
Theory and Computation for Gaussian Processes

Michael Stein

University of Chicago

IPAM, February 2015

Michael Stein Theory and Computation for Gaussian Processes



Funders & Collaborators

I US Department of Energy, US National Science Foundation

(STATMOS)

I Mihai Anitescu, Jie Chen, Ying Sun

Michael Stein Theory and Computation for Gaussian Processes



Gaussian processes

A process Z on a set S is called Gaussian if all finite-dimensional distributions

are multivariate normal.

Gaussian process determined by its mean and covariance functions:

I EZ(x) = �(x)

I covfZ(x);Z(y)g = K(x ; y)

Estimating covariance function generally causes most computational problems,

so assume mean is known (and 0) here.

If, as is often the case in computer experiments, only have one realization of

process, need to assume some kind of at least local stationarity.

K is a valid autocovariance function , K is positive definite:
n∑

`;k=1

�`�kK(x` � xk) � 0

for all finite n, all real �1; : : : ; �n and all x1; : : : ; xn 2 Rd .

Bochner’s Theorem: K is a valid (complex-valued) continuous autocovariance

function , for some positive finite measure F ,

K(x) =

∫
Rd

e iω
0xF (dω):

I For Z real, K is real, in which case F is symmetric about 0.
Michael Stein Theory and Computation for Gaussian Processes



Assume here F (dω) = f (ω)dω.

derivatives of Z , derivatives of K , moments of f

In one dimension:

Z has m mean square derivatives , K (2m)(0) exists , f has 2m moments

Examples:

I K(x) = e�jxj has no derivatives at 0

, f (!) / (1 + !2)�1 has no moments

I K(x) = e�jxj(1 + jx j) = 1� 1
2
x2 + 1

3
jx j3 + O(x4) as x ! 0, so has exactly

two derivatives

, f (!) / (1 + !2)�2 has two moments

Michael Stein Theory and Computation for Gaussian Processes



These two examples are special cases of the Matérn model:

I K(x) = ��jx j�K�(�jx j) has d2� � 1e derivatives

, f (!) / (�2 + !2)���
1
2 has d2� � 1e moments

I K(x) = e�jxj , � = 1 and � = 0:5
I K(x) = e�jxj(1 + jx j) , � = 1 and � = 1:5

I The Matérn model is a valid isotropic autocovariance function in any

number of dimensions d with f (ω) / (�2 + jωj2)���
d
2 .

Sensible starting place for modeling spatial data.

I No “surprises” in the correlation structure.

Following 3 examples are of models with “surprises.”

Michael Stein Theory and Computation for Gaussian Processes



Example 1: K(x) = (1� jx j)+, “triangular” autocovariance function.

I f (!) = (1� cos!)=(�!2)

Then

lim
�#0

corrfZ(�)� Z(0);Z(t + �)� Z(t)g =


1 t = 0

� 1
2

t = �1

0 otherwise

Michael Stein Theory and Computation for Gaussian Processes



Example 2: x = (x1; x2)0 2 R2 and ω = (!1; !2)0,

K(x) = e�jx1j�jx2j and f (ω) =
1

�2(1 + !2
1)(1 + !2

2)
:

Then

lim
�#0

corrfZ(0; �)� Z(0; 0);Z(s; t + �)� Z(s; t)g =

e�jsj t = 0

0 t 6= 0

Michael Stein Theory and Computation for Gaussian Processes



Example 3: Squared exponential (sometimes called “Gaussian”)

autocovariance function K(x) = e�(x=�)2

.

I limit of Matérn as � !1
I f (!) = (�=

p
4�)e��

2!2=4

Write en for error of best linear predictor of Z(0) based on

Z(1=n);Z(2=n); : : : ;Z(1).

Using results in Lam and Loh (2000),

corr2fen;Z(1 + 1=n)g = e�2=(n�2) = 1� 2

n�2
+ O

(
n�2)

as n !1.

If added Z(1 + 1=n) to other observations, mse of best predictor of Z(0) would

go down by factor � 2=(n�2).

