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Principles -- Critical Role of the Descriptor --
Matthias Scheffler )
Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin; http://th.fhi-berlin.mpg.de/
From the periodic table of the elements to a chart of materials:
Organize materials according to their properties and functions

o figure of merit of thermoelectrics (as function of T)

o turn-over frequency of catalytic materials (as function
of Tand p) Dmitri Mendeleev

(1834-1907)
PERIODIC TABLE OF THE ELEMENTS

o efficiency of photovoltaic systems

o etc.

(*) Work performed in collaboration with Luca Ghiringhelli, Jan Vybiral,
Claudia Draxl, Sergey Levchenko, Alexandre Tkatchenko,
Patrick Rinke, Xinguo Ren, and Igor Ying Zhang

Materials Genome Initiative

for Global Competiveness

minate that information to the materials com-
munity to enable rapid searches of materials

To help business discover, develop, and deploy new materials
twice as fast, we’re launching what we call the Materials
Genome Initiative. The invention of silicon circuits and lithium
ion batteries made computes and iPods and iPads possible, but
it took years to get those technologies from the drawing boards

to the market place. We can do it faster.
President Obama Materials Genome Initiative for Global
Competitiveness http://www. whitehou

Compute the basic properties (,genes”) of many
(ten or hundred thousand) materials and disse-

properties and help design improved materials.

Carnegie Mellon University, June 2011

se.gov/ sites/ deault/files/microsites/stp

q . materials_genome _initiative-final.pdf
“twice as fast, at a fraction of the cost” l . D
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The Four V of Big Dataand an A

Data — data — data (analog to Moore’s law)
numbers, arrays, figures, movies, ...
(so far: most data are not used and even thrown away)

Big-Data Challenge: “four V":
Volume (amount of data),

Variety (heterogeneity of form and
meaning of data),

Veracity funcertainty of data quality),

Velocity at which data may change or
new data arrive.

Computed data: Query and read out what
was stored. (high-throughput screening)
Shouldn't we do more?!

The four V should be complemented by
an “A”, Big-Data Analytics:
* identify (so far) hidden trends,

* which materials should be studied
next as most promising candidates,

* identify anomalies,

* identify the mechanisms that govern a
certain material property or function.

Big-Data Analytics: How to Arrange the Data

= Iraining Set
Calculate properties

and functions, P, for
many materials, i.

Fast Prediction
Calculate properties

and functions for new
d values, i.e. new
materials. i d

=~ “Learning”
Find the function
PSL(d) for the “table”;
do cross validation.

~ Descriptor
Find the appropriate
descriptor d;
build a “table”:

{Z, N}, T, {p} de-
termine the many-
body hamiltonian
and statistical
mechanics

Statistical mechanics does not
tell us what the relevant
variables are. This is our

choice. If we choose well, the
P; results may be useful, if we
chose badly, the results
(while formally correct) will
probably be useless. (Robert
Zwanzig)
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Big-Data Analytics: How to Arrange the Data

= Training Set
Calculate properties

and functions, P, for
many materials, i.

“Fast Predictions
Calculate properties
and functions for new
d values, i.e. new

materials. I

= “Learning”
Find the function
PSL(d) for the “table”;
do cross validation.

Descriptor

d.

Find the appropriate
descriptor d;
build a “table”:

: P

{Z, N}, T, {p} de-
termine the many-
body hamiltonian
and statistical
mechanics

Statistical mechanics does not
tell us what the relevant
variables are. This is our
choice. If we choose well, the
results may be useful, if we
chose badly, the results
(while formally correct) will
probably be useless. (Robert
Zwanzig)

Big-Data Analytics: How to Arrange the Data

= raining Set
Calculate properties

and functions, P, for
many materials, i.

choice of d is not unique.

verification)

d characterizes the relevant mechanisms that govern the observed property/function P.
The d = PSt mapping is complex; identifying the descriptor d from known data P;, is an
ill-posed problem (statistical-learning theory): A little error in the data P; may suggest a
different descriptor d. Thus, knowledge of the accuracy of data P; is crucial (veracity). The

A) Veracity: Accuracy of state-of-the-art density-functional theory (validation and

B) Descriptor: How to find it, how to understand the causality between d and PSL-?

