Machine learning the Born-Oppenheimer potential energy surface: from molecules to materials

> Gábor Csányi Engineering Laboratory

Interatomic potentials for molecular dynamics

Transferability AMBER **CHARMM** biomolecular AMOEBA force fields **GROMACS OPLS** (biochemistry) . . .

Accuracy small molecules s in gas phase (quantum chemistry)

Bowman Szalewicz Paesani Reactive solid state materials (physics & materials) Tersoff Brenner EAM BOP

. . .

Ingredients

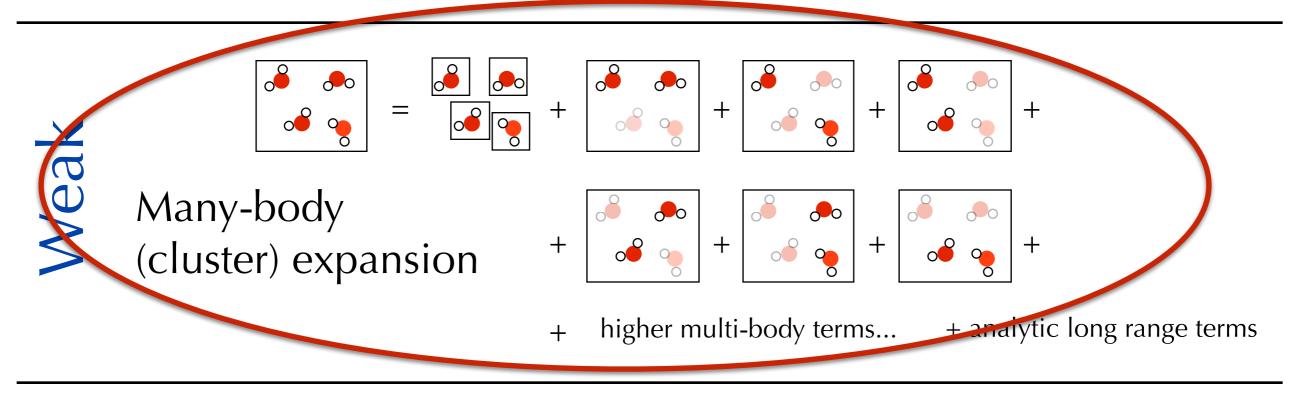
- Representation of atomic neighbourhood
- Interpolation of functions

- smoothness, faithfulness, continuity
 - flexible but smooth functional form, few sensible parameters

 Database of configurations predictive power non-domain specific Interpolating the solution of an eigenproblem

$$-i\hbar\frac{\partial\Psi}{\partial t} = \mathcal{H}\Psi \qquad \mathcal{H}_{\rm el} = \frac{1}{2}\sum_{i}\nabla_{r_i}^2 + \sum_{ij}\frac{Z_j(-1)}{|R_j - r_i|} + \sum_{ij}\frac{1}{|r_i - r_j|}$$

Lowest eigenstate: $E_0 \equiv V_{el}(R_1, R_2, ...)$ has spatial locality



$$E = \sum_{i} \varepsilon(q_{1}^{(i)}, q_{2}, {}^{(i)} \dots, q_{M}^{(i)})$$

+ analytic long range terms

 q_i are descriptors of local atomic neighbourhood

Parametrisation of the H₂O dimer

• Standard representation: 6 atoms \Rightarrow 15 interatomic distances : $x = \{r_{ij}\}$

• Symmetrize kernel function:

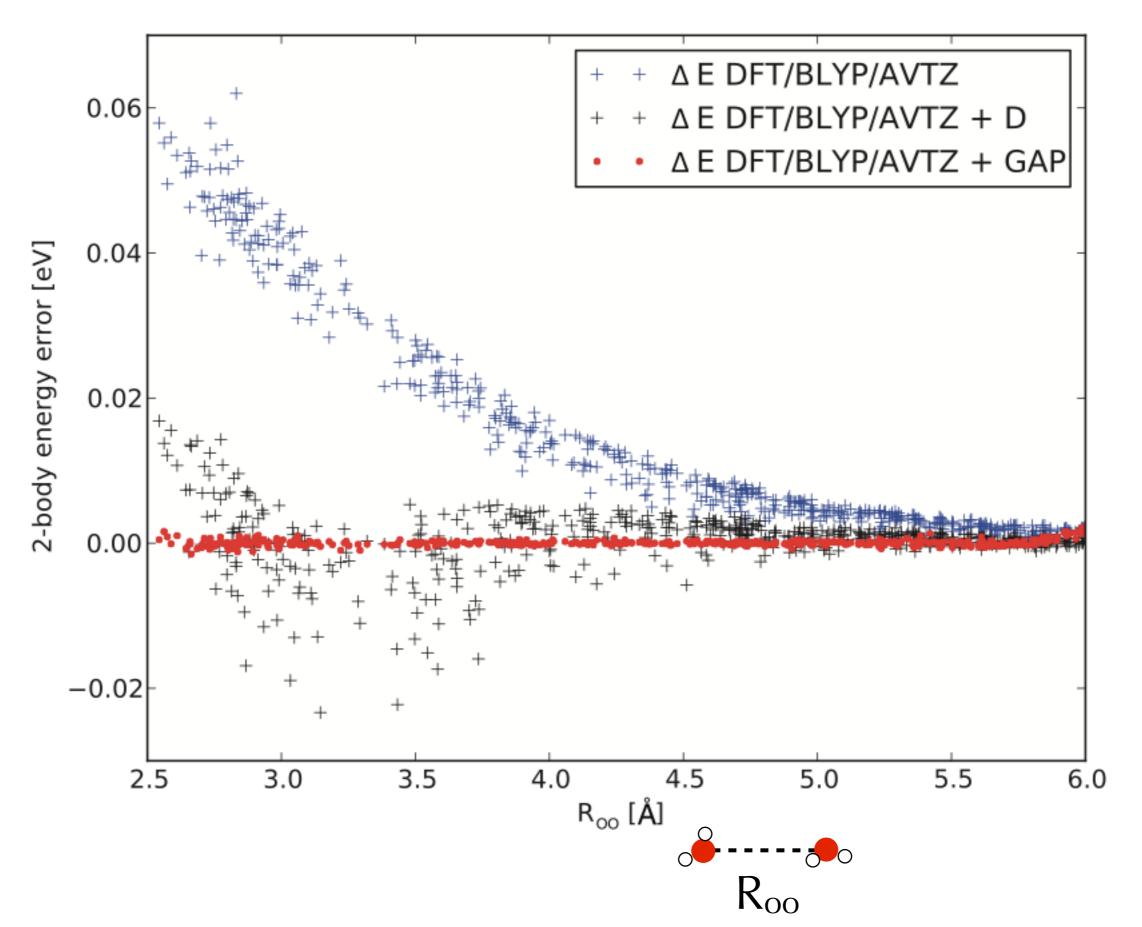
$$\tilde{K}(x, x') = \sum_{p \in S} K(p(x), x')$$

