$$

Scales

Scattering Second Order

1st network layer



Rotations θ_2

Scattering Dictionary

• Sparse regression of f(x) computed in a scattering dictionary computed for the atomization density: $\rho = \tilde{\rho}_x$.

$$\left\{ \phi_{j}^{1}(\tilde{\rho}_{x}), \phi_{j}^{2}(\tilde{\rho}_{x}) \right\}_{j} \cup \left\{ \phi_{j,j_{2},\theta_{2},\ell_{2}}^{1}(\tilde{\rho}_{x}), \phi_{j,j_{2},\theta_{2},\ell_{2}}^{2}(\tilde{\rho}_{x}) \right\}_{j,j_{2},\theta_{2},\ell_{2}}$$
60 vectors
$$10^{4} \text{ vectors}$$

Invariant by translations and rotations
Stable to deformations

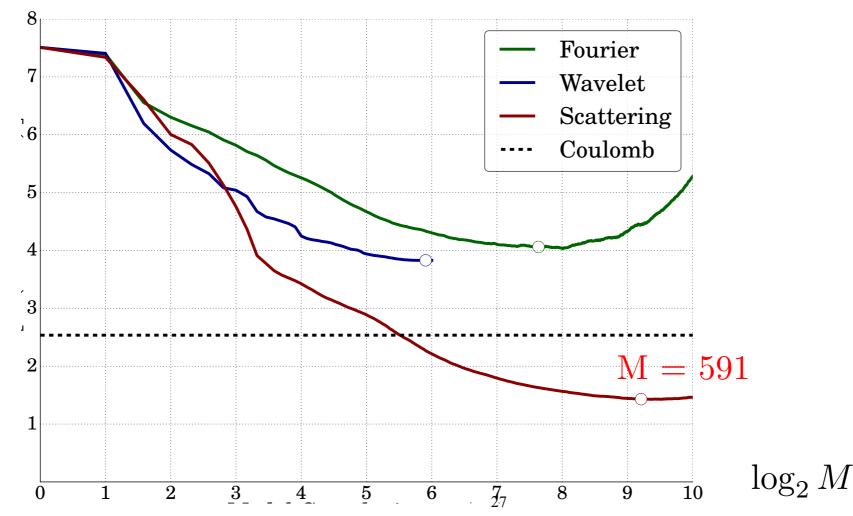
Scattering Regression

Data basis $\{x_i, f(x_i) = E(\rho_{x_i})\}_{i \leq N}$ of 4357 planar molecules

Regression:
$$f_M(x) = \sum_{m=1}^{M} w_m \, \phi_{k_m}(\tilde{\rho}_x)$$

Testing error

$$2^{-1}\log_2 \mathbb{E}|f_M(x) - y(x)|^2$$



Energy Regression Results

$$f_M(x) = \sum_{m=1}^{M} w_m \, \phi_{k_m}(\tilde{\rho}_x)$$

RMS testing error $(\mathbb{E}|f_M(x)-y(x)|^2)^{1/2}$ in kcal/mol:

Training size	Fourier	Wavelet	Coulomb	Scattering
4357	16.7	14.2	5.8	2.7
454 (QM7)	16.1	15.4	20.5	9.0

• For field calculations:

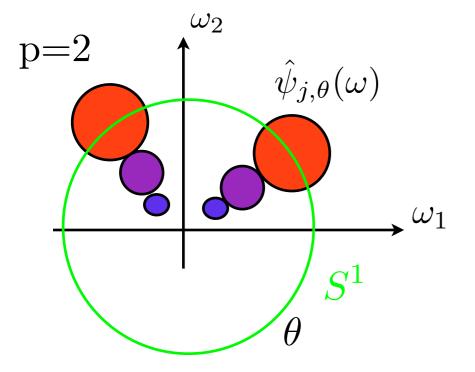
$$\nabla f_M(x) = \sum_{m=1}^{M} w_m \, \nabla \phi_{k_m}(\tilde{\rho}_x)$$

