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From the periodic table of the elements to a chart of materials: 
Organize materials according to their properties and functions

o figure of merit of thermoelectrics (as function of T)

o turn-over frequency of catalytic materials (as function 
of T and p)

o efficiency of photovoltaic systems

o etc.

( Big )  Data of Materials Science from First 

Principles -- Critical Role of the Descriptor --

To help business discover, develop, and deploy new materials 
twice as fast, we’re launching what we call the Materials 
Genome Initiative. The invention of silicon circuits and lithium 
ion batteries made computes and iPods and iPads possible, but 
it took years to get those technologies from the drawing boards 
to the market place. We can do it faster.

President Obama
Carnegie Mellon University, June 2011

Materials Genome Initiative for Global 
Competitiveness  http://www. whitehou 
se.gov/ sites/ deault/files/microsites/stp 
/materials_genome_initiative-final.pdf

Materials Genome Initiative
for Global Competiveness

“twice as fast, at a fraction of the cost”

Compute the basic properties („genes“) of many 
(ten or hundred thousand) materials and disse-
minate that information to the materials com-
munity to enable rapid searches of materials 
properties and help design improved materials.
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The Four V of Big Data and an A

Data – data – data (analog to Moore’s law)
numbers, arrays, figures, movies, … 

Big-Data Challenge: “four V”:  

Volume (amount of data), 

Variety (heterogeneity of form and 
meaning of data),

Veracity (uncertainty of data quality), 

Velocity at which data may change or 
new data arrive. 

(so far: most data are not used and even thrown away)

Computed data: Query and read out what 
was stored. (high-throughput screening)
Shouldn't we do more?!

The four V should be complemented by 
an “A”, Big-Data Analytics:
• identify (so far) hidden trends,
• which materials should be studied 

next as most promising candidates,
• identify anomalies,
• identify the mechanisms that govern a 

certain material property or function.

Training Set
Calculate properties 
and functions, P, for 

many materials, i.
Density-Functional 

Theory

Descriptor
Find the appropriate 

descriptor di ,

build a “table”:
i di Pi

“Learning”
Find the function 

PSL(d) for the “table”; 
do cross validation.
Statistical Learning

Fast Predictions
Calculate properties 

and functions for new 
d values, i.e. new 

materials.

Big-Data Analytics: How to Arrange the Data

{ZI, NI}, T, {p} de-
termine the many-
body hamiltonian 
and statistical 
mechanics

Statistical mechanics does not 
tell us what the relevant 
variables are. This is our 
choice. If we choose well, the 
results may be useful, if we 
chose badly, the results 
(while formally correct) will 
probably be useless. (Robert 
Zwanzig)
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Big-Data Analytics: How to Arrange the Data

Statistical mechanics does not 
tell us what the relevant 
variables are. This is our 
choice. If we choose well, the 
results may be useful, if we 
chose badly, the results 
(while formally correct) will 
probably be useless. (Robert 
Zwanzig)

Training Set
Calculate properties 
and functions, P, for 

many materials, i.
Density-Functional 

Theory

Descriptor
Find the appropriate 

descriptor di ,

build a “table”:
i di Pi

“Learning”
Find the function 

PSL(d) for the “table”; 
do cross validation.
Statistical Learning

Fast Predictions
Calculate properties 

and functions for new 
d values, i.e. new 

materials.

{ZI, NI}, T, {p} de-
termine the many-
body hamiltonian 
and statistical 
mechanics

d characterizes the relevant mechanisms that govern the observed property/function P. 
The d  PSL mapping is complex; identifying the descriptor d from known data Pi , is an 
ill-posed problem (statistical-learning theory): A little error in the data Pi may suggest a 
different descriptor d. Thus, knowledge of the accuracy of data Pi is crucial (veracity). The 
choice of d is not unique. 

A) Veracity: Accuracy of state-of-the-art density-functional theory (validation and
verification)

B) Descriptor: How to find it, how to understand the causality between d and PSL?