S: symmetry group of molecules

• Use analytic forces if available:

$$K'(x, x') = \frac{\partial}{\partial x} K(x, x')$$

H2O dimer corrections



Water hexamers - relative energies - no ZPC

CCSD(T)	BLYP	DMC	Bowman	BLYP+GAP
0.00	0.00	0.00	0.00	0.00
0.24	-0.59	0.33	0.46	0.15
0.70	-2.18	0.56	2.39	0.52
1.69	-2.44	I.53	4.78	1.77

[kcal / mol]

(B3LYP optimised geometries from Tschumper)

GAP error < 0.03 kcal/mol / H_2O

Ice polymorphs

Relative energies

[meV / H ₂ O]	Expt	DMC±5	PBE0+vdW ^{TS}	BLYP+GAP±3	
Ih	0	0	0	0	
II		-4	6	-5	
ΙX	4		3	-3	
VIII	33	30	76	30	

 $error < 0.15 kcal/mol / H_2O$

Ice polymorphs

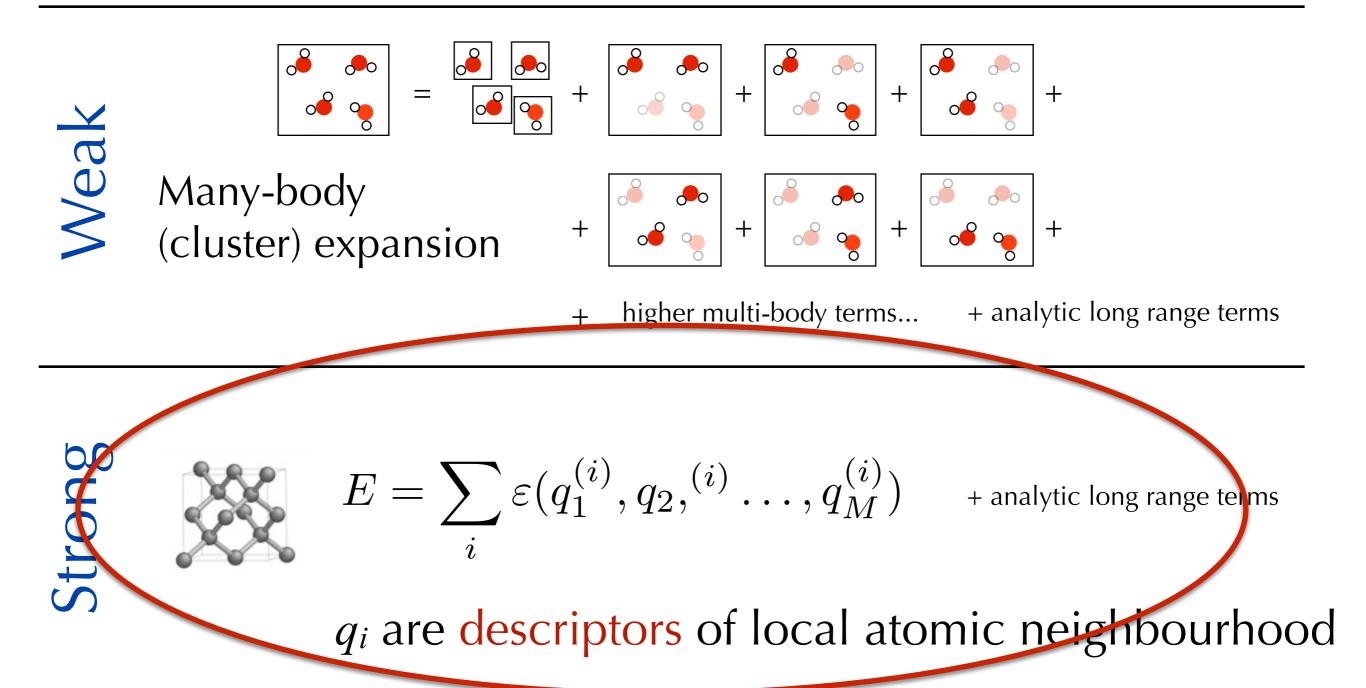
Absolute binding energies

[meV / H ₂ O]	Expt	DMC ±5	PBE0+vdW ^{TS}	BLYP+GAP ±3
Ih	610	605	672	667
Π	609	609	609 666	
IX				
\vee	577	575	596	637