{Z, N}, T, {p} de-
termine the many-
body hamiltonian
and statistical
mechanics
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P ~ & | @ Welcome to the NoMaD Rep... *

@ htip //nomad-repository.eu/cms/

e

NoMaD Team Why sharing? Upload Download DOIls Terms and conditions

The NoMaD (Novel Materials Discovery)
Repository was established to host, organize,
and share materials data.

NoMaD"
RepoSitory

NoMaD copes with the increasing demand and
requirement of storing scientific data and making
them available for longer periods. Rules of good
scientific practice set by many funding agencies,
worldwide, require keeping scientific data for 10
years. NoMaD offers this for free. NoMaD also
facilitates research groups to share and exchange

NoMaD repository

Other repositories

News

Currently, the NoMaD
Repository contains 89,464
entries.

Feb. 6, 2015

White House (USA):

"It's Time to Open Materials
Science Data" (link)

Open positions

DOls for datasets can be

scientific practice set by many funding agencies,
worldwide, require keeping scientific data for 10
years. NoMaD offers this for free. NoMaD also
facilitates research groups to share and exchange
their results, inside a single group or between two

or more, and to recall what was actually done some years ago.
The NoMaD Repository enables the confirmatory analysis of materials data, their reuse, and repurposing.

Upload of data is possible without any barrier. Results are accepted in their raw format as produced by the
underlying code. The only condition is that the list of authors is provided, and code and code version can be
retrieved from the uploaded files. These data can be restricted to the owner or made available to other people
(selected by the owner). They can be updated and downloaded at any time.

Read more details concerning the upload. Please, register or login to participate.

At present, the repository contains ab initio electronic-structure data from density-
functional theory and methods beyond. At a later stage, it will be extended by
force-field studies and by experimental data. We also give an outlook on the
NoMaD Laboratory that will be dedicated to a Materials Encyclopaedia, as the
basis for complex queries and the development of various data-analytics tools.

Codes: Abinit, crystal, exciting, CASTEP, FHI-aims,
Quantum Espresso, VASP — more coming;
various xc functionals

Data (g
Open positions

DOls for datasets can be
requested

Check for related
conferences and
workshops.

We are moving to the HPC
Center of the Max Planck
Society (RZG). We apologize
for any possible instability
during the next 2 days.

The NoMaD Repository is
about joining eudat.

Financial Support
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Veracity — Validation and Verification

* accuracy of materials-science codes: basis sets, relativity,
pseudopotentials, other numerical approximations (verification)

* accuracy of the exchange-correlation functional (validation)

Veracity — Validation and Verification

Comparing Solid State DFT Codes, Basis Sets and Potentials

Code Version Basis Electron treatment A-value Authors
WIEN2k 13.1 LAPW/APW+lo all-electron 0 meV/atom S. Cottenier
FHI-aims 081213 tier2 numerical orbitals all-electron (relativistic atomic_zora 0.2 ASE [2]
scalar) meV/atom
Exciting development LAPW+xlo all-electron 0.2 Exciting [10]
version meV/atom
FHI-aims 081213 tier2 numerical orbitals all-electron (relativistic zora scalar 04 ASE [2]
1e-12) meV/atom
CASTEP 8.0 plane waves OTFG CASTEP 8.0 0.5 CASTEP [7]
me\V/atom
ABINIT 7.7.3 plane waves PAW JTH v0.2 0.6 F. Jollet and M.
meV/atom  Torrent
K. Lejaeghere, V. Van Speybroeck, G. Van Oost, and S. Cottenier, Crit. Rev. Solid State Mater. Sci. 39, 1-24 (2014);
https://molmod.ugent.be/deltacodesdft.  Reference code: WIEN2k




Veracity — Approximate Treatment of Exchange-Correlation

Perdew’s Dream: A Jacob’s Ladder
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accuracy

=N W S

Bohm, Pines (1953); Gell-Mann)
Gunnarsson, Lundqvist (1975, 1976); Langreth, Perdew (1977);
X. Ren, P. Rinke, C. Joas, and M. S., Invited Review, Mater. Sci. 47, 21 (2012)

The exchange-correlation functional ((0‘3

our favorite AO0 6.
XN \>
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Ueckner (1957);

Performance of rPT2 for Weak Intermolecular Interactions:

S22 Test Set

Mean absolute error to CCSD(T) (meV)

rPT2 achieves “chemical accuracy”

200 (1 kcal/mol ~ 43 meV)

-- same performance for the S66 test set --

M PBE
M vdW-DF

150

At P
=__ W =

100
M PRE+vdW{Hobza)

O rPT2 @ PBE
B PBE-+vdW(TS)

50 _ — ——— [DMP2+AvdW (TSetal.)

