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What is machine learning?

{(x1, y1) , (x2, y2) , . . . , (xm, ym)}

↓

↓

f : x 7→ y
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Machine learning ∼2005

f̂ = argmin
f∈F

[ 1

m

m∑
i=1

ℓ(f(xi), yi) + λ∥f ∥22
]

General framework (regularized risk minimization) that encompasses

• Kernel methods, including Gaussian processes and SVMs etc
• Most of Bayesian statistics
• Boosting, etc.

[Vapnik & Chervnonenkis 1971–]
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Data: {(x, y)}mi=1

↓
Features: {(ϕ1(xi), . . . , ϕn(xi), y)}mi=1

↓  optimization

↓

f̂ : x 7→ y
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Machine learning 2007∼2012

f̂ = argmin
f∈F

[ 1

m

m∑
i=1

ℓ(f(xi), yi) + λ∥f ∥1
]

The ℓ1–norm induces sparsity. Crucially, minimizing ∥f∥1 is almost as good
as minimizing ∥f∥0. This lead to an explosion of activity related to

• The Lasso [Tibshirani, 1996], Basis Pursuit [Donoho, 1998], Elastic Net [Hui
& Hastie, 2005], …

• Compressed Sensing [Donoho, 2004] [Candés et al. 2005–] [Osher]
• However, no more Representer Theorem.
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Data: {(x, y)}mi=1

↓
Features: {(ϕ1(xi), . . . , ϕn(xi), y)}mi=1

↓  optimization

↓

f̂ : x 7→ y
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The problem with “black box” ML

Black box machine learning ignores the structure of the data itself:

• The algorithmic part is separated from the statistical part.
• O(n3) complexity is totally unrealistic in today’s world.
• No obvious parallelism.
• Ignores the most important ideas of the Applied Math of the last 30 years,

such as multiresolution analysis, fast multipole methods and multigrid.

(The relationship of deep learning to all this is not clear yet.)
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Data
↓

Features ← Mulitresolution (e.g., Scattering)
↓

← Multiresolution!

↓
f̂ : x 7→ y
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Multiresolution Matrix Factorization
MMF is a multilevel factorization of the data similarity (kernel) matrix A of the form( . )
QL

. . .

( . )
Q1

P

( .. )
A

P⊤
( . )

Q⊤
1

. . .

( . )
Q⊤

L

≈
( . )

H

where

• P is just a permutation matrix to reorder the rows and columns of A,
• EachQℓ is an orthogonal matrix that has special sparsity structure,
• Outside its [Qℓ]1:δℓ−1, 1:δℓ−1

block, eachQℓ is just the identity for some
fixed sequence n ≥ δ1 ≥ . . . ≥ δL.

→ A hierarchical, multipole-type description of the data. In factorized form, A
is much easier to deal with.
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Eigendecomposition vs. MMF
The eigendecomposition (PCA) of a symmetric matrix A ∈ R n×n is( . )

Q

( .. )
A

( . )
Q⊤

=

( . )
D

The MMF factorization is( . )
QL

. . .

( . )
Q1

P

( .. )
A

P⊤
( . )

Q⊤
1

. . .

( . )
Q⊤

L

≈
( . )

H

The eigendecomposition always exists, is essentially unique, and truncating it
after k terms is the optimal approximation in the Frobenius and nuclear norms.
But it is expensive to compute∼ O(n3), eigenvectors are dense, does not
take advantage of hierarchical structrure.
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Multiresolution analysis

In general, multiresolution analysis on a spaceX is a filtration

where Vℓ = Vℓ+1 ⊕Wℓ+1 and

• Each Vℓ’s orthonormal basis is {ϕℓm}m
• EachWℓ’s orthonormal basis is {ψℓ

m}m.

The spaces are chosen so that as ℓ increases, Vℓ contain functions that are
increasingly smooth w.r.t. some self-adjoint operator T : L(X)→ L(X).
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The multiresolution mantra

The central dogma of harmonic analysis is that the structure of the space of
functions on a setX can shed light on the structure ofX itself.

G ←→ L(G)

“The interplay between geometry of sets, function spaces on sets, and
operators on sets is classical in Harmonic Analysis.”

[Coifman & Maggioni, 2006]

Multiresolution analysis is an attractive paradigm for ML because

• Data naturally clusters into (soft) hierarchies.
• The resulting data structures can form the basis of fast algorithms.
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But how does a matrix induce multiresolution???
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Multiresolution on R
Mallat [1989] defined multiresolution on R by the following axioms:

1.
∩

j Vℓ = {0},
2.

