Stochastic Quantum Chemistry: Towards fully-quantum electronic structure and dynamics of very large molecules and clusters

DANNY NEUHAUSER (UCLA) (NSF, DOE; PNNL)

Stochastic: traditional quantum chemistry (DFT, MP2, RPA, <u>GW, TDDFT, BSE, GF2</u>) for very large systems

ROI BAER (Hebrew U.)

ERAN RABANI (Berkeley)

 $E_{MP2} = \sum_{i \langle ab \rangle} \frac{(2\langle ab | ij \rangle - \langle ab | ji \rangle) \langle ij | ab \rangle}{\epsilon_i + \epsilon_j - \epsilon_a - \epsilon_b}$

Recently: DOMINIKA ZGID (Michigan)

Stochastic Quantum Chemistry:

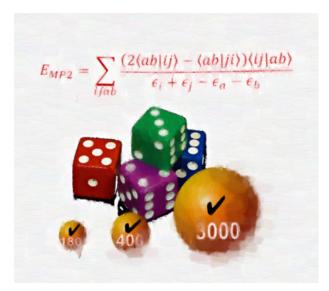
Towards fully-quantum electronic structure and dynamics of very large molecules and clusters

1992:

- \$50,000 per Gigaflop
- Bio. simulations: pico/nano sec.
- QC: 100-150 electrons

2014:

- GPU: Gigaflop ~\$5 or less
- Bio. Sim: ~micro/mili/more sec.
- Quantum Chemistry: ~1000-2000 electrons (DFT) (less for correlation)



New paradigm clearly needed for Quantum Chemistry.

Stochastic QM both: Computationally efficient and physically rich

Mathematical guidelines:

- Stochastic compression: $f(\mathbf{r},t) = \eta(\mathbf{r},t) \langle \eta(t) | f(t) \rangle \eta$ random noise; $\eta_{w.n.}(r) = \pm 1$
- Multidimensional: stochastic compression:

 $F(\mathbf{r},\mathbf{r}') \rightarrow \eta(\mathbf{r}) \langle \eta | F | \zeta \rangle \zeta(\mathbf{r}')$

Replace sums over orbitals by random averages:

$$\int \sum_{ijkl} \dots \phi_i(r) \dots \phi_i(r') \dots dr dr' = \int \{\dots, \eta(r) \dots \eta(r') \dots \} d\mathbf{r} d\mathbf{r}'$$

• If ϕ_i is occupied (energy below μ) η should be filtered:

$$\eta = \theta(\mu - h)\eta_{w.n.}$$

Energy denominator → correlation function

$$\frac{\phi_k(r')}{E_i - E_j}\phi_j(r'') = -i\int_0^\infty \phi_k^*(r', t)\phi_j(r'', t)dt = -i\int_0^\infty \zeta^*(r', t)\eta(r'', t)dt$$

OVERVIEW

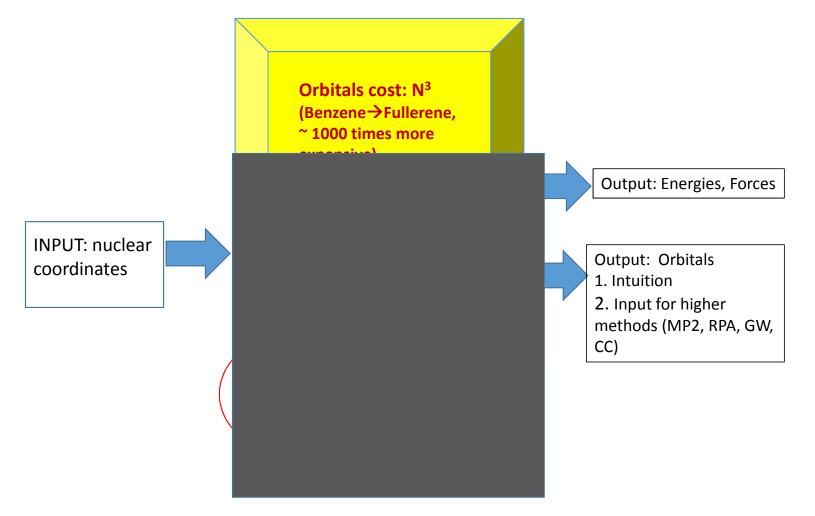
- DFT first
- Correlation next:
 - s-MP2
 - s-GW
 - s-GW

HISTORY:

- <u>Difference from QMC</u>: no moving walkers.
- Historically: DFT closest to Sankey's approach in the 90's – but realization now is "embedded fragment" and look for forces, not total energy
- Almlof had initial ideas for MP2 correlations.