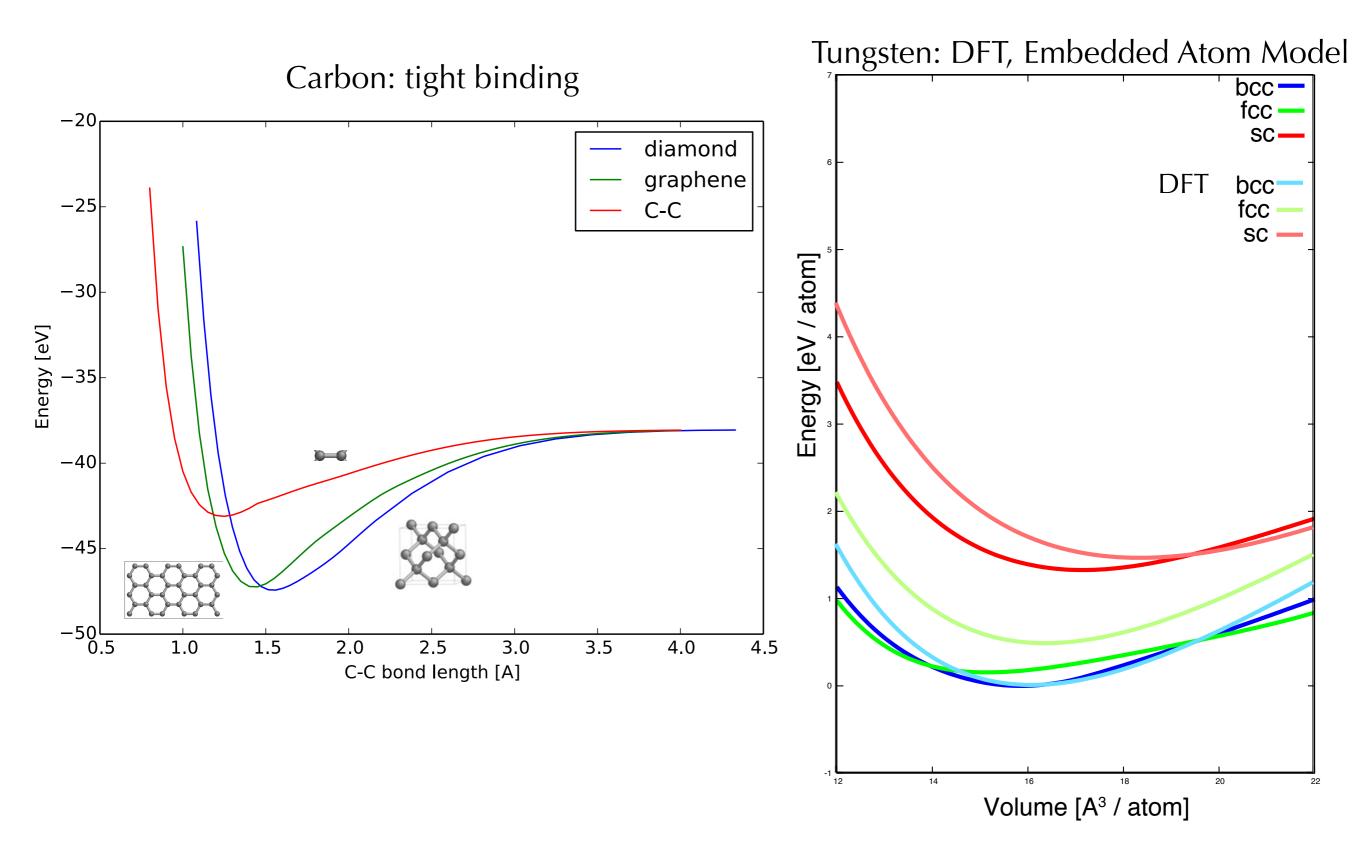
BLYP+GAP overbinds *uniformly* by ~ 60 meV ⇒ 3-body terms! Interpolating the solution of an eigenproblem

$$-i\hbar\frac{\partial\Psi}{\partial t} = \mathcal{H}\Psi \qquad \mathcal{H}_{\rm el} = \frac{1}{2}\sum_{i}\nabla_{r_i}^2 + \sum_{ij}\frac{Z_j(-1)}{|R_j - r_i|} + \sum_{ij}\frac{1}{|r_i - r_j|}$$

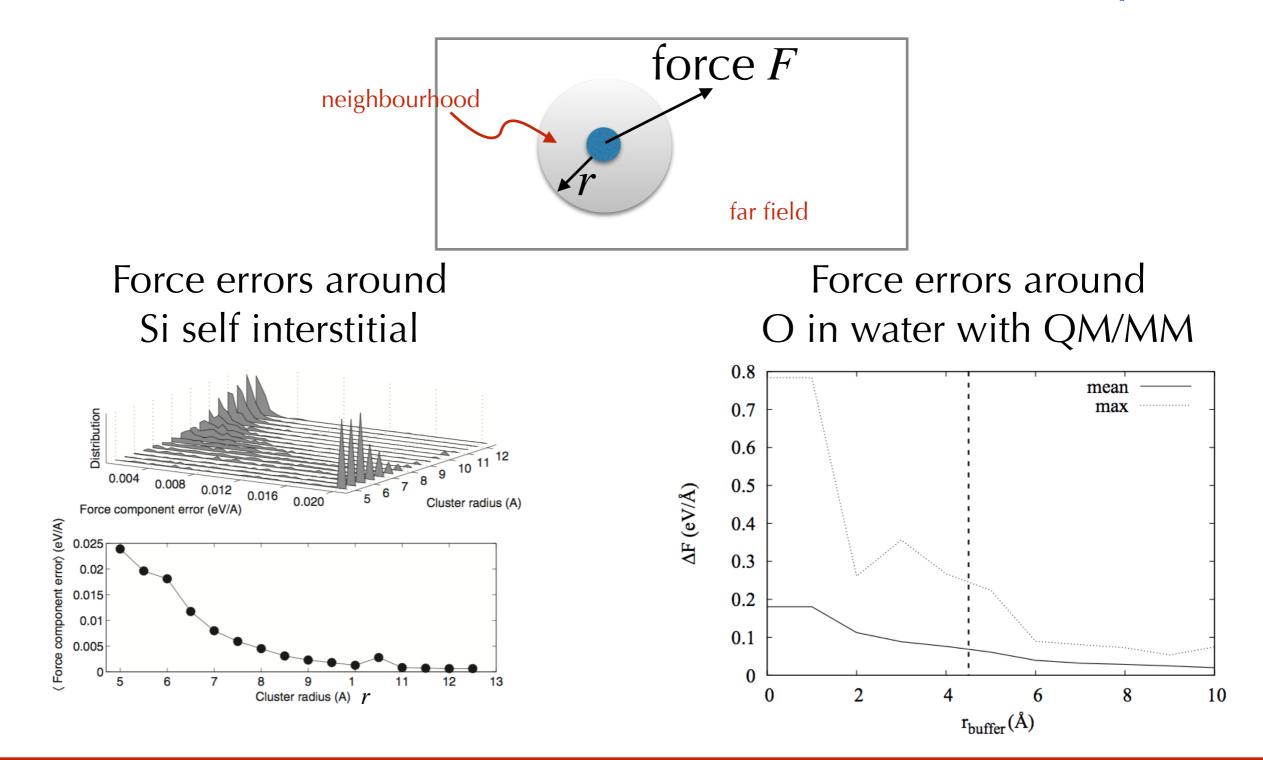
Lowest eigenstate: $E_0 \equiv V_{el}(R_1, R_2, ...)$ has spatial locality



Quantum mechanics is many-body



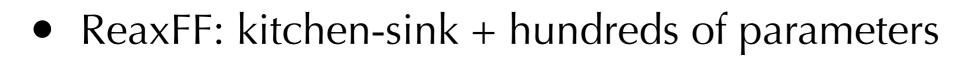
Quantum mechanics has some locality



 $\underbrace{\mathsf{ls}}_{\mathsf{el}}(\mathsf{R}_{1},\mathsf{R}_{2},\ldots) \approx \underbrace{\mathsf{finite}}_{\mathcal{E}}(\mathsf{R}_{1}-\mathsf{R}_{2},\mathsf{R}_{2}-\mathsf{R}_{i},\ldots) + \underbrace{\mathsf{e}}_{2} \underbrace{\mathsf{res}}_{2} \underbrace{\mathsf{function}}_{\mathcal{R}_{ij}} \underbrace{\mathsf{function}}_{\mathcal{R}_{ij}} \mathsf{that that gives the correct total i energy and forces } \mathsf{forces}_{ij} \underbrace{\mathsf{function}}_{\mathcal{R}_{ij}} \mathsf{function}$

