

High-throughput Data and New Representations for Models and Machine Learning

Gus L. W. Hart

BRIGHAM YOUNG

Why am I here?

This talk is for you, not for me

Experimental Structures (ICSD)

Experimental Structures (ICSD)

Experimental Structures (ICSD)

Experimental Structures (ICSD)

An Application: 153 Platinum-Group Alloys

Gus L.W. Hart, Stefano Curtarolo, Thaddeus B. Massalski, Ohad Levy; Phys. Rev. X, **3** 041035 (Dec. 30 2013). (<u>msg.byu.edu/pubs.php</u>)

Viewpoint: Computational Materials Discovery Goes Platinum

http://aflowlib.org

HOME

CONSORTIUM

Welcome to the AFLOW distributed materials property repository: share with us your passion for innovation and technology.

Try our Materials Database Search, download our apps, consult our wiki and publications.

Name or ICSD Number or AUID (Aflowlib Unique IDentifier [<u>HELP</u>])

ARKEMA SPEAKE

AFLOWLIN

DISCOVER OUR S

Interview

LAST NEWS

PUBLICATIONS

http://aflowlib.org

Automatic - FLOW for Materials Discovery

HOME

CONSORTIUM

PUBLICATIONS

AFLOWLINK

http://aflowlib.org

12	$Cd_1Ga_2S_4$	2.2029	e7585605e0bab007	ICSD_WEB/BCT/Cd1Ga2S4_ICSD_31354
13	$Cd_1Ga_2S_4$	2.2107	e904ea4649d40ae1	ICSD_WEB/BCT/Cd1Ga2S4_ICSD_25642
14	Cl ₄ Ga ₄ Te ₄	2.2836	97bbe8d3a150a566	ICSD_WEB/ORC/Cl1Ga1Te1_ICSD_15582
15	Cs ₁₂ Ga ₄ Se ₁₂	2.1331	e69e0608e64542e8	ICSD_WEB/MCL/Cs6Ga2Se6_ICSD_35293
16	$\mathrm{Er}_{6}\mathrm{Ga}_{2}\mathrm{S}_{12}$	2.1403	08731daf3a7f012d	ICSD_WEB/ORCC/Er3Ga1S6_ICSD_2511
17	Ga ₂ Ge ₄ O ₁₄ Pb ₃	2.2086	a990ebca004332af	ICSD_WEB/HEX/Ga2Ge4O14Pb3_ICSD_250123
18	Ga ₂ Mn ₁ S ₄	2.2604	8df034a523f2099f	ICSD_WEB/BCT/Ga2Mn1S4_ICSD_152909
19	Ga ₂ O ₄ Tl ₂	2.1148	bf2c2af810b2f5ec	ICSD_WEB/RHL/Ga1O2T11_ICSD_33579
20	Ga ₂ S ₄ Zn ₁	2.1564	2015176ca138b0e3	ICSD_WEB/TET/Ga2S4Zn1_ICSD_635300
21	Ga ₄ Ge ₁ O ₈	2.136	96eeb0c60e611111	ICSD_WEB/MCLC/Ga4Ge1O8_ICSD_202044
22	Ga ₄ I ₁₂ Li ₄	2.2612	7e2dc466f1442b07	ICSD_WEB/MCL/Ga1I3Li1_ICSD_202642
23	Ga ₄ Li ₄ Se ₈	2.1189	44e3dfa0e77246f9	ICSD_WEB/ORC/Ga1Li1Se2_ICSD_634546
24	Ga ₄ Li ₄ Se ₈	2.1651	e5d89371a9e11bb0	ICSD_WEB/ORC/Ga1Li1Se2_ICSD_96915
25	Ga ₄ O ₆	2.1608	245ca11a8709306f	ICSD_WEB/MCLC/Ga2O3_ICSD_603563
26	Ga ₄ O ₆	2.1538	43a955013462937a	ICSD_WEB/MCLC/Ga2O3_ICSD_184327
27	Ga ₄ O ₆	2.1734	c980db287f78262c	ICSD_WEB/MCLC/Ga2O3_ICSD_166198
28	Ga ₄ O ₆	2.1656	cb24f97fe2c1198c	ICSD_WEB/MCLC/Ga2O3_ICSD_83645
29	Ga ₄ O ₆	2.1702	e8dbaa09cef83775	ICSD_WEB/MCLC/Ga2O3_ICSD_34243
30	Ga4P4S16	2.2855	d5209efc85921c33	ICSD_WEB/MCL/Ga1P1S4_ICSD_2613
31	Ga ₆ In ₆ S ₁₈	2.145	c2c67ddb664c3a14	ICSD_WEB/HEX/Ga1In1S3_ICSD_62929
32	Ga ₈ I ₁₂	2.2109	9758f7460f79ec5a	ICSD_WEB/MCL/Ga2I3_ICSD_24822
33	$Ga_9O_2S_{13}Tl_3$	2.2428	5593f5376b6d222c	ICSD_WEB/HEX/Ga9O2S13Tl3_ICSD_61256