0

H-bond vdW Mixed Overall

CCSD(T): Jurecka, Sponer, Cerny, Hobza, PCCP (2006). Langreth-Lundqvist : Gulans, Puska, Nieminen, PRB (2009);
rPT2: X. Ren et al. PRL (2011) and NJP (2013). TS: A. Tkatchenko and M.S., PRL (2009); A. Tkatchenko et al., JCP (2009)



http://www.fhi-berlin.mpg.de/th/member/tkatchenko_a2.jpg
http://www.fhi-berlin.mpg.de/th/member/tkatchenko_a2.jpg
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Test Sets for Materials Science and Engineering?

Chemists have shown the way. For small and light molecules they developed test
sets: G2, NHTBH38, HTBH38, S22, S66 ...

We need a materials test set! We can now do renormalized second-order
perturbation theory (similar to CCSD) and even full CI ) — for certain systems.

Comparison with experiment is very important as well (adsorption energies of

molecules, e.g. by microcalometry). However, theory-theory comparison is better
defined.

(*) . Booth, A. J. W. Thom, and A. Alavi, J. Chem. Phys. 131, 054106 (2009).

G.H
G. H. Booth, A. Griineis, G. Kresse, and A. Alavi, Nature 493, 365 (2013).

Test set for materials science and engineering

Li

Be B C N O F Ne

TEST SET Na | Mg Al | 81 P s Cl | Ar

7 elements and 12 binaries K | Ca Ga | Ge | As | Se | Br | Kr

with cubic structure Rb | Sr In | Sn | Sb | Te I Xe
(for the start) Cs | Ba

Ne, Ar, Al (fcc); Li, Na (bcc); C, Si (diamond);
LiH, LiF, LiCl, NaF, NaCl, MgO, MgS (rocksalt);
BeS, BP, AIP, SiC, BN (zincblende)

* MISE properties: cohesive, electronic, elastic and vibrational
* Representative for cubic metals, semiconductors, and insulators
* Numerically accurate reference values from theory,

incl. MP2, RPA, CCSD(T)
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Sl ond http://mse.ﬂ:j—berlin.mpg.de)
TEST SET FOR MATERIALS SCIENCE AND ENGINEERING ™ "
Group Material Structure Method Econ (eV) ap (R) B (GPa) Cs
14 si diamond  LDA 5.325  5.402 86.1
14 si diamond  PBE 4.585 5.471 89.1
14 Si diamond PBE+vdW(TS) 4.868 5.448 91.4
14 si diamond  PBE+vdW(MBD) 4.844  5.434 93.4
14 si diamond  PBEsol 4.972 5.434 94.2
14 Si diamond HSEO6 4.798 5.424 99.1
14 si diamond  CCSD(T) 4.5
VISUALIZATION o ’ damond ‘
par ) zed HSE Nd ucture calcu d HSE

Diamond structure, conventional cell

5.424 A

Energy (eV)

Cell angles: a = 90.0° & Move the mouse over the bands to see their energies
Cell volume = 159.573 A3

& show VBM and CBM

The Four V of Big Dataand an A

Data — data — data (analog to Moore’s law) Computed data: Query and read out what
numbers, arrays, figures, movies, ... was stored. (high-throughput screening)
Shniildn't wa dn mnre?|

Big-Data Analytics

* Finding d from P u,:?:f\;il :'/=
* Causality: the science behind P(d) AV,
S RSN BN | —
Big-Data Challenge: “four V. The four V should be complemented by
Variety (heterogeneity of form and * identify (so far) hidden correlations,
meaning of data), * which materials should be studied

next as most promising candidates,
; _ * identify anomalies,
Velocity at which data may change or * identify the mechanisms that govern a
new data arrive. certain material property or function.