Big-Data Analytics: How to Arrange the Data
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Codes: Abinit, crystal, exciting, CASTEP, FHI-aims, 
Quantum Espresso, VASP – more coming;
various xc functionals
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Veracity – Validation and Verification

• accuracy of materials-science codes: basis sets, relativity, 
pseudopotentials, other numerical approximations (verification)

• accuracy of the exchange-correlation functional (validation)

Veracity – Validation and Verification
Comparing Solid State DFT Codes, Basis Sets and Potentials

https://molmod.ugent.be/deltacodesdft.      Reference code: WIEN2k
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τ(r) : Kohn-Sham kinetic-energy density

EX: exact exchange:

cRPA : random-phase approximation for correlation

ACFD :  adiabatic connection fluctuation dissipation theorem

Bohm, Pines (1953); Gell-Mann, Brueckner (1957); 
Gunnarsson, Lundqvist (1975, 1976); Langreth, Perdew (1977); 
X. Ren, P. Rinke, C. Joas, and M. S., Invited Review, Mater. Sci. 47, 21 (2012)

5 unoccupied ψi(r), EX + cRPA, as given by ACFD
4      occupied ψi(r),       hybrids (B3LYP, PBE0, HSE, …)
3      τ (r), meta-GGA (e.g., TPSS) 
2      ∇n(r), Generalized Gradient Approximation 
1       n(r), Local-Density Approximation

ac
cu

ra
cy

 

Veracity – Approximate Treatment of Exchange-Correlation
Perdew’s Dream: A Jacob’s Ladder

our favorite

The exchange-correlation functional

(TS et al.)
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CCSD(T): Jurecka, Sponer, Cerny, Hobza, PCCP (2006).  Langreth-Lundqvist : Gulans, Puska, Nieminen, PRB (2009);
rPT2: X. Ren et al. PRL (2011) and NJP (2013). TS: A. Tkatchenko and M.S., PRL (2009);  A. Tkatchenko et al., JCP (2009)
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Alexandre 
Tkatchenko Patrick RinkeXinguo Ren

rPT2 achieves “chemical accuracy”
(1 kcal/mol ~ 43 meV)

-- same performance for the S66 test set --

@PBE

rPT2 @ PBE              

Performance of rPT2 for Weak Intermolecular Interactions:  
S22 Test Set

http://www.fhi-berlin.mpg.de/th/member/tkatchenko_a2.jpg
http://www.fhi-berlin.mpg.de/th/member/tkatchenko_a2.jpg
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Test Sets for Materials Science and Engineering?

Chemists have shown the way. For small and light molecules they developed test 
sets:  G2, NHTBH38, HTBH38, S22, S66 ... 

We need a materials test set! We can now do renormalized second-order 
perturbation theory (similar to CCSD) and even full CI (*)         – for  certain systems.

Comparison with experiment is very important as well (adsorption energies of 
molecules, e.g. by microcalometry). However, theory-theory comparison is better 
defined.

(*)  G. H. Booth, A. J. W. Thom, and A. Alavi, J. Chem. Phys. 131, 054106 (2009).     
G. H. Booth, A. Grüneis, G. Kresse, and A. Alavi, Nature 493, 365 (2013).
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The Four V of Big Data and an A

Big-Data Challenge: “four V”:  

Volume (amount of data), 

Variety (heterogeneity of form and 
meaning of data),

Veracity (uncertainty of data quality), 

Velocity at which data may change or 
new data arrive. 

The four V should be complemented by 
an “A”, the Big-Data Analytics:
• identify (so far) hidden correlations,
• which materials should be studied 

next as most promising candidates,
• identify anomalies,
• identify the mechanisms that govern a 

certain material property or function.

(so far: most data are not used and even thrown away)

Data – data – data (analog to Moore’s law)
numbers, arrays, figures, movies, … 

Computed data: Query and read out what 
was stored. (high-throughput screening)
Shouldn't we do more?!

Big-Data Analytics

• Finding d from P
• Causality: the science behind P(d)



2/25/2015

9

We have data {Pi} at “coordinates” {xi}        xi = set of descriptive parameters (descriptor)

Linear regression:

Polynomial kernel

Gaussian kernel

K(xi, xk) = xi .  xk P(xi)  =  xi . c*

K(xi, xk) = exp (  Σj ( xi  xk )2 / 2σj
2 )

Kernel Regression

Pi =   P(xi)  =  Σk=1 ck K(xi, xk)
N

For successful learning, we need a “good” descriptor:   P(xi)  P(di)

K(xi, xk) = ( xi .  xk + c ) d

Only DFT-LDA: Can we predict not yet calculated LDA structures from ZA and ZB? 

82 octet AB binary compounds

Toy Model: Descriptor for the Classification 
“Zincblende/Wurtzite or Rocksalt?”

Energy differences between 
different structures are very 
small. For Si: 0.01% of the 
energy of a Si atom, or 0.1% 
of the 4 valence electrons. 
Complexity: Ts[n] and Exc.

Machine learning can fit the P(ZA, ZB) data well, 
but fails  completely in predictions.