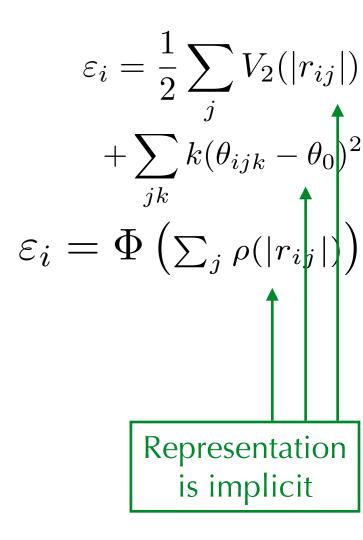
Traditional ideas for functional forms

- Pair potentials: Lennard-Jones, RDF-derived, etc.
- Three-body terms: Stillinger-Weber, MEAM, etc.
- Embedded Atom (no angular dependence)
- Bond Order Potential (BOP) Tight-binding-derived attractive term with pair-potential repulsion



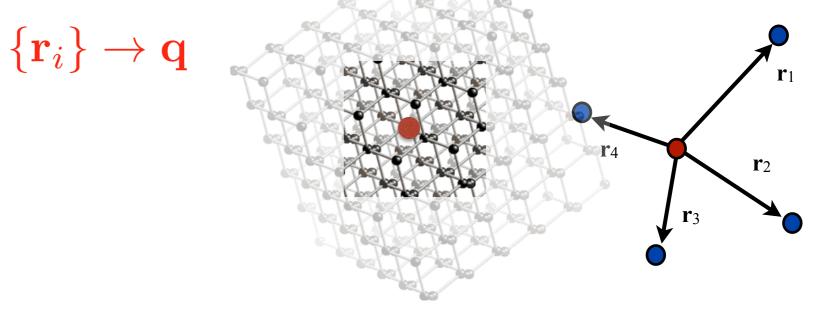
These are NOT THE CORRECT functions. Limited accuracy, not systematic

given by GOAL: potentials based on quantum mechanics



Representing the atomic neighbourhood in strongly bound materials

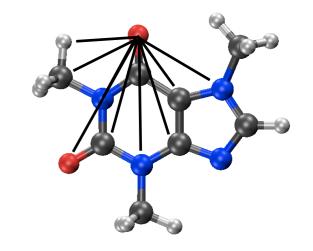
- What are the arguments of the atomic energy *E* ? Need a *representation*, i.e. a coordinate transformation
 - L'
 - Exact symmetries:
 - Global Translation
 - Global Rotation
 - Reflection
 - Permutation of atoms
 - Faithful: different configurations correspond to different representations
 - Continuous, differentiable, and smooth (i.e. slowly changing with atomic position) ("Lipschitz diffeomorphic")
- Rotational invariance by itself is easy: $\mathbf{q} = R_{ij} = \mathbf{r}_i \cdot \mathbf{r}_j$ (Weyl)
 - Complete, but not invariant permutationally
 - Not continuous with changing number of neighbours



Matrix of interatomic distances

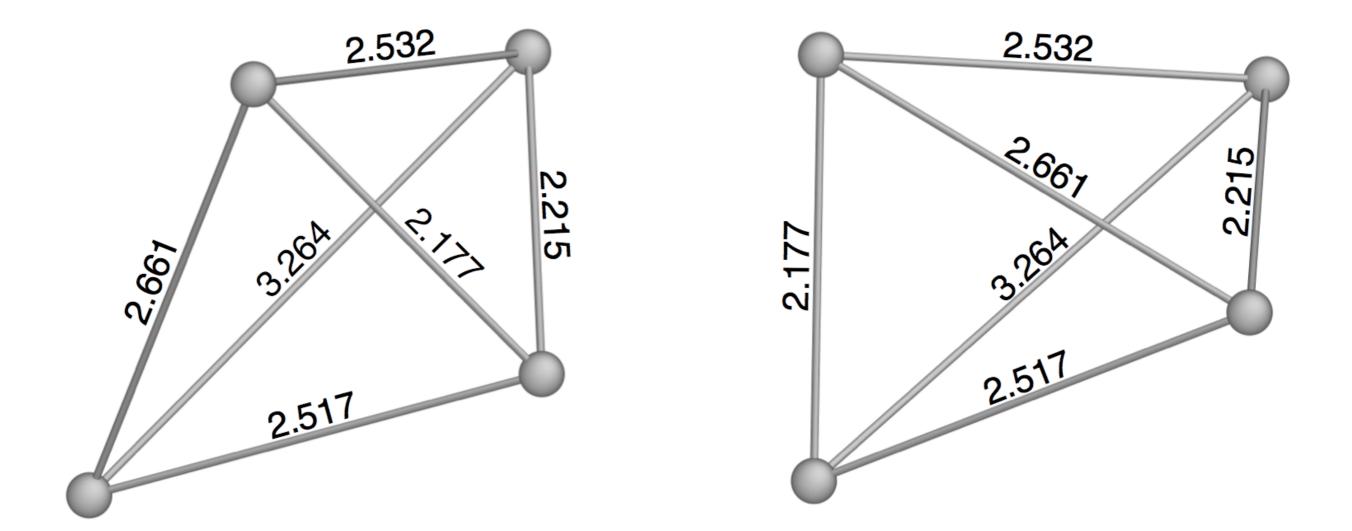
• Equivalent to Weyl matrix

 $\begin{bmatrix} \mathbf{r}_1 \cdot \mathbf{r}_1 & \mathbf{r}_1 \cdot \mathbf{r}_2 & \cdots & \mathbf{r}_1 \cdot \mathbf{r}_N \\ \mathbf{r}_2 \cdot \mathbf{r}_1 & \mathbf{r}_2 \cdot \mathbf{r}_2 & \cdots & \mathbf{r}_2 \cdot \mathbf{r}_N \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{r}_N \cdot \mathbf{r}_1 & \mathbf{r}_N \cdot \mathbf{r}_2 & \cdots & \mathbf{r}_N \cdot \mathbf{r}_N \end{bmatrix}$



- Rotationally invariant: no alignment needed
- Permutation problem: Weyl matrix is not permutation invariant

Drop atom ordering ?



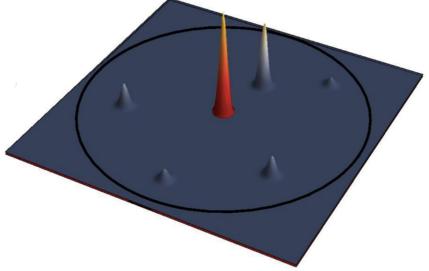
Not unique!

