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Today‘s Talk 

Machine Learning 

• introduction: ingredients for ML  

• Kernel Methods and Deep networks & remarks 

 

Applications ML to Physics & Materials 

• representation 

• models  

• remarks 



Machine Learning in a nutshell 

Typical scenario: learning from data 

 

• given data set X and labels Y (generated by some joint probabilty distribution p(x,y))  

 

• LEARN/INFER underlying unknown mapping  

 

     Y = f(X) 

 

Example: understand chemical compound space, distinguish brain states … 

 

BUT: how to do this optimally with good performance on unseen data?  

 

 

? f 



Basic ideas in learning theory  



ML tool & models zoo 

 

•  supervised, semi-supervised, unsupervised methods 

•  kernel methods: support vector machines, kPCA...  

•  Boosting: adaboost bumpboost etc.  

•  sparse methods: compressed sensing, sparse kernel methods, l_1 trick  

•  neural networks: deep or shallow, recursive 

•  clustering: hierarchical, mincut etc.  

 

•  feature selection: greedy, sparse, l_1 trick, dimensionality reduction  

•  relevant dimensionality estimate: RDE, local RDE 

•  explaining nonlinear methods: relevance propagation, explanation vector fields..  

•  projection methods: dimensionality reduction, PCA, ICA, SSA, LLE, tSNE etc.   

 

 

 

 



ML ingredients 

 

•  Representation X, i.e. what we put into learning not only whether we use vectors, 

 matrices, graphs, strings, tensors etc.  

•  Optimization: how to set up training of the learning machine, what is error   

 measure 

   

 

 Note: error/cost measures exist beyond mean squared error, e.g. divergences, 

 information theoretic measures, ranking errors, true cost etc 

•  Regularization: avoid overfitting by enforcing smoothness, simplicity, sparseness, 

 include prior knowledge …  

   error(f) =                             + l |Pf| 

 

•  Modelselection: choose model hyperparameters, e.g. C, l: Bayes, CV 
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    good theory 

 non-linear decision by 

 implicitely mapping the data 

 into feature space by SV kernel function K 

 rsp. K(x,y) = (x)  (y)  

Support Vector Machines in a nutshell 

 

[e.g. Vapnik 95, Muller et al 2001, Schölkopf & Smola 2002, Montavon et al 2013] 



SVM: more details 

[cf. Vapnik 95, Schölkopf et al 99, Müller et al. 2001, 

Schölkopf and Smola 2002, Laskov et al. 2005] 



Digestion: Use of kernels 

- 

[Mika et al. 02] 

[SSM et al. 98] 

[SSM et al. 98] 

[Zien et al. 00, Tsuda et al. 02, Sonnenburg et al. 05] 

SVM DEMO   More recent insight: Kernel representation make very efficient use wrt. data per effective dimension!   

[Braun, Buhmann, Müller 07, 08, Montavon et al 13] 



Multilayer networks 
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Matrix form:

y=g(V⋅f (W⋅x))



Deep Neural Networks 

• recently the hot ML method: Q: Why? 

 

• A: sociological & faster computers 

 

• Deep net architecture can be structured 

 

• Representation is learned 

 

• Multiscale information 

 

• parallelization is possible and GPU implementation available 

 

• highly successful in practice 

 

• remark: statistical estimators 1/N 
 



Disgestion 

 

 

•  kernel methods: kernel defines representation and regularizer (see also SSM 98) 

 

•  neural networks: learn representation  

 

 

 

 



 
 
               ML4Physics @IPAM 2011: Part I 

Klaus-Robert Müller, Matthias Rupp  

Anatole von Lilienfeld and Alexandre Tkachenko 



Machine Learning for chemical compound space 

 
Ansatz: 

 

instead of 

  
 

[from von Lilienfeld] 



GDB-13 database of all organic molecules (within stability & synthetic constraints) of 13 heavy atoms or 
less: 0.9B compounds 

Blum & Reymond, JACS (2009) 

The data 

[from von Lilienfeld] 



Coulomb representation of molecules 
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Kernel ridge regression 

Distances between M define Gaussian kernel matrix K 

 

 

Predict  energy as sum over weighted Gaussians 

 

 

 

 using weights that minimize error in training set  

 

 

 

Exact solution 

As many parameters as molecules + 2 global parameters, characteristic length-scale or kT of system 
(σ), and noise-level (λ) 

[from von Lilienfeld] 



Remarks on Generalization and Model Selection in ML 

Kernel Ridge Regression Model 



 
 
               ML4Physics: Part II Representations 

Gregoire Montavon, Klaus-Robert Müller, Katja Hansen, Siamac Fazli, 

Franziska Biegler, Andreas Ziehe, Matthias Rupp, Anatole von Lilienfeld and 

Alexandre Tkachenko 



The chemical compound space (CCS) 

CCS 



Coulomb Eigenspectrum (Rupp et al. 12) 

• For each Coulomb matrix C, compute its eigenspectrum λ, i.e. 

solutions to the eigenvalue problem: 

 

 

 

 

 

 

 

• The eigenspectrum λ has only the square root of the number of 

dimensions of C. 