Relation to machine learning:

- Usually looking for high accuracy.
- But want to sample many molecules.
- So instead eventual goal: do multiple lowresolution study (millions of high-noise calculations) – let the machine find the regions where less noise is desired.



Traditional method scale steeply.

Traditionallly:

 $\rho(r) = 2\{|\psi_1(r)|^2 + |\psi_2(r)|^2 + \dots + |\psi_{HOMO}(r)|^2\}$

MO: expensive – due to Pauli principle:

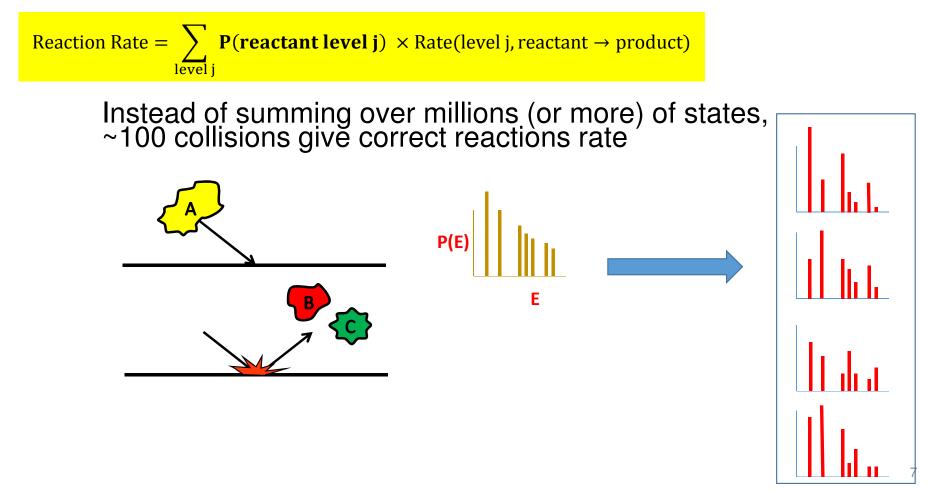
 $\langle \psi_i | \psi_j \rangle = 0$ if $i \neq j$.

Getting all occupied orbitals: scales cubically

10 times bigger system \rightarrow 1000 times more effort.

Alternatives:

1) Avoid orbitals, concentrate on "Density Matrices" – OK for small Gaussian basis sets, cannot describe collective effects requiring orbitals away from HOMO/LUMO. Instead of extracting and summing MO, use <u>Stochastic</u> <u>Averaging:</u> Practiced by large molecules all around you!



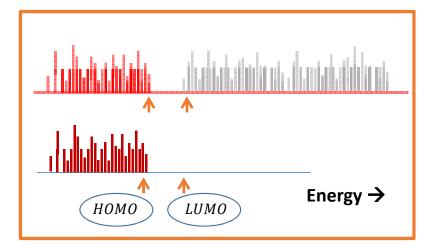
Stochastic averaging for quantum chemistry:

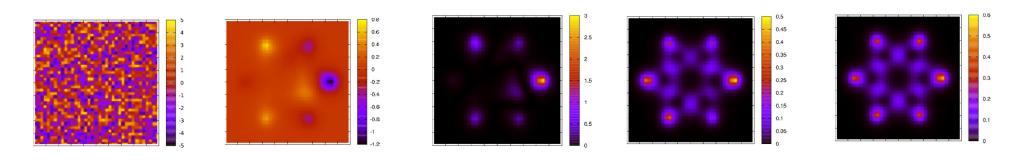
 $\rho(\mathbf{r}) = 2\{|\psi_1(\mathbf{r})|^2 + |\psi_2(\mathbf{r})|^2 + \dots + |\psi_{HOMO}(\mathbf{r})|^2\}$