Veracity funcertainty of data quality),




2/25/2015

Kernel Regression

We have data {P;} at “coordinates” {X;} X; = set of descriptive parameters (descriptor)

P = P(X) = Tt 0 KX X0

Linear regression: K(Xi, X)) = X . X P(x;) = x;.c*
Polynomial kernel KX, X) = (%;. x, +¢)d
Gaussian kernel K(x;, X,) = exp ( — Zj (X;— X%, )? /20j2)

More data means better representation.
Do we “learn” anything?
For successful learning, we need a “good” descriptor: P(x;) = P(d;)

Toy Model: Descriptor for the Classification

“Zincblende/Wurtzite or Rocksalt?”
Only DFT- Arrange data P(x;) = P(d;), so that P(d;) is a “well behaved 78?
function”. Fit this function by machine learning.
How to find d;?

In reality we may not have enough data to learn a complex

82 oci

rN & . ‘. ” - Jetween
S0p ® " function. Add “prior knowledge” (prejudice).
- e s v S i .. _...__arevery
- 10 -0.05eV<A<0.05eV i 9
40F I8 RS —0ieveasoosay  Small. For Sl.p.OlA) of the
N B Q. (W {m RS, -02eV<A<-0leV energy of a Si atom, or 0.1%
N30 1" RS, A =-02¢eV of the 4 valence electrons.

: RS Complexity: T,[n] and E,.
20}

e
NLNE L IENL I NLE

Machine learning can fit the P(Z,, Zg) data well,
U200 N N L S A o N A O BN TR0 W O W M V0 W R o IR o BT o o o g
10 20 30 40 50 but fails completely in predictions.

Z,




Toy Model: Descriptor for the Classification

“Zincblende/Wurtzite or Rocksalt?”

Arrange data P(x;) = P(d;), so that P(d;) is a “well behaved
function”. Fit this function by machine learning.

82 0l 15w to find d;?

[ -
N " In reality we may not have enough data to learn a complex ]
Sl * " function. Add “prior knowledge” (prejudice). .
40 : S s Zawz]
5 2] H (] © /WZ|]
VR OE O ] ? 1sk rop WO N9OLLF —, :
J E L J
N30 - I:> : NaQJ .g o BeO :
r N 10_— IIM? ? N
20F ] ! ——gucl 5

LS k - \ ‘ D L <[MgSe .s\‘kCﬁBr BN
] 2, s SiC ]
0 : W %] L frxet ]
A N N\ WY 7 4 4 ]
| I ! ! I ] ) A BigeBP, , . . K. 1
10 20 30 40 50 0 5 10 15

zZ, a;
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Toy Model: Descriptor for the Classification

“Zincblende/Wurtzite or Rocksalt?”

Only DFT-LDA: Can we predict not yet calculated LDA structures from Z, and Zg?

82 octet AB binary compounds

PR R LR R LS S ELEE AL
R N R N
40F E
S - T N N

N 30 N
20F ]

S UL-GL TEE L E
nE VL VL N
LllIAllAllllAAAIlALllltlllllIA
10 20 30 40 50
4

Wish List for a Descriptor
A descriptor is an array of real numbers that
uniquely characterizes the material as well as
property-relevant elementary processes.

Materials that are very different (similar) should be
characterized by very different (similar) descriptor
values.

The determination of the descriptor must not
involve calculations as intensive as those needed
for the evaluation of the property to be predicted.

The dimension of the descriptor should be as low
as possible, but not lower.

10
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Toy Model: Descriptor for the Classification

“Zincblende/Wurtzite or Rocksalt?”

the key scientific challenge: find a descriptor d that works.
How to find a good descriptor, also for more complicated properties and functions?
Example (the traditional way): B=———
i .
J. C. Phillips and J. A. Van Vechten (1969/70)) : 2ok NgF LE ]
A two-dimensional descriptor that distinguishes I ==
materials that crystallize in ZB/WZ vs. RS structures: sk Rbt- Cao Mgo 2 - @_
— 1or L " . % ]
Eh = related to crystal’s band gap, dielectric oA '\_ E E Naq: o BeO
C= constant, nearest-neighbor distance ~ ZB ~ ok I.M?;? o 3
CuCl
. . = [ n . *
There are several other descriptors for this _.Mg;e Covctar BN
. q . S - S5H . -
classification goal, by various authors. - %;. o* oS5C ]
F /Agl o# 4
(*) J. A. Van Vechten, Phys. Rev. B 182 , 891 (1969); w e e BagenP n S :
J. C. Phillips, Rev. Mod. Phys. 42, 317 (1970) E,[eV]

Statistical Learning (Machine Learning)

fit and/or interpolation of discrete, known data points { P; } and building a function P(d)

the key scientific challenge: find a reliable, low dimensional descriptor d.