∪
ℓ Vℓ is dense in L2(R),

3. If f ∈ Vℓ then f ′(x) = f(x− 2ℓm) is also in Vℓ for anym∈Z,
4. If f ∈ Vℓ, then f ′(x) = f(2x) is in Vℓ−1,

which imply the existence of a mother wavelet ψ and a father wavelet ϕ s. t.

ψℓ
m = 2−ℓ/2 ψ(2−ℓx−m) and ϕℓm = 2−ℓ/2 ϕ(2−ℓx−m).
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Multiresolution on discrete spaces

Which of the ideas from classical multiresolution still make sense?

• Recursively split L(X) into smoother and rougher parts. ✓
• Basis functions should be localized in space & frequency. ✓
• Each Φℓ

Qℓ−→ Φℓ+1 ∪Ψℓ+1 transform is orthogonal and sparse. ✓
• Each ψℓ

m is derived by translating ψℓ → MAYBE

• Each ψℓ is derived by scaling ψ → ???
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General principles
1. The sequence L(X) = V0 ⊃ V1 ⊃ V2 ⊃ . . . is a filtration of Rn in terms

of smoothness with respect to T in the sense that

µℓ = inf
f∈Vℓ\{0}

⟨f, Tf⟩ / ⟨f, f⟩

increases at a given rate.

2. The wavelets are localized in the sense that

inf
x∈X

sup
y∈X

ψℓ
m(y)

d(x, y)α

increases no faster than a certain rate.

3. LettingQℓ be the matrix expressingΦℓ∪Ψℓ in the previous basisΦℓ−1, i.e.,

ϕℓm =
∑dim(Vℓ−1)

i=1 [Qℓ]m,i ϕ
ℓ−1
i

ψℓ
m =

∑dim(Vℓ−1)
i=1 [Qℓ]m+dim(Vℓ−1),i ϕ

ℓ−1
i ,

eachQℓ orthogonal transform is sparse, guaranteeing the existence of a
fast wavelet transform (Φ0 is taken to be the standard basis, ϕ0m = em).
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Key observation

If |X |= n is finite, representing T by a symmetric matrix A∈R, each basis
transform Vℓ → Vℓ+1 ⊕Wℓ+1 is like applying a rotation matrix

A 7→ Q1AQ
⊤
1 7→ Q2Q1AQ

⊤
1 Q

⊤
2 7→ . . .

and then fixing a subset of the coordinates as wavelets. In addition,
Q1, . . . , QL must obey sparsity constraints.

multiresolution analysis ←→ multilevel matrix factorization
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Multiresolution factorization

( . )
QL

. . .

( . )
Q1

P

( .. )
A

P⊤
( . )

Q⊤
1

. . .

( . )
Q⊤

L

≈
( . )

H

Definition. Given a symmetric matrixA∈Rn×n, a class of sparse rotationsQ,
and a sequence n ≥ δ1 ≥ . . . ≥ δL, a multiresolution factorization of A is

A = Q⊤
1 Q

⊤
2 . . . Q

⊤
LHQL . . . Q2Q1,

where each Qℓ ∈Q rotation satisfies [Qℓ][n]\Sℓ, [n]\Sℓ
= In−δℓ−1

for some
nested sequence of sets [n] = S1 ⊇ S2 ⊇ . . . ⊇ SL+1 with |Sℓ | = δℓ−1,
andH is SL+1–core diagonal.

Definition. If this is factorization is exact, we say that A is multiresolution
factorizable (over G with δ1, . . . , δL). → generalization of “rank”
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Form of the Qℓ local rotations

It is critical that theQℓ must be very simple and local rotations. Two choices:

1. Elementary k–point rotation: → “Jacobi MMFs”

Q = In−k ⊕(i1,...,ik) O = P

(. )
P⊤

for some O ∈ SO(k) → for k= 2, just a Givens rotation.

2. Compound k–point rotation: → “Parallel MMFs”

Q = ⊕(i11,...,i
1
k1
)O1⊕(i21,...,i2k2)

O2 . . .⊕(im1 ,...,imkm)Om = P

(. )
P⊤

for some O1, . . . , Om ∈ SO(k).
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The optimization problem

Given A, ideally, we would like to solve

minimize
[n]⊇ S1 ⊇ . . .⊇ SL

H∈Hn
SL

; Q1, . . . , QL∈Q

∥A−Q⊤
1 . . . Q

⊤
LH QL . . . Q1 ∥2Frob.

for a given classQ of local rotations and dimensions δ1 ≥ δ2 ≥ . . . δL.