 $\rho(\boldsymbol{r}) = \{|\psi(\boldsymbol{r})|^2\}$

Stochastic Occupied Orbital

- Contains: ALL occupied MOs
- Each occupied MO has same weight (1) in average.





white noise \rightarrow stochastic occ. orbital \rightarrow density (1 stoch.orbital) \rightarrow average 10 \rightarrow average 100

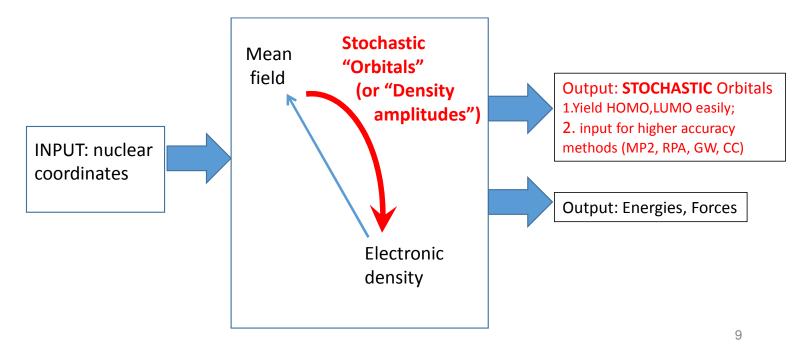
Stochastic DFT

Baer, DN, Rabani, PRL 111, 106402 (2013)

Average over:

- Choose WHITE NOISE (random) ORBITAL.
- FILTER IT TO REMOVE HIGH ENERGIES (NON-OCCUPIED)
- Add contribution from filtered-white noise

$$\rho(\mathbf{r}) = \left\{ \left| \psi_{filtered}(\mathbf{r}) \right|^2 \right\}$$



Embedded-Fragment (JCP,2014)

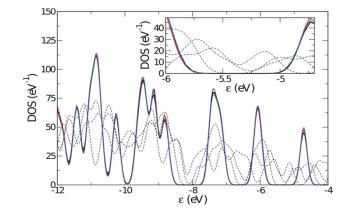
• Originally:

$$\rho(r) = \left\{ \left| \boldsymbol{\psi}_{filtered}(\boldsymbol{r}) \right|^2 \right\}$$

Instead: use putty

$$\rho(r) = \rho_0(r) + \rho(r) - \rho_0(r)$$

$$\rho(\mathbf{r}) = \boldsymbol{\rho}_{\mathbf{0}}(\mathbf{r}) + \left\{ \left| \boldsymbol{\psi}_{filtered}(\mathbf{r}) \right|^2 - \left| \boldsymbol{\psi}_{0,filtered}(\mathbf{r}) \right|^2 \right\}$$



Water clusters:

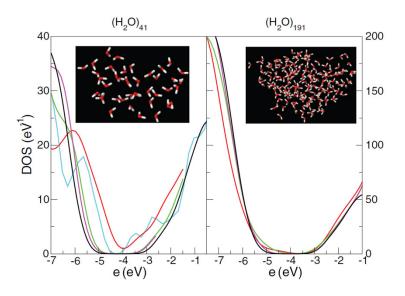
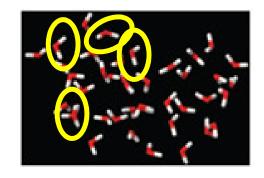
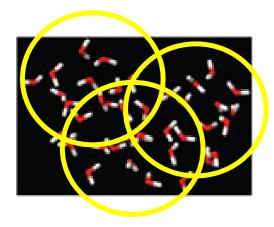


FIG. 2. The density of states near the highest occupied and lowest unoccupied KS eigenvalues of $(H_2O)_{41}$ (left panel) and $(H_2O)_{191}$ (right panel) using sDFT with I = 320 (cyan) and efsDFT with I = 80 (red), 160 (green), and 320 (magenta) stochastic orbitals. The solid black curve represents the deterministic DFT calculation.