Michael Stein Theory and Computation for Gaussian Processes



Characterization of spectral densities

Recall f in the three examples:

1.
1� cos!

�!2

2.
1

�2(1 + !2
1)(1 + !2

2)

3. f (!) =
�p
4�

e��
2!2=4

All violate the condition:

For all finite R,

lim
jωj!1

sup
jνj<R

∣∣∣∣ f (ω + ν)

f (ω)
� 1

∣∣∣∣ = 0:

I claim this restriction is quite natural for spatial or space-time data. What

about for computer experiments?

Michael Stein Theory and Computation for Gaussian Processes



Fitting GP models to data

Suppose � and K known up to finite number of parameters (and let’s assume

� = 0 here).

I If you are willing to take your GP model seriously, then the likelihood

function is the “correct” summary of the information in the observations

about these parameters.

Let Z 2 Rn be vector of observations. Write K(θ) for the covariance matrix of

Z , with θ 2 Rp unknown.

Then the loglik is (ignoring an additive constant)

`(θ) = �1

2
log jK(θ)j � 1

2
Z 0K(θ)�1Z :

Whether one takes a frequentist or Bayesian perspective, need to compute this

for many θ.

Michael Stein Theory and Computation for Gaussian Processes



Computational challenges

Exact computations (kriging, Gaussian likelihoods) for large, irregularly sited

datasets generally requires O(n3) computation and O(n2) memory.

I Computation is becoming cheap much faster than memory.

I Increasing emphasis on “matrix-free” methods in which never have to

store an n � n matrix, even if requires more computation.

Options for large n:

I Parallel computation (Paciorek, et al., R package ‘bigGP’).

I Use model that reduces computation and/or storage.

I Use approximate methods.

I Change what you compute.

I Some combination of these.

Michael Stein Theory and Computation for Gaussian Processes



Some approaches to reducing computations/memory

Models Approximate/Alternative Computations

Markov random fields Covariance tapering Spectral methods

Markov (in time) Composite likelihoods

Separable Score functions

Stationary (gridded data) Estimating equations

Low rank Stochastic trace approximants

Fast multipole methods

Empirical variograms

Not so easy to categorize covariance tapering.

I Important distinction between methods that give (exact/approximate)

unbiased estimating equations under model of interest versus those that

don’t: for g : Rn ! Rp,

gθ(Z) = 0

is a set of unbiased estimating equations if Eθgθ(Z) = 0 for all θ.

Michael Stein Theory and Computation for Gaussian Processes



Change what you compute

In loglikelihood, need both log jK(θ)j and Z 0K(θ)�1Z .

Second term can often be done using iterative methods (e.g., conjugate

gradient).

I Matrix-free (assuming can compute elements of K(θ) as needed).

I Iterative methods based on multiplying vectors by K(θ) quickly.
I Will consider later.

Computing log jK(θ)j more problematic, although people are trying (e.g.,

Zhang and Leithead, 2007).

I If flops are “free,” then there is a matrix-free way to do it.

Instead, let’s consider ways of avoiding it.

Michael Stein Theory and Computation for Gaussian Processes



Score function

Writing Ki for @
@�i

K(θ) and suppressing dependence on �, the score equations

are
1

2
Z 0K�1KiK

�1Z � 1

2
tr(K�1Ki ) = 0

for i = 1; : : : ; p. No more determinant!

I First term requires just a single “solve” K�1Z .

I Second term requires n solves, which is no bargain, but is at least

matrix-free (if use iterative methods).

For U1; : : : ;UN random vectors in Rn with iid symmetric Bernoulli components,

1

2
Z 0K�1KiK

�1Z � 1

2N

N∑
j=1

U 0
jK

�1KiUj

is an unbiased estimate (conditional on Z) of i ’th component of score function.

Hutchinson trace approximation.

If we can choose N much smaller than n, than this approximation reduces

computations.

Michael Stein Theory and Computation for Gaussian Processes



Stein, Chen and Anitescu (AoAS, 2013) shows that statistically efficiency of

this approximation depends on the condition number of K .