kernel ridge regression linear
N . , R. Tibshirani, J. Royal Statist. Soc. B 58, 267 (1996)
P(d) = Y,_, ciexp (—|d; — d|j3/20?) P(d) = de
N ) minimize N )
Y (P(di) — P)=  + i (Pdy) — P)” +
AI\.‘*'A." ‘ ¢
Ay cicjexp (—|ldi — dj[3/207) Allellx
: Q ‘ M
Hd? _deé = Za:]’((ii\a - dj.n')z HC”] = chzl ‘C“‘

least absolute shrinkage and selection
operator (LASSO) for feature selection

11
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1) Primary Features, 2) Feature Space, 2) Descriptors

ID | Description free atoms Symbols #
Al | Tonization Potential (IP) and Electron Affinity (EA) | IP(A) EA(A) IP(B) EA(B) [1] | 4
A2 | Highest occupied (H) and lowest unoccupied (L) H{A) L(A) H(B) L(B)
Kohn-Sham levels
1) A3 | Radius at t.h“ max. value nfl $, Py mul. d re(A) rp(A) ralA G
valence radial radial probability density re(B) rp(B) rg(B)
[} | Description free dimers Symbols #
A4 | Binding energy Ey(AA) E,(BB) Ey(AB) 3
A5 | HOMO-LUMO KS gap HL({AA) HL(BB) HL(AB} | 3
A6 | Equilibrium distance d(AA) d(BB) d(AB) 3
2) We start with 23 primary features

and build > 10,000 non linear combinations

IP(B) — BA(B) [re(A) —rp(B)| _|ry(B) — ru(B)|

3) LASSO finds the most important descriptors: AP exp(ra(A)) ° exp(ra(A) + ro(B))

Statistical Learning (Machine Learning): LASSO, 2-Dim. Descriptor

= E(RS) — E(ZB)
7ZB,A>02eV
ZB,0.1eV<A<0.2eV
7ZB,005eV<A<0.1leV
—0.05eV<A<0.05eV

RS, —0.1eV<A<-0.05eV
RS, -02eV<A<-0.1¢eV
RS, A £-0.2eV

OO0 ¢ &[>

Irs(A) — r,(B)| exp(—75(A)) [A]

The complexity and science is in the
descriptor (identified from >10,000
features).

2 4 6
IP(B) — EA(B)|/r,(A)?> [eV A~2]

12
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Statistical Learning (Machine Learning): Descriptor

Mean absolute error (MAE), and maximum absolute error (MaxAE), in eV, (first two
lines) and for a leave-10%-out cross validation (CV), averaged over 150 random
selections of the training set (last two lines). For (Z,*, Zz*), each atom is identified by
a string of three random numbers.

Descriptor Zp, Ly Zp*, Zg* 1D 2D 3D 5D

MAE 1*104 3*10°3 0.12 0.08 0.07 0.05
MaxAE 8*104 0.03 032 032 024 0.20
MAE, CV 0.13 0.14 0.12 0.09 0.07 0.05
MaxAE, CV 0.43 0.42 0.27 0.18 0.16 0.12

Statistical Learning (Machine Learning): Descriptor

Mean absolute error (MAE), and maximum absolute error (MaxAE), in eV, (first two
lines) and for a leave-10%-out cross validation (CV), averaged over 150 random
selections of the training set (last two lines). For (Z,*, Zg*), each atom is identified by
a string of three random numbers.

Descriptor Zn, Zg Zp*, Zg* 1D 2D 3D 5D

MAE 1*104 3*103 0.12 0.08 0.07 0.05
MaxAE 8*104 0.03 032 032 024 0.20
MAE, CV 0.13 0.14 012 009 0.07 0.05
MaxAE, CV 0.43 0.42 0.27 018 0.16 0.12

13
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Statistical Learning (Machine Learning): Descriptor

4. CALCULATED AE OF THE 82 OCTET BINARIES, VIEW OF ALL COMPOUNDS

lute error (MaxAE), in eV, (first two

Y / CV), averaged over 150 random
[ o (Zp*, Zg*), each atom is identified by
i ID 2D 3D 5D
) 012 008 007 0.05
NN NN S ‘» 032 032 0.24 0.20
MAE, CV 0.13 0.14 012 0.09 0.07 0.05
MaxAE, CV 0.43 0.42 0.27 0.18 0.16 0.12