RS                   ZB

Arrange data P(xi)  P(di), so that P(di) is a “well behaved 
function”. Fit this function by machine learning.

How to find di?

In reality we may not have enough data to learn a complex 
function. Add “prior knowledge”  (prejudice).
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82 octet AB binary compounds

Toy Model: Descriptor for the Classification 
“Zincblende/Wurtzite or Rocksalt?”

q2

q1

Arrange data P(xi)  P(di), so that P(di) is a “well behaved 
function”. Fit this function by machine learning.

How to find di?

In reality we may not have enough data to learn a complex 
function. Add “prior knowledge”  (prejudice).

?

Only DFT-LDA: Can we predict not yet calculated LDA structures from ZA and ZB? 

82 octet AB binary compounds

Toy Model: Descriptor for the Classification 
“Zincblende/Wurtzite or Rocksalt?”

a) A descriptor is an array of real numbers that 
uniquely characterizes the material as well as 
property-relevant elementary processes.

b) Materials that are very different (similar) should be 
characterized by very different (similar) descriptor 
values. 

c) The determination of the descriptor must not 
involve calculations as intensive as those needed 
for the evaluation of the property to be predicted.

d) The dimension  of the descriptor should be as low 
as possible, but not lower.

Wish List for a Descriptor
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Statistical Learning  (Machine Learning) 

(*) J. A. Van Vechten, Phys. Rev. B 182 , 891 (1969); 

J. C. Phillips, Rev. Mod. Phys. 42, 317 (1970)

J. C. Phillips and J. A. Van Vechten (1969/70)(*) : 
A two-dimensional descriptor that distinguishes 
materials that crystallize in ZB/WZ  vs. RS structures:

Eh =

C = 

related to crystal’s band gap, dielectric 
constant, nearest-neighbor distance

There are several other descriptors for this 
classification goal, by various authors.

Example (the traditional way):

the key scientific challenge: find a descriptor d that works.

How to find a good descriptor, also for more complicated properties and functions?

Toy Model: Descriptor for the Classification 
“Zincblende/Wurtzite or Rocksalt?”

ZB

RS

Statistical Learning  (Machine Learning) 

kernel ridge regression    linear

+ +

least absolute shrinkage and selection 
operator (LASSO) for feature selection

R. Tibshirani, J. Royal Statist. Soc. B 58, 267 (1996)

minimize

fit and/or interpolation of discrete, known data points { Pi } and building a function P(d)

the key scientific challenge: find a reliable, low dimensional descriptor d.
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1) Primary Features, 2) Feature Space, 2) Descriptors

free atoms

free dimers

LASSO finds the most important descriptors:

We start with 23 primary features
and build    > 10,000 non linear combinations

1) 

2)

3)

Statistical Learning  (Machine Learning): LASSO, 2-Dim. Descriptor

The complexity and science is in the 
descriptor (identified from >10,000 
features).
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Statistical Learning  (Machine Learning): Descriptor

Descriptor   ZA, ZB ZA*, ZB*   1D       2D      3D     5D

MAE                1*10-4           3*10-3 0.12  0.08  0.07 0.05

MaxAE 8*10-4 0.03      0.32   0.32   0.24   0.20

MAE, CV           0.13       0.14     0.12    0.09   0.07   0.05

MaxAE, CV       0.43      0.42     0.27    0.18    0.16   0.12

Mean absolute error (MAE), and maximum absolute error (MaxAE), in eV, (first two 

lines) and for a leave-10%-out cross validation (CV), averaged over 150 random 

selections of the training set (last two lines). For (ZA*, ZB*), each atom is identified by 
a string of three random numbers.

Descriptor   ZA, ZB ZA*, ZB*   1D       2D      3D     5D

MAE                1*10-4           3*10-3 0.12  0.08  0.07 0.05 

MaxAE 8*10-4 0.03      0.32   0.32   0.24   0.20

MAE, CV           0.13       0.14     0.12    0.09   0.07   0.05

MaxAE, CV       0.43      0.42     0.27    0.18    0.16   0.12

Mean absolute error (MAE), and maximum absolute error (MaxAE), in eV, (first two 

lines) and for a leave-10%-out cross validation (CV), averaged over 150 random 

selections of the training set (last two lines). For (ZA*, ZB*), each atom is identified by 
a string of three random numbers.

