Many-Body Molecular Dynamics for Chemically Accurate Simulations from the Gas to the Condensed Phase

Francesco Paesani

Department of Chemistry and Biochemistry University of California, San Diego

IPAM - Machine Learning for Many-Particle Systems

Acknowledgments

Current

Greg Medders

Pushp Bajaj Shelby Straight Marc Riera-Riambau Zack Terranova Jiarong Zhou Josh Cox

Volodymyr Babin Kyoyeon Park Wei Lin Jason Grosch David Sanchez Jason Wong

Jordi Cirera Anthony Clark Kevin Bao Jeff Sung Matt Agee Porter Howland

Past

Collaborators

Daniel Arismendi-Arrieta (CSIC) Andy Götz (SDSC) Andrea Zonca (SDSC) Bob Sinkovits (SDSC)

NSF CCI: Center for Aerosol Impacts on Climate and the Environment

Hello, My Name Is...

Aqueous Chemistry

NSF & CCI: CAICE

Porous Materials

NSF & DOE

From Clusters to Bulk

Aqueous Chemistry

Molecular Simulations: Where We Are, Where We Are Going...

The Computer Age

"I fear the day that technology will surpass our human interaction. The world will have a generation of idiots." Albert Einstein

The Computer Age

Courtesy of Rommie Amaro (UCSD)

Molecular Simulations: What We Need...

Potential energy functions and simulation approaches that:

- are easily computable and implementable
- accurately represent both molecular interactions and dynamics
- are transferable across different phases
- are predictive
- enable **direct** comparisons with **experiments**

chemistry

biophysics

materials

Water: The Perfect Example

Α	D	М	Q
 AMOEBA ASP-S ASP-W B Baranyai BBL Bell-Lavis Ben-Naim models 	 Dahl and Anderse Dang97 DCF DEC DPP DPP2 E 	 MCHO MCY MCYL Mercedes- Benz model mW N 	• QCT • g-SPC • g-TIP4 R • R • R • RPOL • RSL2 • RWFF • RWFF
 BF BJH BKd1 BKd2 BKd3 BNS BOI BSV 	• E3B • ENCS • EPEN/2 F • F3C G	 NCC NCF NEMO NSPCE NvdE P 	 NWK SAPT SAPT SAPT SCPD SDFT Simple I Charge
C C-pol CF Cl COS COS/B2 COS/G2 COS/G3	 Gaussian model GCPM HB HBB HBB2-pol K 	 PE PMW POL3 POL4D POL5 POLIR PPC PTIP4P PSRWK 	 SPC SPC/F

KJ

KKY

CKL

CMP

PW

- PC/Fw P4P/F
- DL
- 2 FF
- PT-5s
- PT-pp PDP
- T-5s
- e Point e models
- X/A)/E
- C/F C/F2
- C/FP
- C/FQ
- C/Fw
- SPC/HW SPC/L
- SPCP
- SPC-pol

- SSD
- ST2
- ST2RF
- SWM4-NDP

- Transferable Intermolecular Potential
- TIP3P
- TIP4P
- TIP4P/2005

- TIP4P-I
- TIP4P/lce
- TIP4P-pol
- TIP4PQ/2005
- TIP4PQ D2
- TIP4P-QDP
- TIP4P-QDP-
- TIP5P

Hundreds of models... None correctly predicts the properties of water across different phases!

http://www.sklogwiki.org/SklogWiki/index.php/Water_models

TIP5P-E

TIPS

TIPS2

TTM2-F

TTM2-R

TTM2.1

TTM3-F

v

w

WK

TTM2.1-F

VRT(MCY-5f)

W)III

VRT(ASP-

- SWFLEX
- т
- TCPE
- models
- TIP4F

- TIP4P/2005f
- TIP4P-Ew
- TIP4P/FQ
- TIP4P-HB

- TIP4PQ_T2O

- TIP4Q
- IJ

- 0

The "Traditional" Toolkit

Molecular mechanics

$$V(\vec{R}^N) = \sum_{bonds} \frac{k_b}{2} (r_b - r_{b,o})^2 + \sum_{angles} \frac{k_a}{2} (\theta_a - \theta_{a,o})^2 + \sum_{torsion} \left[\sum_n \frac{V_n}{2} (1 + \cos(n\omega - \gamma)) \right]$$
$$+ \sum_{i < j} \left\{ 4\epsilon_{ij} \left[\left(\frac{\sigma_{ij}}{r_{ij}} \right)^{12} - \left(\frac{\sigma_{ij}}{r_{ij}} \right)^6 \right] + \frac{q_i q_j}{4\pi\epsilon_0 R_{ij}} \right\}$$