Atomic neighbour density function

$$\varepsilon(\mathbf{r}_{1} - \mathbf{r}_{i}, \mathbf{r}_{2} - \mathbf{r}_{i}, ...) \equiv \varepsilon[\rho_{i}(\mathbf{r})]$$

$$\rho_{i}(\mathbf{r}) = s\delta(\mathbf{r}) + \sum_{j} \delta(\mathbf{r} - \mathbf{r}_{ij}) f_{\text{cut}}(|\mathbf{r}_{ij}|)$$

$$\rho(r, \theta, \phi) = \sum_{n=1}^{\infty} \sum_{l=0}^{\infty} \sum_{m=-l}^{l} c_{l,n}^{m} g_{n}(r) Y_{l}^{m}(\theta, \phi)$$



- Translation \checkmark
- Permutation \checkmark
- Need rotationally invariant features of $\rho(\mathbf{r})$

Rotational Invariance

$$\rho(\hat{\mathbf{r}}) = \sum_{lm} c_{lm} Y_{lm}(\hat{\mathbf{r}}) \qquad \text{Transformation}$$

$$\rho(\hat{R}\hat{\mathbf{r}}) = \sum_{lm} c_{lm} Y_{lm}(\hat{R}\hat{\mathbf{r}}) = \sum_{lm} c_{lm} \sum_{m'} D_{mm'}^{l}(\hat{R}) Y_{lm'}(\hat{\mathbf{r}}) \qquad \text{of coefficients:}$$

$$= \sum_{lm'} \left(\sum_{m} D_{mm'}^{l} c_{lm} \right) Y_{lm'}(\hat{\mathbf{r}}) \qquad \mathbf{c}_{l} \xrightarrow{\hat{R}} \mathbf{D}^{l} \mathbf{c}_{l}$$

• Wigner matrices are unitary:

 $\mathbf{D}^{-1} = \mathbf{D}^{\dagger}$

• Construct invariants:

$$p_l = \mathbf{c}_l^{\dagger} \mathbf{c}_l \rightarrow \left(\mathbf{c}_l^{\dagger} \mathbf{D}^{l^{\dagger}} \right) \left(\mathbf{D}^l \mathbf{c}_l \right) = \mathbf{c}_l^{\dagger} \mathbf{c}_l$$

- Equivalent to Steinhardt bond order Q_2 , Q_4 , Q_6 ... parameters
- Higher order invariants possible, (generalisation of Steinhardt W)

First few terms of power spectrum for 3 atoms

$$p_{0} = \frac{9}{4\pi}$$

$$p_{1} = \frac{3}{4\pi} \left(\sum_{jk} \cos \theta_{ijk} + 3 \right)$$

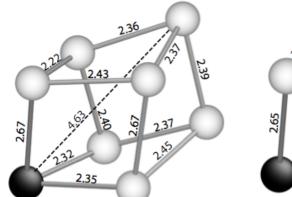
$$p_{2} = \frac{5}{4\pi} \left(\frac{3}{2} \sum_{jk} \cos^{2} \theta_{ijk} + 6 \right)$$

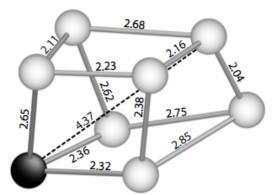
$$p_{3} = \frac{7}{4\pi} \left(\frac{5}{2} \sum_{jk} \cos^{3} \theta_{ijk} - \frac{3}{2} \sum_{jk} \cos \theta_{ijk} + 3 \right)$$

$$p_{4} = \frac{9}{16\pi} \left(\frac{35}{2} \sum_{jk} \cos^{4} \theta_{ijk} - 15 \sum_{jk} \cos^{2} \theta_{ijk} + 13 \right)$$

- Polynomials of Weyl invariants
- Highly oscillatory for large *l* : not smooth
- Different *l* channels uncoupled

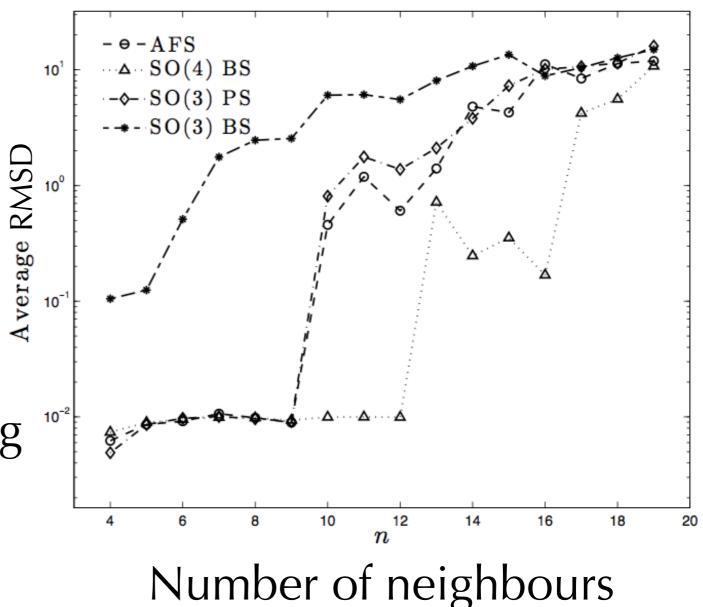
Uniqueness: environment reconstruction tests





- 1. Select target configuration
- 2. Randomise neighbours
- 3. Try to reconstruct target by matching descriptors

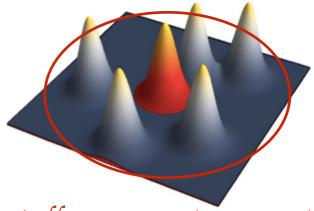
Error in distinguishing



Construct smooth similarity kernel directly

$$\rho_i(\mathbf{r}) = \sum_j \exp\left(-|\mathbf{r} - \mathbf{r}_{ij}|^2 / 2\sigma^2\right) = \sum_j \sum_{lm} c_{nlm}^{(i)j} g_n(r) Y_{lm}(\hat{\mathbf{r}})$$