• The eigenspectrum is invariant to permutation of atoms indices. 

Cx=λx where λi≥λi+ 1

Coulomb matrix Eigenspectrum 
Molecule 



Coulomb Eigenspectrum 

Eigenspectrum representation 

reduces the dimensionality of the 

problem, but also loses useful 

information 

1 

2 

CCS 

Eigenspectrum 

Conflict! 

Existence of conflicts means that we 

need to deal with noise 

→ impossible to learn in deep. 



Coulomb sets (Montavon et al. 12) 

• For each molecule, we collect a set of valid Coulomb matrices: 

Coulomb matrix Coulomb set 
Molecule 

, , , … } { Coulomb set =  



Coulomb sets 

CCS 

Unlike the eigenspectrum, the 

Coulomb set representation is 

conflict-free 

→ learning in deep can take place. 



Deep neural networks 

• Sequence of slight transformation of the representation implemented 

by artificial neurons. 

• Each layer of the deep neural network encodes a slight deformation 

of the chemical compound space. 

• Multiple layers progressively transform the representation from the 

input (molecular geometries) to the output (molecular properties). 

Deep neural 

network 

Chemical 

geometric 

space 

(CGS) 

Chemical 

properties 

space 

(CPS) 



From geometries to energies 

Input: 

molecular geometries 

Output: 

molecular energies 



Results 

March 2012 

Rupp et al., PRL 

9.99 kcal/mol 

(kernels + eigenspectrum) 

 

December 2012 

Montavon et al., NIPS 

3.51 kcal/mol 

(Neural nets + Coulomb sets) 

 

Alex T. will show 1kcal/mol result  

 

Prediction considered chemically 

accurate when  MAE is below 1 

kcal/mol 

Dataset available at http://quantum-machine.org 



 
 
    ML4Physics @IPAM 2011 : Part III – Particles in a box 
 

Klaus-Robert Müller, Matthias Rupp, Katja Hansen 

Kieron Burke, John Snyder 



 
 
               ML4Physics @IPAM 2011 : Part IV 
 

Zach Pouzon, Katja Hansen, Dan Sheppard,  

Matthias Rupp, Klaus-Robert Müller, Graeme Henkelman 



Optimizing Transition State Theory with ML 
 

 

• Within transition state theory the description of rare events is transformed 

from a problem of kinetics to one of equilibrium statistical mechanics by constructing 

a hypersurface that separates a reactant state from product states.  

 

• Rate of reaction can be approximated by equilibrium flux out of this hypersurface  

 

 

 

 

 

[Pozun et al 2012] 



Our Approach 

1. Run some high-temperature MD and 
generate an initial surface 

Potential from: A. F. Voter, J. Chem. Phys. 106, 4665 (1997). 



Our Approach 

1. Run some high-temperature MD and 
generate an initial surface 

2. Evaluate the gradients and attach a 
spring to the surface and continually 
sample and re-learn 

 

Potential from: A. F. Voter, J. Chem. Phys. 106, 4665 (1997). 

Two parameters: C and g 



 
 
               ML4Physics @ Halle: Materials 
 

Kristof Schütt, Felix Brockherde, Wiktor Pronobis, Klaus-Robert Müller 

and Henning Glawe, Antonio Sanna, Hardy Gross 



ML on Materials 

Features 

Data: 5519 Materials with up to 8 atoms per cell, elements from spd 

[Schütt et al 2012] 



Lerning Curves 

[Schütt et al 2012] 



Results superconductors 

[Schütt et al 2012] 



Representations - remarks 

 

 

 

 

 

 

 

• representations derived/learned by first principles information (unbiased) 

 

• Coulomb matrix, EVs, permuted coulomb matrix (Rupp et al, Montavon et al, 

Hansen et al.) 

• Fourier representation (Lilienfeld et al) 

• Bag of bonds (Hansen et al) 

• SOAP (Csanyi et al) 

• Neural Networks (Behler et al, Montavon et al) 

• Partial Radial Distribution functions (Schütt et al) 

 

 

• representations using derived physical variables – using prior knowledge (biased) 

 

• feature selection from very large variable set (Ramprasad et al.) 

• feature selection from predefined physical variable set (Scheffler et al.) 

 

 

 
Challenge: How to gain better understanding from ML representation 4 Physics, see Bag of bonds! 



Conclusion  

 

•  Machine Learning & modern data analysis is of central importance in daily life 

  

•  input to ML algorithms can be vectors, matrices, graphs, strings, tensors etc.  

 

•  Representation is essential ! Modelselection, Optimization. 

 

•  ML 4 XC, ML for reaction transitions, ML for formation energy prediction etc.  

 

•  ML challenges from Physics: no noise, high dimensional systems, functionals … 

 

•  challenge: learn for Physics from ML representation: towards better understanding   

 

 

 

 

See also: www.quantum-machine.org 
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