• In general, this optimization problem is combinatorially hard.
• Easy to approximate it in a greedy way (level by level).
• To solve the combinatorial part of the problem (at each level) use a
◦ Deterministic strategy, or a
◦ Randomized strategy.
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Optimization details — Jacobi MMF

Proposition. IfQℓ = In−k⊕IO with I = (i1, . . . , ik) and Jℓ = {ik}, then
the contribution of level ℓ to the MMF approximation error (in Frobenius norm) is

Eℓ = EOI = 2

k−1∑
p=1

[O[Aℓ−1]I,IO
⊤]2k,p + 2[OBO⊤]k,k,

where B = [Aℓ−1]I,Sℓ
([Aℓ−1]I,Sℓ

)⊤.

Corollary. In the special case of k=2 and Iℓ = (i, j),

Eℓ = EO(i,j) = 2[O[Aℓ−1](i,j),(i,j)O
⊤]22,1 + 2[OBO⊤]k,k

with B = [Aℓ−1](i,j),Sℓ
([Aℓ−1](i,j),Sℓ

)⊤.
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Optimization details — Jacobi MMF

Proposition. Let A∈R2×2 be diagonal, B ∈R2×2 symmetric and

O=
(
cosα − sinα
sinα cosα

)
. Set a= (A1,1−A2,2)

2/4, b=B1,2,

c= (B2,2−B1,1)/2, e=
√
b2+ c2, θ = 2α and ω= arctan(c/b). Then if

α minimizes ([OAO⊤]2,1)
2 + [OBO⊤]2,2, then θ satisfies

(a/e) sin(2θ) + sin(θ + ω + π/2) = 0.
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Optimization details — Parallel MMF
Proposition. IfQℓ is a compound rotation of the form
Qℓ = ⊕I1O1. . .⊕ ImOm for some partition I1 ∪· . . . ∪· Im of [n] with
k1, . . . , km ≤ k, and some sequence of orthogonal matrices O1, . . . , Om,
then level ℓ’s contribution to the MMF error obeys

Eℓ ≤ 2

m∑
j=1

[kj−1∑
p=1

[Oj [Aℓ−1]Ij ,IjO
⊤
j ]

2
kj ,p

+[OjBjO
⊤
j ]kj ,kj

]
, (1)

where Bj = [Aℓ−1]Ij ,Sℓ−1\Ij ([Aℓ−1]Ij ,Sℓ−1\Ij )
⊤.

For compression tasks parallel MMFs are generally preferable to Jacobi MMFs
because

• Unrelated parts of the matrix are processed independently, in parallel.

• Gives more compact factorizations.

• Jacobi MMFs can exhibit cascades.

• The sets I1, . . . , Im can be found by a randomized strategy or exact
matching (O(n3) time)
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Hierarchical structure

The sequence in which MMF (with k≥ 3) eliminates dimensions induces a
(soft) hierarchical clustering amongst the dimensions (mixture of trees).

→ Connection to hierarchical clustering.
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Applications

1. Find a (hierarchically) sparse basis for A.

2. Hierarchically cluster data.

3. Find community structure.

4. Generate hierarchical graphs.

5. Compress graphs & matrices .

6. Provide a basis for sparse approximations such as the LASSO.

7. Provide a basis for fast numerics (NLA, multigrid, etc).
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Relationship to Diffusion Wavelets

• Diffusion wavelets also start with the matrix representation of a smoothing
operator (the diffusion operator) and compress it in multiple stages.

• However, at each stage, the wavelets are constructed from the columns of
A itself by a rank-revealing QR type process

A ≈ Q1R1

A2 ≈ Q1 R1R
†
1︸ ︷︷ ︸

≈Q2R2

Q†
1

A4 ≈ Q1Q2 R2R
†
2︸ ︷︷ ︸

≈Q3R3

Q†
2Q

†
1.

• Very strong theoretical foundations, but the sparsity (locality) of theQℓ

matrices is hard to control.

[Coifman & Maggioni, 2006]
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Relationship to Treelets

Treelets are a special case of Jacobi MMF

. . . Q3Q2Q1AQ
⊤
1Q

⊤
2Q

⊤
3 . . . ,

but

• Restricted to Givens rotations (k= 2) → only recovers a single tree.
• EachQi is chosen to eliminate the maximal off-diagonal entry, rather than

minimizing overall error → not intended as a factorization method.
• A is regarded as a covariance matrix → probabilistic analysis.

[Lee, Nadler & Wasserman, 2008]
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Relationship to multigrid, fast
multipole, and hierarchical matrices

• Multigrid methods solve systems of p.d.e.’s by shuttling back and forth
between grids/meshes at different levels of resolution [Brandt, 1973; Livne &
Brandt, 2010].