Hill, J. Chem. Phys. 14, 465 (1946) - Westheimer & Mayer, J. Chem. Phys. <u>14</u>, 733 (1946) Lifson & Warshel, J. Chem. Phys. <u>49</u>, 5116 (1968)

The "Traditional" Toolkit

Molecular mechanics

$$V(\vec{R}^N) = \sum_{bonds} \frac{k_b}{2} (r_b - r_{b,o})^2 + \sum_{angles} \frac{k_a}{2} (\theta_a - \theta_{a,o})^2 + \sum_{torsion} \left[\sum_n \frac{V_n}{2} (1 + \cos(n\omega - \gamma)) + \sum_{i < j} \left\{ 4\epsilon_{ij} \left[\left(\frac{\sigma_{ij}}{r_{ij}} \right)^{12} - \left(\frac{\sigma_{ij}}{r_{ij}} \right)^6 \right] + \frac{q_i q_j}{4\pi\epsilon_0 R_{ij}} \right\}$$

Hill, J. Chem. Phys. 14, 465 (1946) - Westheimer & Mayer, J. Chem. Phys. <u>14</u>, 733 (1946) Lifson & Warshel, J. Chem. Phys. <u>49</u>, 5116 (1968)

Quantum mechanics

 $\hat{H}\Psi = E\Psi$

$$E[\rho] = T[\rho] + V_{ee}[\rho] + V_{xc}[\rho]$$

1930: Hartree-Fock equations

1951: Hartree-Fock-Roothan equations

1965: Kohn & Sham equations

1966: Coupled-Cluster equations

1970: Gaussian 70

1985: CPMD

Head-Gordon & Artacho, Phys. Today <u>61</u>, 58 (2008)

Putting Things in Perspective...

1966

Mulliken

1963

First man on the Moon

1969

Woodstock

Putting Things in Perspective...

1966

Mulliken

1963

First man on the Moon

1969

Woodstock

2013

Karplus, Levitt, Warshel

2014

Driverless Cars

2014

Pharrell

Beyond the "Traditional" Toolkit?

Molecular mechanics

$$V(\vec{R}^N) = \sum_{bonds} \frac{k_b}{2} (r_b - r_{b,o})^2 + \sum_{angles} \frac{k_a}{2} (\theta_a - \theta_{a,o})^2 + \sum_{torsion} \left[\sum_n \frac{V_n}{2} (1 + \cos(n\omega - \gamma)) \right] + \sum_{i < j} \left\{ 4\epsilon_{ij} \left[\left(\frac{\sigma_{ij}}{r_{ij}} \right)^{12} - \left(\frac{\sigma_{ij}}{r_{ij}} \right)^6 \right] + \frac{q_i q_j}{4\pi\epsilon_0 R_{ij}} \right\}$$

Hill, J. Chem. Phys. 14, 465 (1946) - Westheimer & Mayer, J. Chem. Phys. <u>14</u>, 733 (1946) Lifson & Warshel, J. Chem. Phys. <u>49</u>, 5116 (1968)

Quantum mechanics

 $\hat{H}\Psi = E\Psi$

$$E[\rho] = T[\rho] + V_{ee}[\rho] + V_{xc}[\rho]$$

1930: Hartree-Fock equations

1951: Hartree-Fock-Roothan equations

1965: Kohn & Sham equations

1966: Coupled-Cluster equations

1970: Gaussian 70

1985: CPMD

Beyond the "Traditional" Toolkit?

Potential energy functions and simulation approaches that:

- are easily computable and implementable
- accurately represent both molecular interactions and dynamics
- are transferable across different phases
- are predictive
- enable direct comparisons with molecular-level experiments

Not the First Nor the Only Ones...

- 1892 Roentgen: mixture model (liquid-like & ice-like)
- 1933 Bernal & Fowler: tetrahedral arrangement
- 1946 Samoilov: interstitial model
- 1951 Pauling: hydrate with clathrate-like structure
- 1951 Pople: tetrahedral water with 4 distorted H-bonds
- 60s 70s: computer simulations with force fields
- 1985 Car & Parrinello: CPMD

...

1) **Can** such a simulation approach **exist**?

2) If it exists, what does it require?

3) **Can** it be applied to **complex systems**?

