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Stochastic Quantum Chemistry:

Towards fully-quantum electronic structure and
dynamics of very large molecules and clusters

1992:

= $50,000 per Gigaflop

= Bio. simulations: pico/nano sec.
= QC: 100-150 electrons

2014:
= GPU: Gigaflop ~S5 or less
= Bjo. Sim: “micro/mili/more sec.

=  Quantum Chemistry: ~1000-2000
electrons (DFT) (less for
correlation)
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New paradigm clearly needed for
Quantum Chemistry.

Stochastic QM both: Computationally

efficient and physically rich




Mathematical guidelines:

Stochastic compression: f(r,t) = n(r, t)(n(t)|f(t)) n random noise; n,,, (r) = +1

Multidimensional: stochastic compression:

F(r,r") - n@)nlFI$SE)

Replace sums over orbitals by random averages:

jz (1) i i (") Lodrdr’ = j{....n(r) (') . drdr!
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If ¢; is occupied (energy below u) n should be filtered:
n=0Wu—h)nyn

Energy denominator — correlation function
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OVERVIEW

« DFT first
» Correlation next: i . .

. sMP2 Relation to machine learning:

- s-GW  Usually looking for high accuracy.

© SGW » But want to sample many molecules.

» So instead eventual goal: do multiple low-

HISTORY: resolution study (millions of high-noise

. . calculations) — let the machine find the
« Difference from QMC: no moving walkers. regions where less noise is desired.

 Historically: DFT closest to Sankey’s approach
in the 90’s — but realization now is “embedded

fragment” and look for forces, not total energy

» Almlof had initial ideas for MP2 correlations.



Existing DFT codes (Gaussian, VASP, more):

INPUT: nuclear
coordinates

Orbitals cost: N3
(Benzene—>Fullerene,
~ 1000 times more

Output: Energies, Forces

Output: Orbitals

1. Intuition

2. Input for higher
methods (MP2, RPA, GW,
CQ)




Traditional method scale steeply.

Traditionallly:
p() = 2{|Pp1(M)1% + [P (MI* + -+ [Yuomo (1) |?}
MO: expensive — due to Pauli principle:
(Wi|w;) =0 if i=#]j
Getting all occupied orbitals: scales cubically

10 times bigger system — 1000 times more ef fort.

Alternatives:

1) Avoid orbitals, concentrate on “Density Matrices” — OK
for small Gaussian basis sets, cannot describe collective effects
requiring orbitals away from HOMO/LUMO.



Instead of extracting and summing MO, use Stochastic
Averaging: Practiced by large molecules all around you!

Reaction Rate = 2 P(reactantlevel j) X Rate(level j, reactant — product)

level j

Instead of summing over millions (or more) of states,
~100 collisions give correct reactions rate
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Stochastic averaging for quantum chemistry:
2 g 2 _L“hmulllxh‘hhhh

p(r) = (@) :
Stochastic Occupied Orbital Energy >

e Contains: ALL occupied MOs
* Each occupied MO has same weight (1) in average.
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white noise = stochastic occ. orbital> density (1 stoch.orbital) > average 10 -> average 100




Stochastic DFT

Average over:

* Choose WHITE NOISE (random) ORBITAL.

Baer, DN, Rabani, PRL 111, 106402 (2013)

e FILTER IT TO REMOVE HIGH ENERGIES (NON-OCCUPIED)

e Add contribution from filtered-white noise

p(r) = {Illlfiztered(r) |2}

INPUT: nuclear
coordinates

=)

Mean
field

Stochastic
“Orbitals”
(or “Density
amplitudes”)

Electronic
density

Output: STOCHASTIC Orbitals
1.Yield HOMO,LUMO easily;

2. input for higher accuracy
methods (MP2, RPA, GW, CC)

=)
=)

Output: Energies, Forces




Embedded-Fragment (cr2014)

* Originally: p(r) = {|¢filtered(r)|2}
* |nstead: use putty: p(r) = po(r) + p(r) — po(r)

P(T) — pO(r) + {|¢filtered(r)|2 o |¢0,filtered(r)|2}




Water clusters:
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FIG. 2. The density of states near the highest occupied and lowest unoccu-
pied KS eigenvalues of (H,0),, (left panel) and (H,0),, (right panel) using
sDFT with / = 320 (cyan) and efsDFT with I = 80 (red), 160 (green), and
320 (magenta) stochastic orbitals. The solid black curve represents the deter-
ministic DFT calculation.

* At present: single-molecule fragments

 Better : bigger fragments

fad




Embedded fragment: works for covalently held large systems

Sizos5Hz00

(80 iterations)
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Effort scales gently since required
# of stochastic orbitals decreases

with system size




Large systems:
Timing:
~ 2 hours on a single GPU * 40 GPUs for 3000 €’s;

Estimated ~30 hours *40 GPUs when 100,000 e’s

(Spectrum, error)

200 hours*40 GPUs for 1.000,000electrons.




Interim Conclusions: Stochastic DFT

WHAT ABOUT:

1) Stochastic Fluctuations of E(total)
Non issue here, since force directly from density.