- Overlap integral $S(\rho_i, \rho_{i'}) = \int \rho_i(\mathbf{r}) \rho_{i'}(\mathbf{r}) d\mathbf{r},$
- Integrate over all 3D rotations:



cutoff: compact support

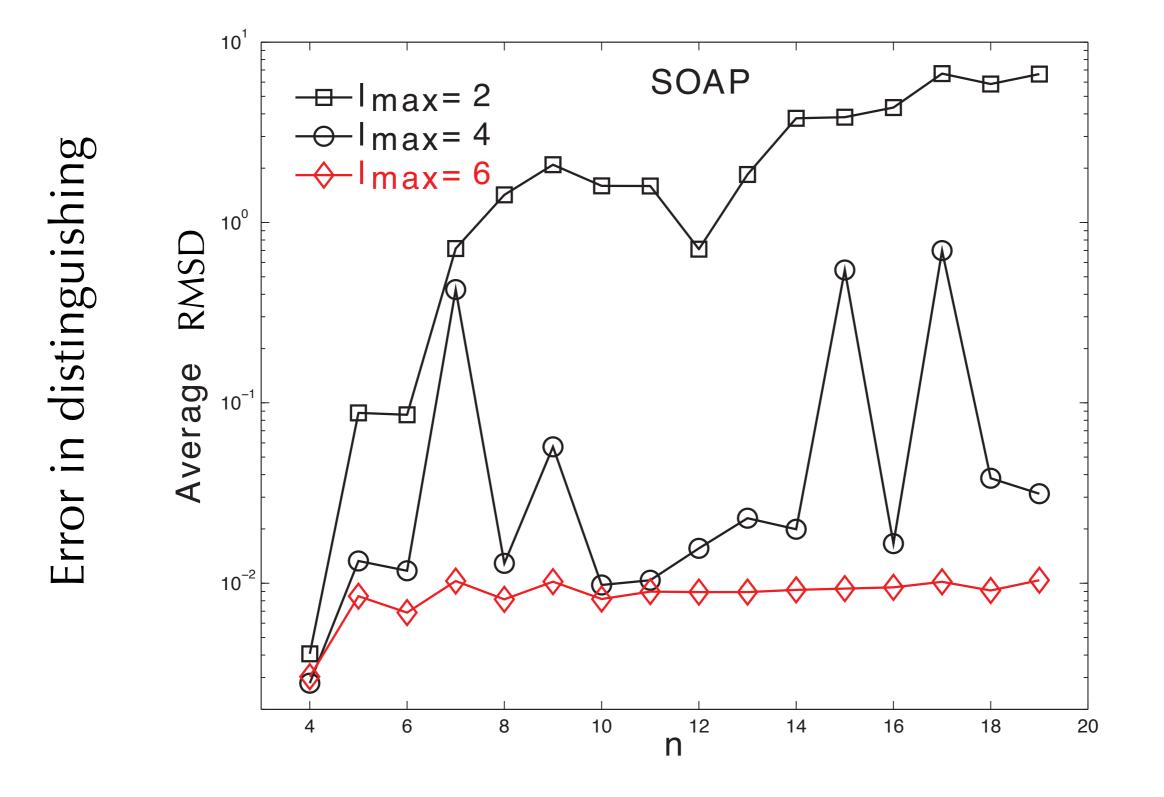
$$k(\rho_i, \rho_{i'}) = \int \left| S(\rho_i, \hat{R}\rho_{i'}) \right|^2 d\hat{R} = \int d\hat{R} \left| \int \rho_i(\mathbf{r})\rho_{i'}(\hat{R}\mathbf{r})d\mathbf{r} \right|^2$$

• After LOTS of algebra: SOAP kernel

$$k(\rho_i, \rho_{i'}) = \sum_{n,n',l} p_{nn'l}^{(i)} p_{nn'l}^{(i')}$$
$$K(\mathbf{q}, \mathbf{q}') \propto |k(\rho, \rho')|^{\xi}$$

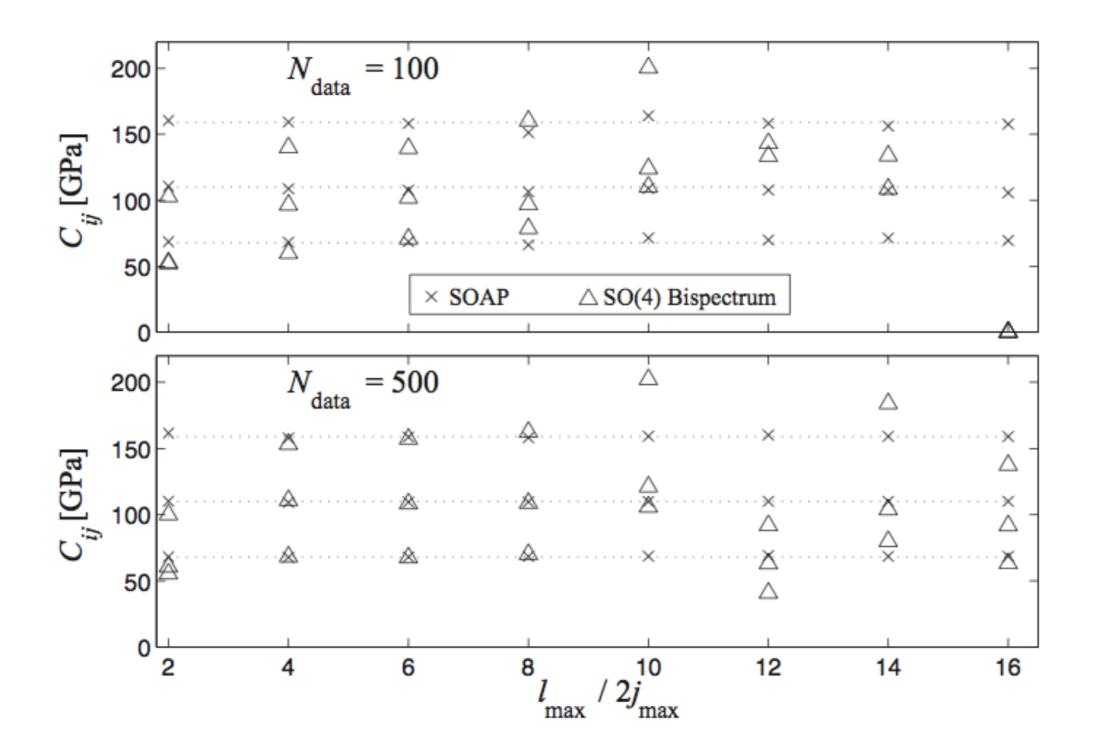
$$p_{nn'l} = \mathbf{c}_{nl}^{\dagger} \mathbf{c}_{n'l}$$

Smooth Overlap of Atomic Positions (SOAP)



Number of neighbours

Stability of fit: elastic constants of Si



Order of angular momentum expansion

How to generate databases?