Many-Body Expansion of Molecular Interactions

Many-Body Expansion of Molecular Interactions

2-Body Interaction Energies: Models vs. CCSD(T)

Medders, Babin & FP, J. Chem. Theory Comput. 9, 1103 (2013)

3-Body Interaction Energies: Models vs. CCSD(T)

Medders, Babin & FP, J. Chem. Theory Comput. 9, 1103 (2013)

Ab Initio Potentials from the Many-Body Expansion

MB-nrg: CCSD(T)-Level Multidimensional Potential Energy Surfaces

$$\begin{split} E_N &= \sum_{i}^{N} V^{1B}(i) & \text{1-body} \\ &+ \sum_{i < j}^{N} V^{2B}(i,j) & \text{2-body} \\ &+ \sum_{i < j < k}^{N} V^{3B}(i,j,k) & \text{3-body} \\ &+ \dots \\ &+ V^{NB}(1,\dots,N) & \text{N-body} \end{split}$$

explicit 1B, 2B, and 3B terms from CCSD(T)/CBS

+

higher-body terms from many-body polarization

- J. Phys. Chem. Lett. <u>3</u>, 3765 (2012)
- J. Chem. Theory Comput. <u>9</u>, 1103 (2013)
- J. Chem. Theory Comput. <u>9</u>, 4844 (2013)
- J. Chem. Theory Comput. <u>9</u>, 5395 (2013)
- J. Chem. Theory Comput. <u>10</u>, 1599 (2014)
- J. Chem. Theory Comput. <u>10</u>, 2906 (2014)
- J. Chem. Theory Comput. DOI: 10.1021/ct501131j

Molecular Interactions & Electronic Structure

$$\begin{split} V^{1B} &= V_{PS}^{1B} \quad \text{Partridge & Schwenke, J. Chem. Phys. } \underline{106}, 4618 (1997) \\ V^{2B} &= s_2 \underbrace{V_{poly}^{2B}}_{poly} + V_{elect}^{2B} + V_{ind}^{2B} - \sum_{i < j} f_{ij} \frac{C_{ij,6}}{R_{ij}^6} \\ V^{3B} &= s_3 \underbrace{V_{poly}^{3B}}_{poly} + V_{ind}^{3B} \end{split}$$

$$V^{>3B} = V_{ind}^{NB}(1,\ldots,N)$$

Permutationally invariant polynomials

Braams & Bowman, Int. Rev. Phys. Chem. 28, 577 (2009)

$$\begin{split} V^{1B} &= V_{PS}^{1B} \quad \text{Partridge & Schwenke, J. Chem. Phys. } \underline{106}, 4618 (1997) \\ V^{2B} &= s_2 V_{poly}^{2B} + V_{elect}^{2B} + V_{ind}^{2B} - \sum_{i < j} f_{ij} \frac{C_{ij,6}}{R_{ij}^6} \\ V^{3B} &= s_3 V_{poly}^{3B} + V_{ind}^{3B} \end{split}$$

$$V^{>3B} = V_{ind}^{NB}(1,\ldots,N)$$

V^{3B}

1163 linear parameters + 10 nonlinear parameters

$$V_{poly}^{3B} = \sum_{m=1}^{1163} c_m \xi_m \qquad \begin{array}{c} s_3 = s(t_{ab})s(t_{ac}) \\ + s(t_{ab})s(t_{bc}) \\ + s(t_{ac})s(t_{bc}) \end{array} \qquad t_{mn} = \frac{R_{mn}}{R_{cut}^{(3B)}} \qquad s(t) = \begin{cases} 1 & \text{if } t < 0 \\ \cos^2 \frac{\pi}{2}t & \text{if } 0 \le t < 1 \\ 0 & \text{if } 1 \le t \end{cases}$$

$$V^{>3B} = V_{ind}^{NB}(1,\ldots,N)$$

Reference data

2B: CCSD(T)/CBS dimers

3B: CCSD(T)/CBS trimers

invariant polynomials, dipole, polarizability, and dispersion

Molecular Interactions & Big Data

"Active learning"

Abu-Mostafa & Magdon-Ismail, "Learning from data"

Molecular Interactions & Scientific Computing

http://paesanigroopaucodædu

MB-pol: 2-Body & 3-Body Interaction Energies

MB-pol Accuracy: Structural and Dynamical Properties of Water Across Different Phases

Molecular Simulations with MB-pol

MB-pol ⇔ Born-Oppenheimer potential energy surface

Nuclear quantum effects must be included explicitly in molecular simulations

Methods based on:

- Basis set expansions (gas phase spectra)
- Path-integral molecular dynamics (PIMD) (structure & thermodynamics)
- Centroid molecular dynamics (CMD) (approximate quantum dynamics)

Dimer: Vibration-Rotation Tunneling Spectrum

MB-pol

(cm⁻¹)