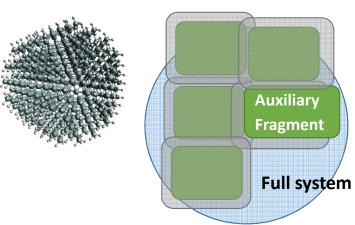
• At present: single-molecule fragments

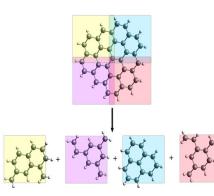


• Better : bigger fragments

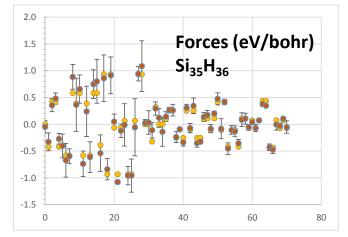


Embedded fragment: works for covalently held large systems

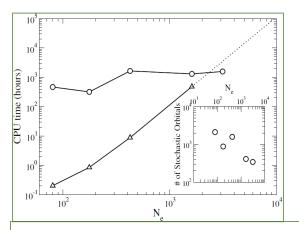




Si ₇₀₅ H ₃₀₀ (80 iterations)	$\delta E_{gap}(\mathrm{eV})$	$\frac{\delta E_{tot}(\text{eV})}{N}$
No fragments	No gap	0.025
Tiny fragments (~5 Si)	0.10	0.002
Small fragments (~20 Si)	0.03	0.001



System	Iteratio	$\mathbf{E}/N_{e}\left(eV ight)$	
		Trad.	Stoch.
$Si_{16}H_{16}$	30	-24.023	-24.025
<i>Si</i> ₃₅ <i>H</i> ₃₆	30	-23.921	-23.924
<i>Si</i> ₈₇ <i>H</i> ₇₆	30	-23.550	-23.552
Si ₃₅₃ H ₁₉₆	30		-23.847
$Si_{705}H_{300}$	30		-23.4489



Effort scales gently since required # of stochastic orbitals <u>decreases</u> with system size

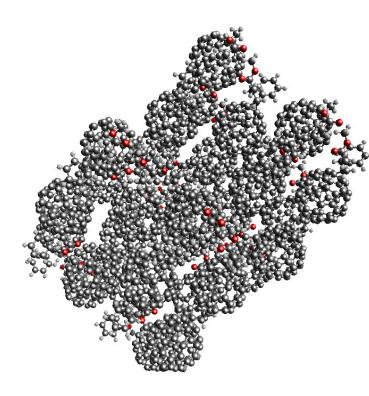
Large systems:

Timing: ~ 2 hours on a single GPU * 40 GPUs for 3000 e's;

Estimated ~30 hours *40 GPUs when 100,000 e's

(Spectrum, error)

200 hours*40 GPUs for 1.000,000electrons.



Interim Conclusions: Stochastic DFT

Scaling: linear or below

Trivially parallelize

(each "stochastic orbital" essentially not influenced by others. **No orthogonalization!**)

Insulators, Semiconductors;

metals too (~20 times more effort for metals at room temperature)

WHAT ABOUT:

1) Stochastic Fluctuations of E(total)

Non issue here, since force directly from density.

2) Exchange (hybrid potentials)

E(Exchange) easily calculated. Underlying hybrid exchange potentials (B3LYP): <u>officially not suitable (need fast-acting potentials)</u>. We're Working <u>on stochastic versions of</u>:

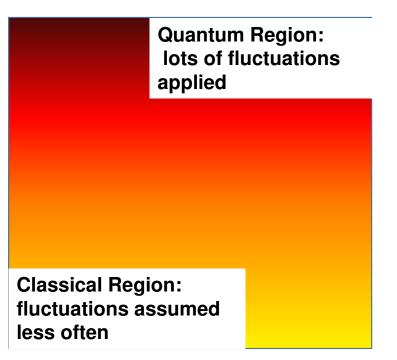
- "Optimized Effective Potentials".
- LDA+U
- Stochastic Exchange.