 R. H. Taylor, F. Rose, C. Toher, O. Levy, M. Buongiorno Nardelli, and S. Curtarolo, A RESTful API for exchanging Materials Data in the AFLOWLIB.org consortium, Comp. Mat. Sci. VVV, PPP (2014). [doi] [pdf]

[2] W. Setyawan and S. Curtarolo, *High-throughput electronic structure calculations: challenges and tools*, Comp. Mat. Sci. 49, 299-312 (2010) [doi] [pdf]
[3] W. Setyawan, R. M. Gaume, S. Lam, R. S. Feigelson, and S. Curtarolo, *High-Throughput Combinatorial Database of Electronic Band Structures for Inorganic Scintillator Materials*, ACS Comb. Sci. 13(4), 382-390 (2011) [doi] [pdf] [suppl]

[4] S.Wang, Z. Wang, W. Setyawan, N. Mingo, S. Curtarolo, Assessing the thermoelectric properties of sintered compounds with high-throughput ab-initio calculations, Phys. Rev. X 1, 021012 (2011) [doi] [pdf] [suppl]

[5] G. Kresse, and J. Hafner Ab initio molecular dynamics for liquid metals, Phys. Rev. B 47, 558-561 (1993) [doi]

But I want to explore a larger space...and go to finite T...

•

•

/

100nm

Configuration: $\vec{\sigma}$

 $\sigma_n = \pm 1 \text{ (A or B)}$

Interactions

$$\Lambda(\vec{\sigma}) = J_0 + J_1 \sum_i \sigma_i + \sum_{i>j} J_{ij}\sigma_i\sigma_j + \sum_{i>j>k} J_{ijk}\sigma_i\sigma_j\sigma_k + \cdots$$

Representation is rotationally, translationally, permutationally invariant

Configuration: $\vec{\sigma}$

 $\sigma_n = \pm 1$ (A or B)

Interactions

Genetic Algorithm for Model Building

LETTERS

Evolutionary approach for determining first-principles hamiltonians

GUS L. W. HART¹*, VOLKER BLUM^{2†}, MICHAEL J. WALORSKI³ AND ALEX ZUNGER²

¹Department of Physics and Astronomy, Northern Arizona University, Flagstaff, Arizona 86011-6010, USA