• Fast multipole methods evaluate a kernel (such as the Gaussian kernel)
between a large number of particles, by aggregating them at different levels
[Greengard & Rokhlin, 1987].

• H–matrices [Hackbusch, 1999],H2 matrices [Borm, 2007] and
Hierarchically Semi-Separable matrices [Chandrasekaran et al., 2005]
iteratively decompose into blocked matrices, with low rank structure in each
of the blocks.
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..Matrix Sketching.

Classical
Eigendecomposition (PCA)
Singular Value Decomposition
Laplacian eigenmaps, etc.
Rank Revealing QR

.

Random projections
Johnson & Lindenstrauss, 1986
Halko, Martinsson & Tropp, 2011

.

Structured projections
Ailon & Chazelle, 2006
Sarlós, 2006
Le, Sarlós & Smola, 2013

.

Column/row
sampling

.

Column selection
Jolliffe, 1972
Drineas et al, 2009
Deshpande et al., 2006
Boutisdis et al., 2009

. CUR
Drineas & Mahoney, 2006–

.

Nyström
Williams & Seeger, 2011
Fowlkes et al., 2004
Drineas & Mahoney, 2005
Kumar at al., 2009

.

Entrywise sampling
Achlioptas & McSherry, 2001–

.

Graph sparsification
Benczur & Karger, 1996
Spielman & Teng, 2004
...

.

Fast solvers
Koutis, Miller & Peng, 2010

.
Multiresolution
Coifman & Maggioni, 2006
Lee, Nadler & Wasserman, 2008
K, Teneva and Garg, 2014
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Hölder condition

In classical wavelet transforms one proves that if f is α–Hölder, i.e.,

|f(x)−f(y)| ≤ cH d(x, y)α ∀x, y ∈X,

then the wavelet coefficients decay at a certain rate, e.g.,

| ⟨f, ψm
ℓ ⟩ | ≤ c′ℓα+β

Results of this type generally hold for spaces of homogeneous type, in which

Vol(B(x, 2r)) ≤ chom Vol(B(x, r)) ∀x∈X, ∀r > 0.

Natural notion of distance between rows in MMF is d(i, j) = | ⟨Ai,:, Aj,:⟩ |−1.
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Λ–rank homogeneous matrices

Definition. We say that a symmetric matrix A∈Rn×n is Λ–rank
homogeneous up to orderK , if for any S ⊆ [n] of size at mostK , letting
Q = AS,:A:,S , settingD to be the diagonal matrix withDi,i = ∥Qi,:∥1, and
Q̃ = D−1/2QD−1/2, the λ1, . . . , λ|S| eigenvalues of Q̃ satisfy
Λ < |λi | < 1− Λ, and furthermore c−1

T ≤Di,i ≤ cT for some constant cT .

Inuitively

• Different rows are neither too parallel or totally orthogonal

• Generalization of the restricted isometry property from compressed sensing
[Candes & Tao, 2005]
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Theorem

Let A∈Rn×n be a symmetric matrix that is Λ–rank homogeneous up to order
K and has an MMF factorization A = U⊤

1 . . . U⊤
LHUL . . . U1. Assume ψℓ

m

is a wavelet in this factorization arising from row i ofAℓ−1 supported on a set S
of sizeK ≤K and that ∥Hi,:∥2 ≤ ϵ. Then if f : [n]→ R is
(cH , 1/2)–Hölder with respect to d(i, j) = | ⟨Ai,:, Aj,:⟩ |−1, then

| ⟨f, ψℓ
m⟩ | ≤ cT

√
cHcΛ ϵ

1/2K

with cΛ = 4/(1− (1− 2Λ)2).
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Experimental Results

Frobenius norm error on the Zackary Karate Club graph (left) and a matrix of
genetic relationship between 50 individuals from [Crossett, 2013](right).
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Experimental Results

Frobenius norm error of the MMF and Nyström methods on a random vs. a
structured (Kronecker product) matrix.
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Experimental Results

Frobenius norm error of the MMF and Nyström methods on large network
datasets.
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CONCLUSIONS

• MMF is a new type of matrix factorization mirroring multiresolution analysis
→ generalization of “rank”.

• MMF exploits hierarchical structure, but does not enforce a single hierarchy.
• Empirical evidence suggests that MMF is a good model for real data.

• Finding MMF factorizations is a fundamentally local and parallelizable
process → O(n log n) algorithms should be within reach.

• Once in MMF form, a range of matrix computations become faster.

• MMF has strong ties to: Diffusion wavelets, Treelets, Multiscale SVD,
structured matrices, algebraic multigrid, and fast multipole methods.
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