Statistical Learning  (Machine Learning): Descriptor
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Descriptor   ZA, ZB ZA*, ZB*   1D       2D      3D     5D

MAE                1*10-4           3*10-3 0.12  0.08  0.07 0.05 

MaxAE 8*10-4 0.03      0.32   0.32   0.24   0.20

MAE, CV           0.13       0.14     0.12    0.09   0.07   0.05

MaxAE, CV       0.43      0.42     0.27    0.18    0.16   0.12

Mean absolute error (MAE), and maximum absolute error (MaxAE), in eV, (first two 

lines) and for a leave-10%-out cross validation (CV), averaged over 150 random 

selections of the training set (last two lines). For (ZA*, ZB*), each atom is identified by 
a string of three random numbers.

Statistical Learning  (Machine Learning): Descriptor

The complexity and science is in 
the descriptor (identified from 
>10,000 features).

BN

BP

Drawing Causal Inference from Big Data (Scientific Insight) 

There are four possibilities (types of causality) behind P(d):

1. d → P :   P “listens” to d

2. A → d and  A → P : There is no direct connection between d and P, but d and P
both “listen” to a third “actuator”

3. P → d :  d “listens” to P

4. There is no direct connection between d and P, but they have a common effect           
..that listens to both and screams: “I occurred“ (Berkson bias; Judea Pearl)

Correlation between d and P , i.e. P is a function of d, P(d), 
reflects causal inference

if it is based on sufficient information(*)

(*) Construct d with scientific knowledge (prejudice?), or use “big data” for {Pi }.
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Example:

The probability of childhood leukemia is higher for people living close to electricity 
power lines.

There is no direct connection between leukemia and the electromagnetic field. 

Living close to electric power lines is not a desired residence. People living near power 
lines tend to be poorer than the control group, and there is a relationship between 
poverty and cancer.

Poverty  higher probability for living close to power lines

Poverty  higher chances for cancer
?            ? correlation

no direct relation
causality

Drawing Causal Inference from Big Data (Scientific Insight) 

Poverty  higher probability for living close to power lines

Poverty  higher chances for cancer
?            ?

Our previous example: 
Prediction of the energy difference
between ZB/WZ and RS of binary 
Compound semiconductors

There is no scientific law that connects the descriptor

directly with the total-energy difference (we are not able to write it down).
However,   ZA, ZB determine these descriptors,
and ZA, ZB determine the many-body Hamiltonians and the total-energy difference.

RS                   ZB

correlation
no direct relation
causality

Drawing Causal Inference from Big Data (Scientific Insight) 
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There are four possibilities (types of causality) behind P(d):

1. d → P :   P “listens” to d

2. A → d and  A → P : There is no direct connection between d and P, but d and P
both “listen” to a third “actuator”

3. P → d :  d “listens” to P

4. There is no direct connection between d and P, but they have a common effect           
..that listens to both and screams: “I occurred“ (Berkson bias; Judea Pearl)

Correlation between d and P reflects causal inference
if it is based on sufficient information(*)

(*) Construct d with scientific knowledge (prejudice?), or use “big data” for {Pi }.

Drawing Causal Inference from Big Data (Scientific Insight) 

Conclusion / Suggestion: Accept “larks” (not just scientific laws) to 
predict materials properties.

ROMEO: “It was the lark, the bird that sings at dawn, not the 
nightingale. Look, my love, what are those streaks of light in the 
clouds parting in the east? Night is over, and day is coming. … ”

The singing of the lark is a good descriptor for “the sun will rise soon”.
The singing of the lark is not the actuator of (the mechanism behind) 

the sunrise.

case # 3

Drawing Causal Inference from Big Data (Scientific Insight) 
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(so far: most data are not used and even thrown away)

The Four V of Big Data and an A

Computed data: Query and read out what 
was stored. (high-throughput screening)
Shouldn't we do more?!

Big-Data Analytics
• Finding d from { Pi }: LASSO and leave-some-out cross validation and noise

• Analyze the science behind the d -- P correlation

• The big-data challenge in materials science: Look for anomalies, not the crowd

Data – data – data (analog to Moore’s law)
numbers, arrays, figures, movies, … 

Summary and Outlook

• Machine learning may find structure in data that is invisible to humans.

• Causal models, i.e. finding causal descriptors, are richer. They are able to provide 
scientific insight and understanding.

• They can tell how to do machine learning on difficult tasks.

• Question: Why do we want to achieve insight and understanding? Isn’t it good 
enough to have a predictive model? 

• Question: Is it possible to assign error bars to predictions (of unexpected situations)?

Next steps:

• Beyond the linear fit: Non-linear kernel with l1-norm regularization.

• Higher accuracy: MaxAE loss function with l1-norm regularization.

• Improving the systematic creation of the feature space.