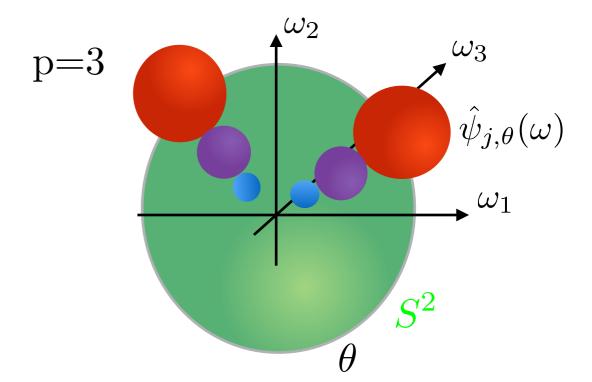
ENC

From 2D to 3D Scattering

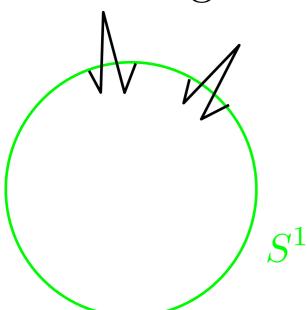
Translation wavelet: $\psi_{j,\theta}(u) = 2^{-pj}\psi(2^{-j}R_{\theta}^{-1}u)$

$$\theta \in S^{p-1}$$
, $u \in \mathbb{R}^p$





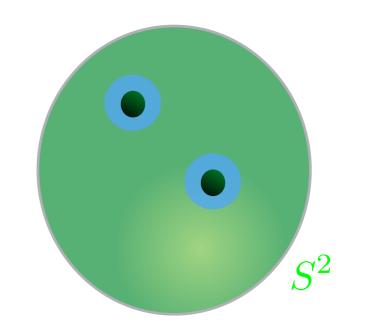
• Scattering:



Angular wavelet:

$$\overline{\psi}_{\ell}(\theta) = 2^{(-p+1)\ell} \, \overline{\psi}(2^{-\ell}\theta)$$

To be programmed...

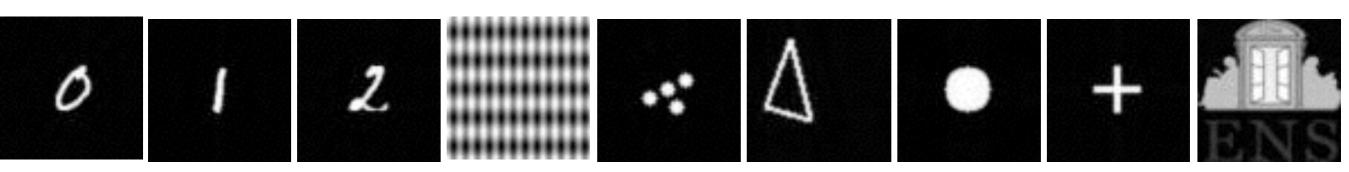


Reconstruction from Scattering_

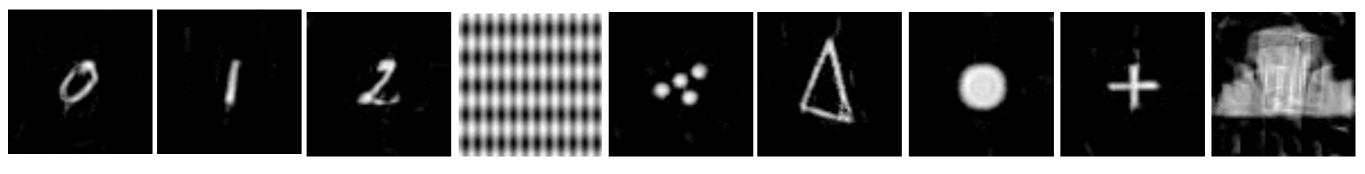
Joan Bruna

• Scattering without rotation invariance: no angle averaging.

Original images of N^2 pixels:

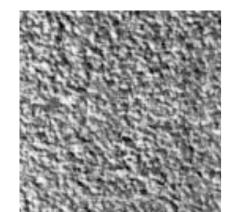


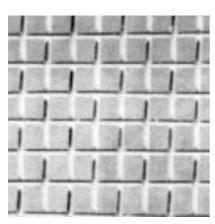
Order m=2Reconstruction from $\{\|x\|_1, \|x \star \psi_{\lambda_1}\|_1, \||x \star \psi_{\lambda_1}| \star \psi_{\lambda_2}\|_1\}$: $O(\log_2^2 N)$ coeff.