I Number of iterations needed for iterative solver also related to this
condition number! Preconditioning is key.

I One way to precondition is to find C such that CZ has covariance matrix

close to identity matrix.

I We showed that even when neighboring observations strongly dependent,

with appropriate preconditioning, N � 100 can yield estimates with nearly

same statistical efficiency as exact ML.

But N = 100 is still quite a few solves.

Michael Stein Theory and Computation for Gaussian Processes



Unbiased estimating equations

Sun and Stein (in press, JCGS) consider modifying the score equations to

reduce computations: for some matrix V ,

Z 0VKiK
�1Z � tr(VKi ) = 0 (1)

for i = 1; : : : ; p and

Z 0VKiVZ � tr(VKiVK) = 0 (2)

for i = 1; : : : ; p are both sets of unbiased estimating equations for θ. If

V = K�1, then both reduce to exact score equations.

Assuming V is available explicitly

I (1) requires one solve and (2) none

I tr(VKi ) may be much easier to compute than tr(VKiVK).

Michael Stein Theory and Computation for Gaussian Processes



If V is a sufficiently good approximation to K�1, then a better approximation

to score equations is 2� (1)� (2):

Z 0(2VKiK
�1 � VKiV )Z � tr(2VKi � VKiVK) = 0: (3)

How to pick V ? Essentially the same as preconditioning problem.

I “Close” to K�1.

I Easy to compute and store.

I Multiplying V times a vector is fast.

Choosing V based on a sparse inverse Cholesky approximation (Kolotolina and

Yeremin (1993, SIMAX), although this is effectively what Vecchia (1988,

JRSSB) was doing) provides a general approach to problem.

We give examples showing can get estimates with essentially same efficiency as

MLE with a small fraction of the computational effort.

Michael Stein Theory and Computation for Gaussian Processes



Matrix-vector multiplication

Iterative linear solvers require repeated matrix-vector multiplications.

For a dense, unstructured n � n matrix, this requires O(n2) flops.

I Sparse matrices reduce this computation.

I If data are on a (partial) grid and process is stationary, multiplication of

vector by covariance matrix can be done with fast Fourier transform.

If data not on a grid, then fast multipole method (FMM) might help:

I Many covariance functions K(x ; y) are smooth away from the plane

x = y , so properly chosen off-diagonal blocks of the covariance matrix of

observations may be well-approximated by a low rank matrix.

My collaborator, Jie Chen, has found this approach works well in some

circumstances, although it is not easy to implement.

Michael Stein Theory and Computation for Gaussian Processes



Solving estimating equations

To find point estimates, have to compute estimating functions multiple times.

Several interesting computational issues arise:

I Can we use the value of, say, K(θ)�1Z to help us find K(θ0)�1Z for θ0

near θ?

I When using Hutchinson trace estimator, should one always use different

Uj ’s for different θ?

I Should approximations to full score equations start out crude and then get
sharper as estimate gets closer to final value?

I Sun and Stein first found solution to (1) and used that as starting value for

solving (3).
I In Hutchinson trace estimator, one can use fairly small N when first

updating θ values and then increase N in last few iterations.
I Preconditioners can get more elaborate in later iterations (e.g., less sparsity

in sparse inverse Cholesky).

Michael Stein Theory and Computation for Gaussian Processes



Composite loglikelihood

Approaches that consider all of the observations simultaneously aren’t suitable

for really large n and unstructured covariance matrices.

I Even computing all elements of the covariance matrix once when n = 106

(one day’s worth of fairly modest resolution satellite data) is problematic.

For really large data sets, moderate loss of statistical efficiency may be a small

concern. More important issues:

I Good models.

I (Approximately) unbiased estimation.

I Defensible uncertainty estimates.

Composite likelihood methods provide a way forward.

Let p1; : : : pb (prediction sets) and c1; : : : ; cb (conditioning sets) be subvectors

of the observation vector Z and w1; : : : ;wb nonnegative weights. Then

b∑
j=1

wj log fθ(pj jcj)

is a weighted composite loglikelihood for θ.