154.77

149.05

129.49

119.23

109.14

108.76

113.18

61.24

11.88

0

11.18

0

	Mode		Experiment (cm ⁻¹)
	intermolecular stretch	2	153.62
		1	
	acceptor	1	
	twist	2	120.19
	acceptor	2	108.89
	wag	1	107.93
	donor	1	
 nyarogen tunneling 	torsion	2	64.52

energy level splitting

ground

state

2

1

Clusters: Hexamer

Relative energies

Babin, Medders & FP, J. Phys. Chem. Lett. <u>3</u>, 3765 (2012); Babin, Medders & FP, J. Chem. Theory Comput. <u>10</u>, 1599 (2014)

From the Gas to the Condensed Phase

Liquid: Energies Relative to Quantum Monte Carlo

QMC: Morales, Gergely, McMinis, McMahon, Kim & Ceperley, J. Chem. Theory Comput. 10, 2355 (2014)

with Miguel Morales (LLNL)

Medders, Babin & FP, J. Chem. Theory Comput. 10, 2906 (2014)

Liquid: Structure

Medders, Babin & FP, J. Chem. Theory Comput. 10, 2906 (2014)

Liquid: Structure

Oxygen-oxygen radial distribution function

Nuclear quantum effects and model dependence

BLYP & BLYP-D3: Wang, Ceriotti & Markland, J. Chem. Phys. <u>141</u>, 104502 (2014)

Medders, Babin & FP, J. Chem. Theory Comput. 10, 2906 (2014)

Liquid: Structure

Oxygen-oxygen radial distribution function

Nuclear quantum effects and model dependence

PBE & PBE0: DiStasio, Santra, Li, Wu & Car, J. Chem. Phys. <u>141</u>, 084502 (2014)

Looking at Ice to Learn about Water

15 different phases

"...The structure of water is much less precisely known by experiment than the structures of the phases of ice; for fluids, only radial distributions can be measured, whereas for crystals, accurate interatomic distances and angles can be determined. Consequently, predicting a radial distribution of water is a less precise test of a water-water potential than predicting the structures of the crystalline phases, and so also is predicting the energy because of the wide and imperfectly known range of intermolecular configurations in water. It follows that effective potentials that are used to simulate water ought to be tested on the many phases of ice before being treated as serious representations of liquid water..."

Whalley, J. Chem. Phys. <u>81</u>, 4087 (1984)

Ice Phases: Binding Energies

Experiment: *Whalley, J. Chem. Phys.* <u>81</u>, 4087 (1984)

QMC and DFT: Santra, Klimeš, Alfè, Tkatchenko, Slater, Michaelides, Car & Scheffler, Phys. Rev. Lett. 107, 185701 (2011)

MB-MD for Molecular Simulations

Medders & FP, J. Chem. Theory Comput., in press. DOI: 10.1021/ct501131j

Conclusions

Potential energy functions and simulation approaches that:

- are easily **computable** and **implementable** ✓
- accurately represent both molecular interactions and dynamics
- are transferable across different phases ✓
- are predictive ✓
- enable direct comparisons with molecular-level experiments
- 1) **Can** such a simulation approach **exist**?

Yes! MB-nrg provides a rigorous and systematically improvable framework. Other approaches may exist as well.

Conclusions

Potential energy functions and **simulation approaches** that:

- are easily **computable** and **implementable** ✓
- accurately represent both molecular interactions and dynamics
- are transferable across different phases ✓
- are predictive ✓
- enable direct comparisons with molecular-level experiments
- 1) **Can** such a simulation approach **exist**?

Yes! MB-nrg provides a rigorous and systematically improvable framework. Other approaches may exist as well.

2) If it exists, what does it require?

An accurate description of many-body effects. Empirical potentials are likely too simplistic. DFT needs to be systematically and rigorously benchmarked.

Conclusions

Potential energy functions and **simulation approaches** that:

- are easily **computable** and **implementable** ✓
- accurately represent both molecular interactions and dynamics
- are transferable across different phases ✓
- are predictive ✓
- enable direct comparisons with molecular-level experiments
- 1) **Can** such a simulation approach **exist**?

Yes! MB-nrg provides a rigorous and systematically improvable framework. Other approaches may exist as well.

2) If it exists, what does it require?

An accurate description of many-body effects. Empirical potentials are likely too simplistic. DFT needs to be systematically and rigorously benchmarked.

3) Can it be used for complex systems?

Yes! It will likely require a "community effort" and synergistic collaborations with computer scientists and statisticians.

Looking Forward...

ion solvation and pH: bulk vs. interfaces

chemical reactions: bulk vs. interfaces

with Riera-Riambau & Götz

MB-MD as a new framework for molecular simulations

multidimensional vibrational spectroscopy