²National Renewable Energy Laboratory, Golden, Colorado 80401, USA

$$\mathbb{M}\vec{a} = \vec{f}$$

$$\mathbb{M}\vec{a} = \vec{f}$$

$$\min_{\vec{a}} \left\{ \|\vec{a}\|_1 : \mathbb{M}\vec{a} = \vec{f} \right\}$$

$$\mathbb{M}\vec{a} = \vec{f}$$

$$\min_{\vec{a}} \left\{ \|\vec{a}\|_1 : \mathbb{M}\vec{a} = \vec{f} \right\}$$

$$\ell_1 \equiv \|\vec{u}\| = \sum_i |u_i|$$

$$\min_{\vec{a}} \left\{ \|\vec{a}\|_1 : \mathbb{M}\vec{a} = \vec{f} \right\}$$

$$\min_{\vec{a}} \left\{ \|\vec{a}\|_1 : \mathbb{M}\vec{a} = \vec{f} \right\}$$

$$\min_{\vec{a}} \left\{ \|\vec{a}\|_1 : \mathbb{M}\vec{a} = \vec{f} \right\}$$

$$\min_{\vec{a}} \left\{ \|\vec{a}\|_1 : \mathbb{M}\vec{a} = \vec{f} \right\}$$

$$\min_{\vec{a}} \left\{ \|\vec{a}\|_1 : \mathbb{M}\vec{a} = \vec{f} \right\}$$

$$\min_{\vec{a}} \left\{ \|\vec{a}\|_1 : \mathbb{M}\vec{a} = \vec{f} \right\}$$

$$\min_{\vec{a}} \left\{ \|\vec{a}\|_1 : \mathbb{M}\vec{a} = \vec{f} \right\}$$

$$\min_{\vec{a}} \left\{ \|\vec{a}\|_1 : \mathbb{M}\vec{a} = \vec{f} \right\}$$

$$\min_{\vec{a}} \left\{ \|\vec{a}\|_1 : \mathbb{M}\vec{a} = \vec{f} \right\}$$

CS is practical because there are so many good numerical approaches for enforcing the ℓ_1 norm

$$\min_{\vec{a}} \left\{ \|\vec{a}\|_1 : \mathbb{M}\vec{a} = \vec{f} \right\}$$

Thursday, February 26, 15

500_ſ

 $\|J_{\mathrm{fit}}\|_1$

 $\|\mathbf{J}_{\mathrm{fit}}^{0}\|_{0}$

Bayesian Compressive Sensing Stand-alone Solver

rosenbrockc / bcs					
Standalone Bayesian Compressive Sensing Solver					
③ 9 commits		So releases			
رم y branch: master - bcs / +					
Revision 1.0.4					
rosenbrockc authored 15 days ago					
bcs	Revision 1.0.4				
docs	New writeup draft				
.gitignore	Revision 1.0				
HISTORY.md	Revision 1.0.4				
README.md	Fixed typo in README				
III README.md					

But I want to explore a *much* larger space...and go to finite T...

But I want to explore a *much* larger space...and go to finite T...

I'd like to go off the lattice...

But compressive sensing uncovered DFT problems

$$\int_0^1 (x - 1/2)^2 \, dx$$

 $\int_0^1 e^{\cos 2\pi x} \, dx$

1976: Teton Dam Disaster and MK Paper

1976: Teton Dam Disaster and MK Paper

PHYSICAL REVIEW B

VOLUME 13, NUMBER 12

15 JUNE 1976

Special points for Brillouin-zone integrations*

Hendrik J. Monkhorst and James D. Pack Department of Physics, University of Utah, Salt Lake City, Utah 84112 (Received 21 January 1976)

A method is given for generating sets of special points in the Brillouin zone which provides an efficient means of integrating periodic functions of the wave vector. The integration can be over the entire Brillouin zone or over specified portions thereof. This method also has applications in spectral and density-of-state calculations. The relationships to the Chadi-Cohen and Gilat-Raubenheimer methods are indicated.

I. INTRODUCTION

$$\vec{\mathbf{b}}_1 = \frac{2\pi}{v} \vec{\mathbf{t}}_2 \times \vec{\mathbf{t}}_3, \quad \vec{\mathbf{b}}_2 = \frac{2\pi}{v} \vec{\mathbf{t}}_3 \times \vec{\mathbf{t}}_1, \quad \vec{\mathbf{b}}_3 = \frac{2\pi}{v} \vec{\mathbf{t}}_1 \times \vec{\mathbf{t}}_2.$$

Many calculations in crystals involve integrating Thursday, February 26, 15

1976: Teton Dam Disaster and MK Paper

PHYSICAL REVIEW B

VOLUME 13, NUMBER 12

15 JUNE 1976

Special points for Brillouin-zone integrations*

Hendrik J. Monkhorst and James D. Pack Department of Physics, University of Utah, Salt Lake City, Utah 84112 (Received 21 January 1976)

A method is given for generating sets of special points in the Brillouin zone which provides an efficient means

SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS

By: MONKHORST, HJ; PACK, JD PHYSICAL REVIEW B Volume: 13 Issue: 12 Pages: 5188-5192 Published: 1976

GET IT! @ BYVG

Times Cited: 17,209 (from Web of Science Core Collection)