Side note:

Stochastic DFT:

Opens new ways to think about (**and apply)** classical-quantum embedding:

All regions really quantum; <u>The more classical a region is, the less</u> <u>often fluctuations are applied on it.</u>



Correlation: there's life beyond (Stochastic) DFT!

Correlation methods (better e-e interaction):

- Absorption spectra, HOMO and LUMO, van-der-Waals. (More important for bigger systems!
- Usually scale terribly (N⁴ N⁶), but in <u>Stochastic QM they all scale ~linearly</u>

Stochastic MP2/MP3/MPn Stochastic RPA Stochastic GW We did not find yet Stochastic Coupled Clusters! Side note: both basis sets and plane-waves!

Warm-up: MP2: simplest perturbation theory

$$E_{vdw} = \frac{1}{2} \sum_{\substack{ab:unocc.\\rs:occu.}} \frac{I_{abrs}(2I_{abrs} - I_{asbr})}{\epsilon_a + \epsilon_b - \epsilon_r + \epsilon_s} \simeq \int V(t)V(0)dt$$

$$V(t) = \int \zeta(\mathbf{r}, t) \alpha(\mathbf{r}, t) \frac{1}{|\mathbf{r} - \mathbf{r}'|} \eta(\mathbf{r}', t) \beta(\mathbf{r}', t) d\mathbf{r} d\mathbf{r}'$$

$$\zeta = \theta(\mu - h) \zeta_{w.n.}$$

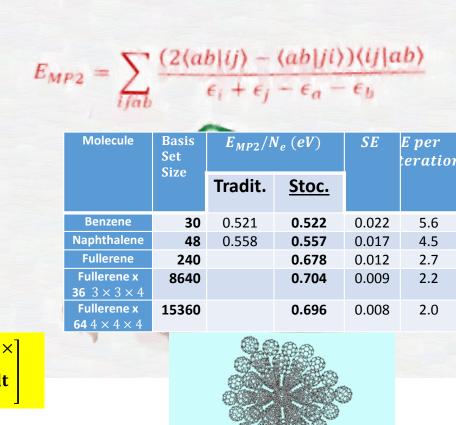
$$\alpha = (1 - \theta(\mu - h)) \alpha_{w.n.}$$

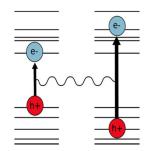
Physically:

$$\begin{split} & \underset{ab \text{ unoccu.}}{\overset{\text{}E_{MP2}}{\simeq}} \frac{\left|\textit{Interaction}(\text{Exciton}(j,a),\text{Exciton}(i,b))\right|^{2}}{\epsilon_{i}+\epsilon_{j}-\epsilon_{a}-\epsilon_{b}} \end{split}$$

<u>Traditionally:</u> *EXPENSIVE!* $N^4 - N^5$ *Often* gives all accuracy needed.

Stochastic: Instead of summing: roll dice!

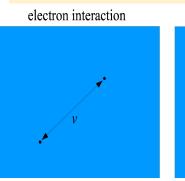


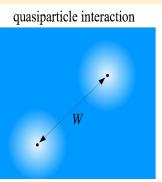


 $E(MP2) = -\begin{bmatrix} V(exc. (1), exc. (2), t = 0) \times \\ \int V(exc. (1), exc. (2), t) dt \end{bmatrix}$

Accurate structure/dynamics: need: Susceptibility, $\chi(r_1, r_2, t)$: Disturb at r_1 at t=0, density change at r_2 at t.

Related to Effective Interaction, $W(r_1, r_2, t)$





LeChateliers' principle: Other e⁻ **polarize**, mask perturbation

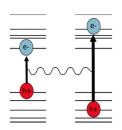
1. Van-der Waals: "RPA": Interaction of pairs through <u>effective interaction</u>

2. Absorption:

frequency-dependent response, $\chi(r_1, r_2, \omega)$:

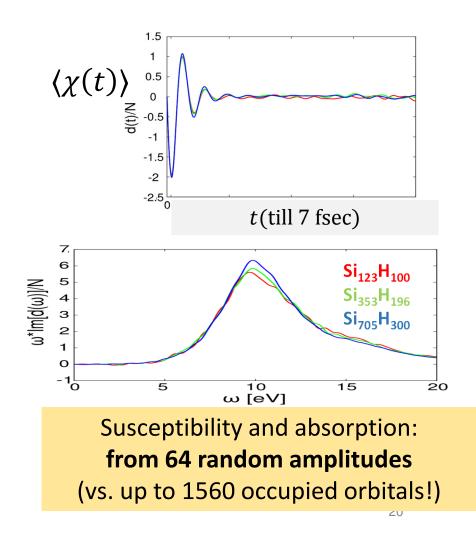
<u>GW</u>: correct ionization/affinity.
 <u>G: Green's</u> function:
 W: effective interaction.

HOMO-LUMO correction from: $\Sigma(t) \sim G(t) W(t)$



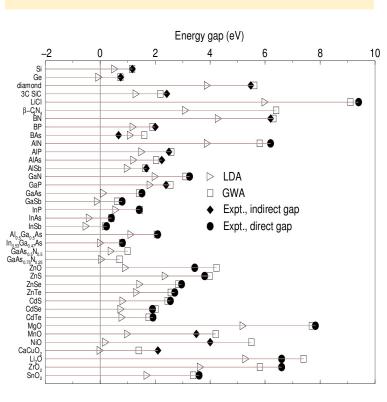
Stochastic susceptibility

- <u>Need: propagate disturbance in t:</u>
 <u>TDDFT.</u>
- Stochastic TDDFT: enough to propagate few vectors (fewer for larger systems!):
 - $\chi(\omega)$: <u>absorption</u>: for large systems!
 - Crucial ingredient in RPA and GW below.



Highlight :quasiparticle energies with stochastic GW

Why GW? DFT fails to give proper ionization/affinity (HOMO/LUM). GW corrects!



$$\delta E_{HOMO} = \langle \phi_{HOMO} | \Sigma | \phi_{HOMO} \rangle$$

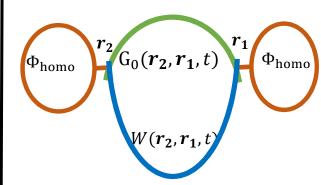
GW

energy.

$$\Sigma(\mathbf{r_1}, \mathbf{r_2}, t) = G(\mathbf{r_1}, \mathbf{r_2}, t) W(\mathbf{r_1}, \mathbf{r_2}, t)$$

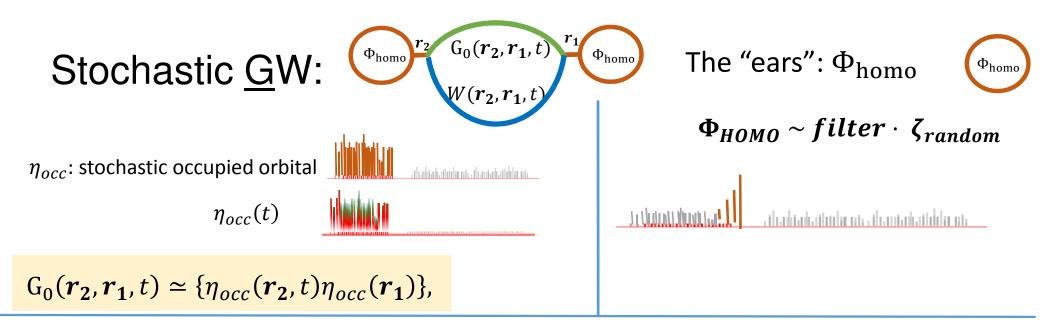
Pictorially:

GW: apply self-energy correction to the quasiparticle

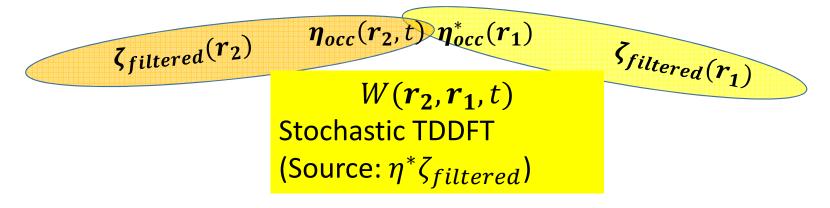


Propagate electron from one point to another, while having the tamed interaction.