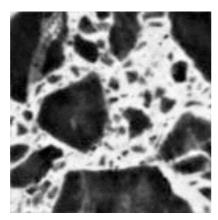


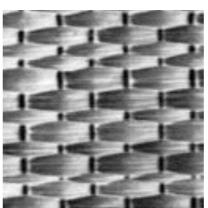
Ergodic Texture Reconstructions ____

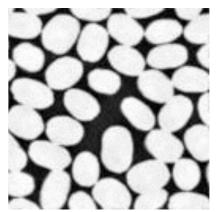
Joan Bruna



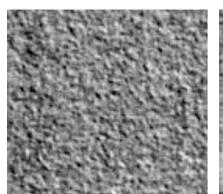


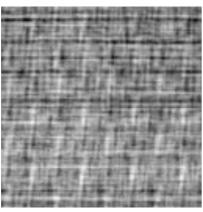


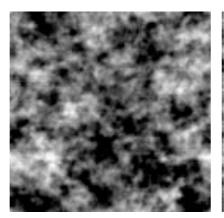


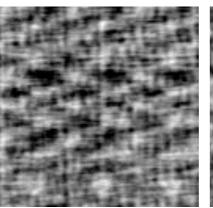


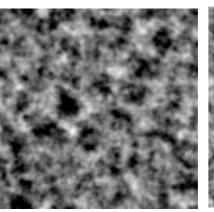
Gaussian stationary process: recovered from autocorrelation

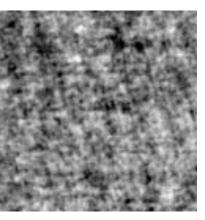




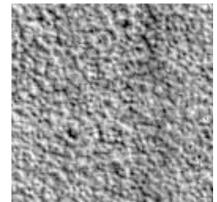


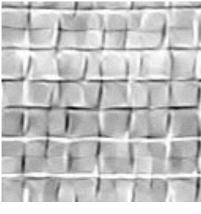


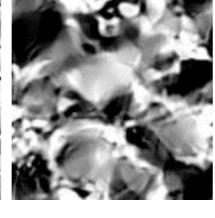


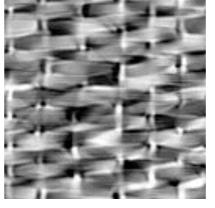


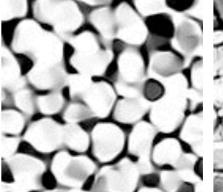
 $m=2, 2^J=N$: reconstruction from $O(\log_2^2 N)$ scattering coeff.

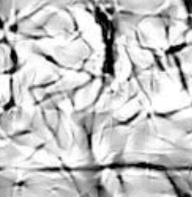




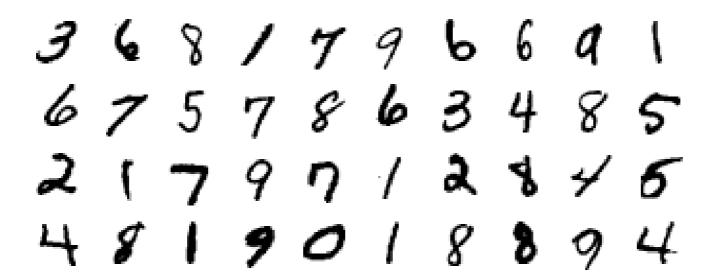








Digit Classification: MNIST



Joan Bruna

Classification Errors

Training size	Conv. Net.	Scattering
60000	0.5%	0.4 %

LeCun et. al.

• Know source of variability: translations, deformations.

Complex Image Classification

1.00

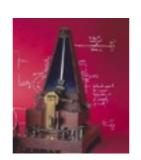
CalTech 101 data-basis:

Edouard Oyallon



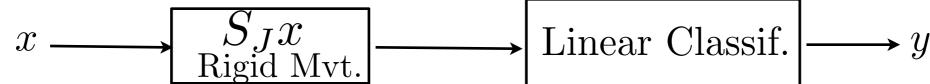
Ancre

Metronome



Castore

Nénuphare



Classification Accuracy

computes invariants

Data Basis	Deep-Net	Scat2
CalTech-101	85%	80%
CIFAR-10	90%	80%

Trained on 10^6 images

Conclusion

- Quantum energy regression involves generic invariants to rigid movements, stability to deformations, multiscale interactions
- These properties require scale separations, hence wavelets.
- Multilayer wavelet scattering create large number of invariants
- Equivalent to deep networks with predefined wavelet filters
- Knowing physics provides the invariants: can avoid learning representations

Looking for a Post-Doc!