Drawing Causal Inference from Big Data (Scientific Insight)

Correlation between d and P, i.e. P is a function of d, P(d),

reflects causal inference
if it is based on sufficient information(®)

There are four possibilities (types of causality) behind P(d):

\

1. d>P : P “listens”tod Judea Pearl

A->d and A - P:Thereis no direct connection between d and P, but d and P
both “listen” to a third “actuator”

3. P>d :d “listens”toP

4. Thereis no direct connection between d and P, but they have a common effect
that listens to both and screams: “l occurred” (Berkson bias; Judea Pearl)

) Construct d with scientific knowledge (prejudice?), or use “big data” for {P; }.

14
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Drawing Causal Inference from Big Data (Scientific Insight)

Example:

The probability of childhood leukemia is higher for people living close to electricity
power lines.

There is no direct connection between leukemia and the electromagnetic field.

Living close to electric power lines is not a desired residence. People living near power
lines tend to be poorer than the control group, and there is a relationship between
poverty and cancer.

Poverty = higher probability for living close to power lines
? ? correlation
Poverty = higher chances for cancer no direct relation
causality

Drawing Causal Inference from Big Data (Scientific Insight)

Our previous example:

Prediction of the energy difference RS
between ZB/WZ and RS of binary i
Compound semiconductors ‘

There is no scientific law that connects the descriptor
IP(B) — EA(B) [ro(A) —rp(B)|  [rp(B) — 7(B)|
rp(A)? Toexp(reo(A)) T exp(rqa(A) 4+ ro(B))
directly with the total-energy difference (we are not able to write it down).
However, Z,, Zg determine these descriptors,
and Z,, Zg determine the many-body Hamiltonians and the total-energy difference.

15
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Drawing Causal Inference from Big Data (Scientific Insight)

Correlation between d and P reflects causal inference
if it is based on sufficient information(*)

There are four possibilities (types of causality) behind P(d):

\

d>P : P “listens” tod Judea Pearl
A->d and A - P:Thereis no direct connection between d and P, but d and P
both “listen” to a third “actuator”

3. P>d :d “listens”"toP

4. There is no direct connection between d and P, but they have a common effect
that listens to both and screams: “l occurred” (Berkson bias; Judea Pearl)

A

) Construct d with scientific knowledge (prejudice?), or use “big data” for {P; }.

Drawing Causal Inference from Big Data (Scientific Insight)

ROMEO: “It was the lark, the bird that sings at dawn, not the
nightingale. Look, my love, what are those streaks of light in the
clouds parting in the east? Night is over, and day is coming. ... ”

The singing of the lark is a good descriptor for “the sun will rise soon”.
The singing of the lark is not the actuator of (the mechanism behind)
the sunrise.

Conclusion / Suggestion: Accept “larks” (not just scientific laws) to
predict materials properties.

16
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The Four V of Big Data and an A é
Data — data — data (analog to Moore’s law) Computed data: Query and read out what
numbers, arrays, figures, movies, ... was stored. (high-throughput screening)

Shouldn't we do more?!

e o i‘ - /
Negehit Qe N
3 "C T o B, SIS
: SNl e R Ay
B o DR I8 T L
%% A 2" A TR !‘.(/.’\' (/
; L Y N ‘,‘t A‘wl’q\'\- ¢ . S ‘,.,,\“‘{ N &
. \‘!".’Jc . G. s WAl e ma Y < ¢
(A4 ¢
A *2 - -
PAS 4 Big-Data Analytics
S
T

A * Finding d from { P; }: LASSO and leave-some-out cross validation and noise
4 "r * Analyze the science behind the d -- P correlation
* The big-data challenge in materials science: Look for anomalies, not the crowd

Summary and Outlook

* Machine learning may find structure in data that is invisible to humans.

* Causal models, i.e. finding causal descriptors, are richer. They are able to provide
scientific insight and understanding.

* They can tell how to do machine learning on difficult tasks.

* Question: Why do we want to achieve insight and understanding? Isn’t it good
enough to have a predictive model?

* Question: Is it possible to assign error bars to predictions (of unexpected situations)?

Next steps:
* Beyond the linear fit: Non-linear kernel with I;-norm regularization.
* Higher accuracy: MaxAE loss function with |;-norm regularization.

* Improving the systematic creation of the feature space.

17