- Target applications: large systems
- Capability of full quantum mechanics (QM): small systems

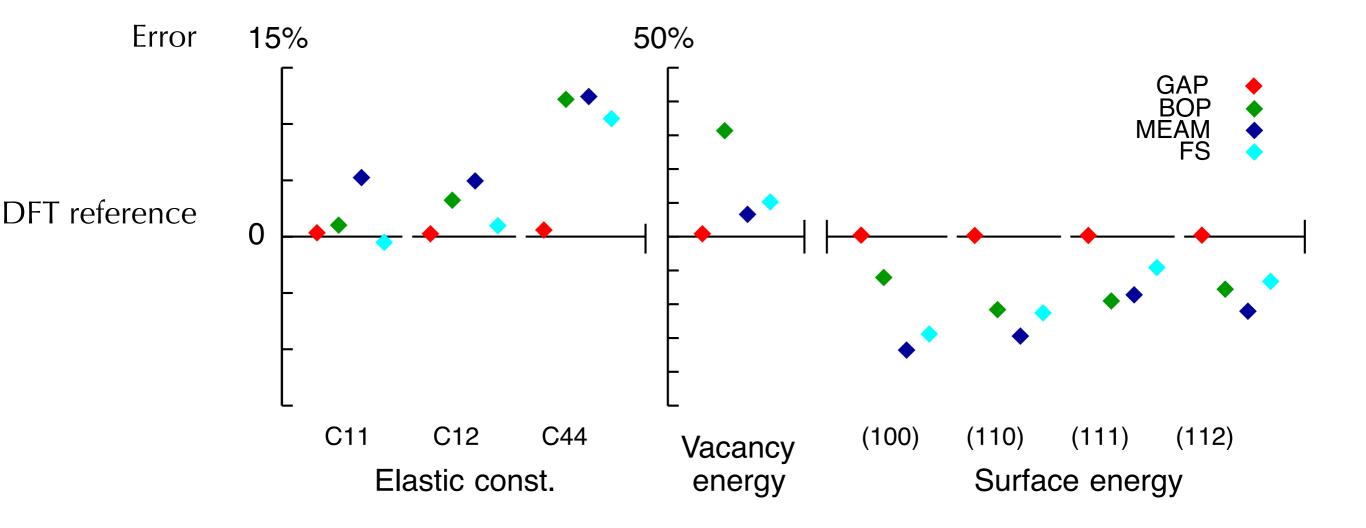
QM MD on "representative" small systems:

sheared primitive cell \rightarrow elasticity large unit cell \rightarrow phonons surface unit cells \rightarrow surface energy gamma surfaces \rightarrow screw dislocation vacancy in small cell \rightarrow vacancy vacancy @ gamma surface \rightarrow vacancy near dislocation Iterative refinement

I. QM MD → Initial database
2. Model MD
3. QM → Revised database

What is the acceptable validation protocol? How far can the domain of validity be extended?

Existing potentials for tungsten

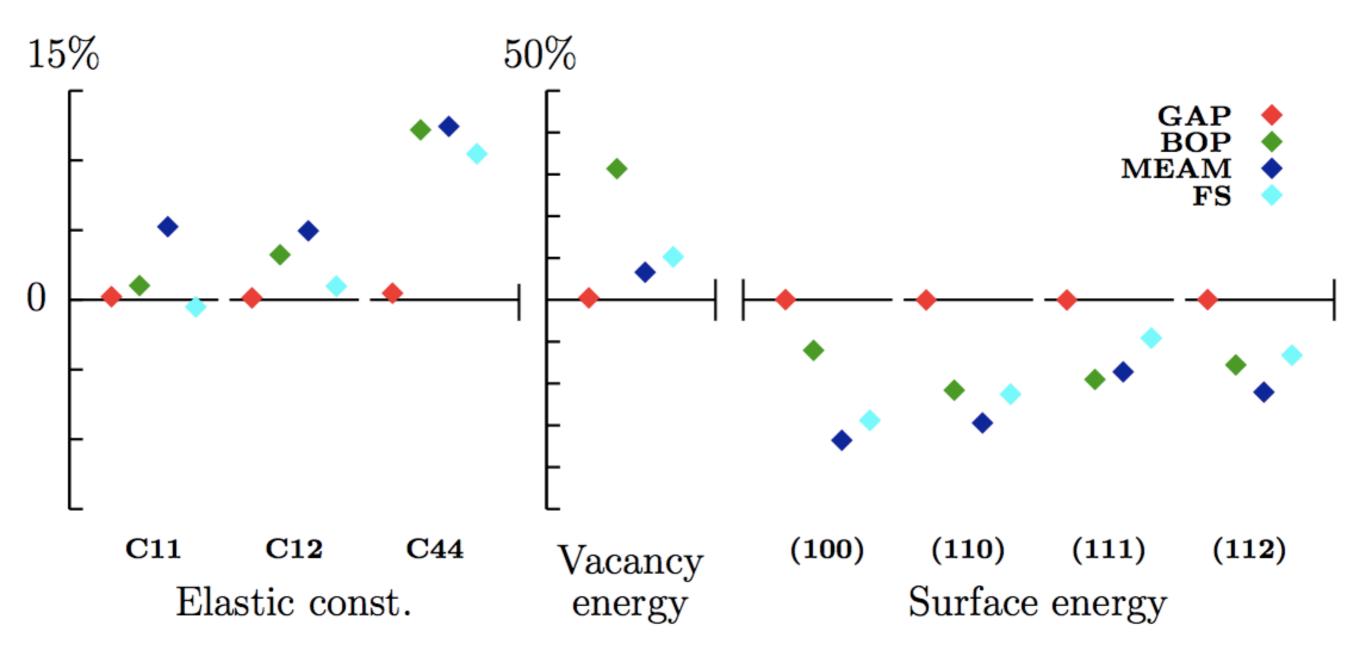


Building up databases for tungsten (W)