Michael Stein Theory and Computation for Gaussian Processes



To get standard errors, can use Godambe information matrix (generalization of

Fisher information matrix). Calculating this exactly requires working with n� n

matrices.

I But only needs to be done once.

I Can approximate using sampling if even that is not possible.

From both statistical and computational perspectives, I consider composite

likelihoods a good solution to the large n problem.

I The problem with them is how to choose the exact form in any specific

application.

I Unfortunately, I think coming up with an automated solution to this

problem is difficult for space-time data.

What about for computer experiments?

I I think biggest issues are conceptual, not computational.

Michael Stein Theory and Computation for Gaussian Processes



Random questions on GPs for computer experiments

GPs in computer experiments: “machine learning” or “statistics”?

I As far as I know, this approach was first developed by Sacks, Welch and

others in the statistics community in the late 1980s.

I If “machine learning” is to mean anything, it should concern highly

automated procedures requiring minimal human input.

If a computer model is very expensive to run, then it should be worth investing

a fair amount of human effort to develop an effective emulator.

What might this human effort entail?

I Developing a good mean function, perhaps via simplified computer model.

I Figuring out which inputs matter most.

I Figuring out which interactions between inputs matter most.

With input vector x = (x1; : : : ; xp), suggests model of form

Z(x) = �(x) +

p∑
i=1

Zi (xi ) +
∑

1�i<j�p

Zij(xi ; xj) + � � �

with Zi ’s, Zij ’s, etc., (perhaps) independent mean 0 Gaussian processes.

Michael Stein Theory and Computation for Gaussian Processes



Random questions on GPs for computer experiments

Is the squared exponential a good starting point for form of covariance

functions?

I For natural processes, no.

I For computer experiments, maybe. But if Z has any kind of singularity in

domain of interest, will eventually have a problem.

My covariance matrices often turn out too close to singular to decompose.

What should I do?

I Standard solution of adding a small multiple of identity (a “nugget”) to

covariance matrix is a bad idea.

I The right solution is to use higher precision arithmetic.

But doesn’t the finite precision of my computer model output create

justification for a nugget?

I Yes, but the nugget is a variance (the mean of the square of something),

so for a nugget to represent truncation error, its size should be around the

square of this error.

Michael Stein Theory and Computation for Gaussian Processes



Random questions on GPs for computer experiments

Suppose, as in many particle systems, the dimension of input vector is large.

Are dimension-reduction methods appropriate?

I They could be, but then you really do need to include a nugget effect in

your GP.

At least for my starting designs, I use Latin hypercube samples because that

appears to be the norm. Is that a good idea?

I Theoretical justification for LHS is that it works well for integrating a

deterministic function over some box and the output is close to additive in

the inputs (Stein, 1987).

I Other designs may be much better for interpolation, depending on

covariance structure.

Michael Stein Theory and Computation for Gaussian Processes



Questions on GPs for many particle systems

Inputs for many particle systems (atomic labels, interatomic distances) cannot

take on arbitrary values. Does this matter?

I Not sure. But worth thinking about.

How do I use GPs on Rp given that:

I The properties of atoms are not well-described by a few real numbers.

I The size of input vector depends on the size of molecule.

I There are invariances such as to reordering the labels on atoms.

Don’t think of as process on Rp! Don’t convert element names of atoms into

(one or more) real numbers!

Michael Stein Theory and Computation for Gaussian Processes



Questions on GPs for many particle systems

Develop special-purpose models for chemical properties of molecules rather

than trying to use existing statistical/machine learning methods.

Possible way forward:

I Approximate response as sum over functions of contiguous subsets of

atoms in molecule M.

For a subset of atoms S , write C(S) = for the labels and configuration of

the atoms in S .

Try a model of the form

Z(M) =
∑
i

Z1(C(Si )) + interactions

Use all of the information in C(Si ) in developing form for Z1. Possible for

Si relatively small (functional group)?

Michael Stein Theory and Computation for Gaussian Processes