21



Putting it all together:



Side note: stochastic compression in GW

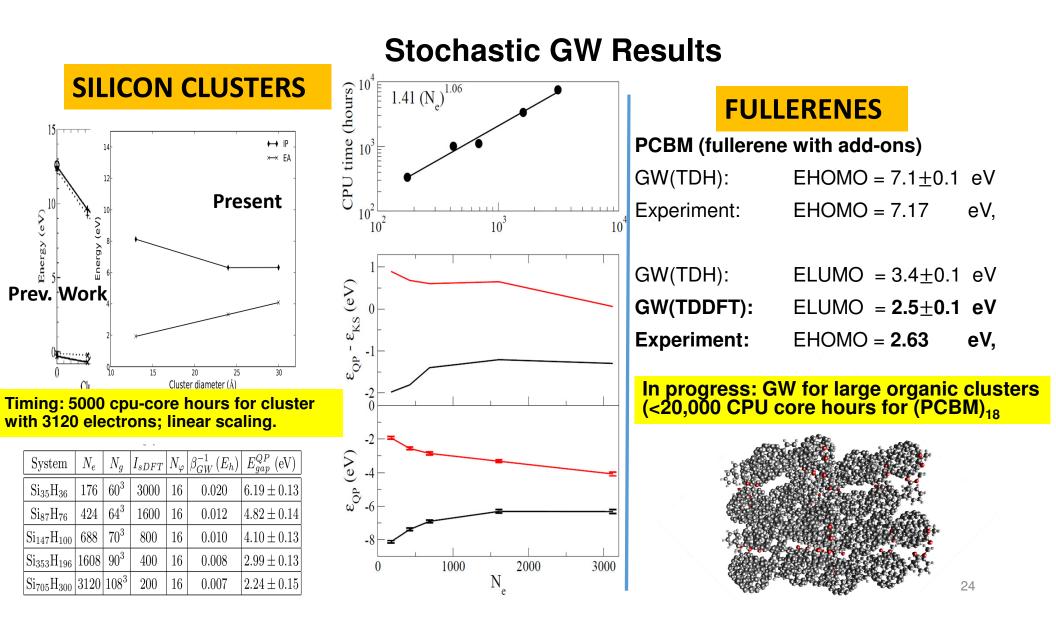
TDDFT: gives $(W_{casusal}g)(r,t) = \int W_{"causal"}(r,r',t)g(r',t)dr'$

$$W_{TO}(\mathbf{r}, \mathbf{r}', \omega) = \begin{cases} W_{casual}^*(\mathbf{r}, \mathbf{r}', \omega) & \omega \leq 0\\ W_{casual}(\mathbf{r}, \mathbf{r}', \omega) & \omega > 0 \end{cases}$$

Stochastic compression:

$$(W_{casuaul}g)(\mathbf{r},t) \rightarrow \eta(\mathbf{r})c(t)$$

$$c(t) \equiv \langle \eta(\mathbf{r}) | W(t)g \rangle \to c(\omega) \to c_{TO}(\omega) = \begin{cases} c^*(\omega) & \omega \le 0\\ c(\omega) & \omega > 0 \end{cases} \to c_{TO}(t)$$



Conclusions

- Paradigm shift:
 - away from exact orbitals, density matrices, to :
 - stochastic density amplitudes.
- Linearizes effort
- Almost all traditional Quantum Chemistry recasted.
- Makes sense only once system is large (>5000 electrons for DFT, >100 electrons for correlation), but then quickly becomes only viable approach
- Handles forces and gradients by <u>adiabatic transform</u>
- DFT of systems with million electrons in sight now!
- GW for accurate IP/EA (HOMO/LUMO) required accuracy (~0.05-0.1 eV) easily reached for thousands of e's and more.
- Beyond Quantum Chemistry, extends to other fields: electron dynamics, molecular vibrations.