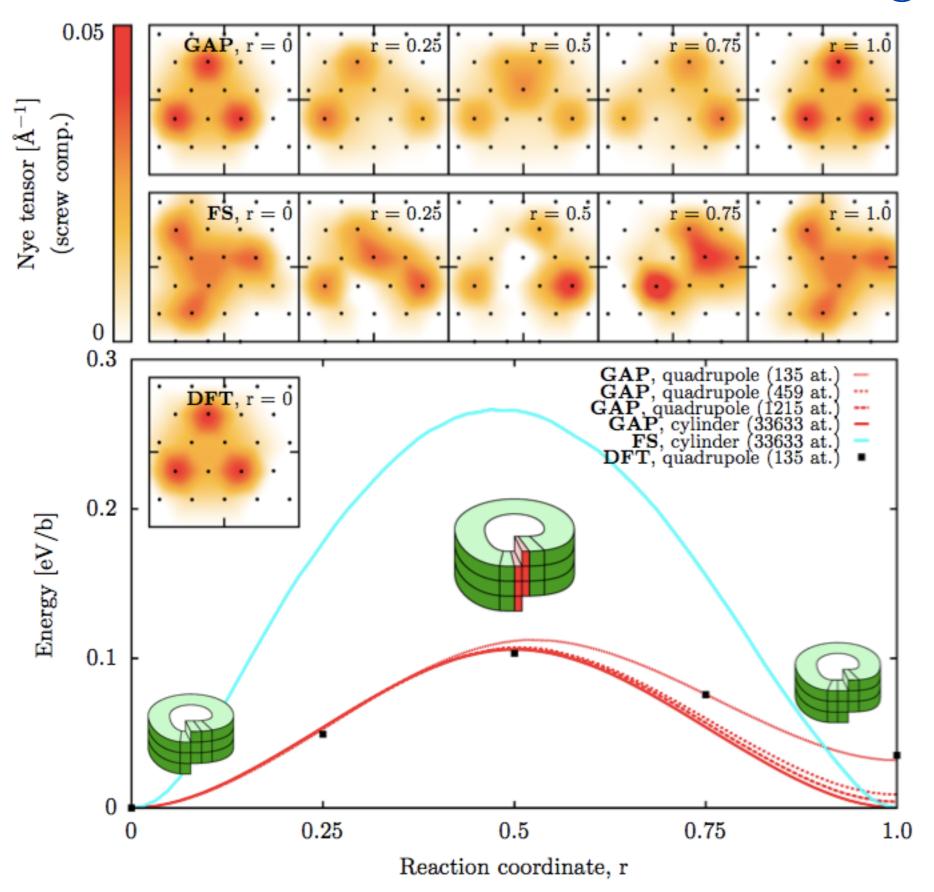
Database:	Computational cost ^a [ms/atom]	Elastic constants ^b [GPa]	Phonon spectrum ^b [THz]	Vacancy formation ^c [eV]	Surface energy ^b $[eV/Å^2]$	Dislocation structure ^d $[Å^{-1}]$	Dislocation-vacancy binding energy [eV]	Peierls barrier [eV/b]
GAP_1 : 2000 × primitive unit cell with varying lattice vectors	24.70	0.623	0.583	2.855	0.1452	0.0008		
GAP_2 : $GAP_1 + 60 \times 128$ atom cell	51.05	0.608	0.146	1.414	0.1522	0.0006		
$GAP_3: GAP_2 + {vacancy in: 400 \times 53 atom cell, 20 \times 127 atom cell}$	63.65	0.716	0.142	0.018	0.0941	0.0004		
$GAP_4: GAP_3 + \begin{cases} (100), (110), (111), (112) \text{ surfaces} \\ 180 \times 12 \text{ atom cell} \\ (110), (112) \text{ gamma surfaces} \\ 6183 \times 12 \text{ atom cell} \end{cases}$	86.99	0.581	0.138	0.005	0.0001	0.0002	-0.960	0.108
GAP_5 : GAP_4 + $\begin{array}{c} vacancy in: (110), (112) \text{ gamma surface} \\ 750 \times 47 \text{ atom cell} \end{array}$	93.86	0.865	0.126	0.011	0.0001	0.0002	-0.774	0.154
$GAP_6: GAP_5 + \frac{\frac{1}{2}\langle 111 \rangle}{100 \times 135} \operatorname{atom cell}$	93.33	0.748	0.129	0.015	0.0001	0.0001	-0.794	0.112

^a Time on a single CPU core of Intel Xeon E5-2670 2.6GHz, ^b RMS error, ^c formation energy error, ^d RMS error of Nye tensor over the 12 atoms nearest the dislocation core, cf. Figure 2.

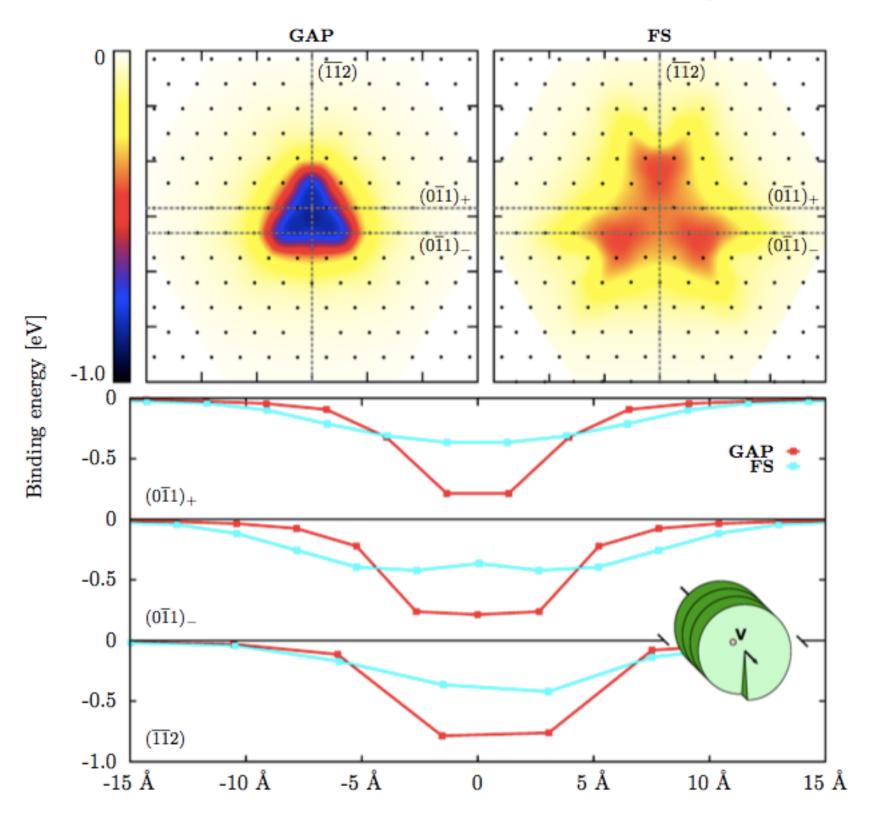
Improvement for tungsten (W)



Peierls barrier for screw dislocation glide



Vacancy-dislocation binding energy



(~100,000 atoms in 3D simulation box)

Outstanding problems

- Accuracy on database accuracy in properties?
- Database contents \longrightarrow region of validity ?
- Alloys permutational complexity? Chemical variability?
- Systematic treatment of long range effects
- Electronic temperature