Scaling: linear or below

Trivially parallelize
(each “stochastic orbital” essentially not
influenced by others.

No orthogonalization!) 2) Exchange (hybrid potentials)

E(Exchange) easily calculated.

Underlying hybrid exchange potentials (B3LYP):
officially not suitable (need fast-acting potentials).

We’re Working on stochastic versions of:

Insulators, Semiconductors;
metals too (~20 times more effort for
metals at room temperature)

« “Optimized Effective Potentials”.
- LDA+U
« Stochastic Exchange.




Side note:

Quantum Region:
lots of fluctuations

Stochastic DFT: applied
Opens new ways to think about (and

apply) classical-quantum embedding:

All regions really quantum;
The more classical a region is, the less
often fluctuations are applied on it. Classical Region:

fluctuations assumed
less often




Correlation: there’s life beyond (Stochastic) DFT!

Correlation methods (better e-e interaction):

» Absorption spectra, HOMO and LUMO, van-der-
Waals. (More important for bigger systems!

« Usually scale terribly (N* — N©),
but in Stochastic QM they all scale ~linearly

Stochastic MP2/MP3/MPn
Stochastic RPA
Stochastic GW

We did not find yet Stochastic Coupled Clusters!
Side note: both basis sets and plane-waves!



Warm-up: MP2: simplest perturbation theory

1 Z I 21 —1I
Evdw _ E abrs( abrs asbr) ~ JV(t)V(O)dt
ab:unocc. €a T € ~ Er T €s
r'S:0CCU.
1 / ! 4
V() = j ¢, 0a(r, ) ——n(@, DB, Odrdr
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Physically:

Emp2
, . . . . 2
2 |Interaction(Exciton(j, a), Exciton(i, b))|
if occ. g + Si —& — &
ab unoccu.

Traditionally: EXPENSIVE! N* — N> Often gives all
accuracy needed.

Stochastic: Instead of summing: roll dice!

V(exc.(1),exc.(2),t=0) X

E(MP2) = — f V(exc. (1), exc. (2), 1) dt
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1. Van-der Waals: “RPA”: G

Accurate structure/dynamics: need: , ) <
Susceptibility, x(r{, 75, t): Interaction of pairs through
Disturb at r, at t=0, effective interaction - 4
density change at r, at . — &
Related to Effective Interaction, 2. Absorption:
W (rq, 7, t) frequency-dependent response, (1,73, w):

electron interaction quasiparticle interaction

3. GW: correct ionization/affinity.

G: Green’s function:
W: effective interaction.

HOMO-LUMO correction from: X(t) ~ G(t)W(t)

| eChateliers’ principle:

Other e~ polarize, mask perturbation



Stochastic susceptibility  (t) B

* Need: propagate disturbance in t: 2 | | |
TDDFT. ° t(till 7 fsec)

SijpsHige |

 Stochastic TDDFT: enough to
propagate few vectors (fewer
for larger systems!):

* y(w): absorption: for large systems! w [eV]

o . . Susceptibility and absorption:
 Crucial ingredient in RPA and GW ; 24 z; I.p g
below. rom 64 random amplitudes

(vs. up to 1560 occupied orbitals!)
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Highlight :quasiparticle energies
with stochastic GW GW

Why GW? DFT fails to give proper GW: apply self-energy correction to the quasiparticle

ionization/affinity (HOMO/LUM). energy.
GW corrects!

Pictorially:
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o ha 5(ry,12,t) Propagate electron from one
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The “ears”: ®Lomo

q)HOMO ~ filter ' (random

Stochastic GW:

Nocc: Stochastic occupied orbital "““mmu“
moce® NI e z.l.|‘

Go(12, 71, t) = {Nocc (T2, O)Noec (1)},

Putting it all together:

Nocc (Tz;

W(rz, rl) t)
Stochastic TDDFT
(Source: n*(filtered)



Side note: stochastic compression in GW

TDDFT giVeS (Wcasusalg)(r: t) — f W"causal" (1‘, T’, t)g(r’» t)dr,

Wc*asual rrow) w<0

W ) ,; — /
1o (r ’ (U) {Wcasual(r:r ) (U) w >0

Stochastic compression:
Weasuawg) (@, t) = n(r)c(t)

c*(w) w<=<0

c(t) =)W (t)g) - c(w) = crp(w) = {c(w) w >0

- Cro(t)



Stochastic GW Resulis

SILICON CLUSTERS 2", /™
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Conclusions

« Paradigm shift:
« away from exact orbitals, density matrices, to :
+ stochastic density amplitudes.

 Linearizes effort
« Almost all traditional Quantum Chemistry recasted.

» Makes sense only once system is large (>5000 electrons for DFT, >100 electrons for correlation),
but then quickly becomes only viable approach

» Handles forces and gradients by adiabatic transform

 DFT of systems with million electrons — in sight how!

« GW for accurate IP/EA (HOMO/LUMO)- required accuracy (~0.05-0.1 eV) easily reached for
thousands of e’'s and more.

» Beyond Quantum Chemistry, extends to other fields: electron dynamics, molecular vibrations.




