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The Inverse Problem: Preliminaries

What is the inverse problem in statistical mechanics?

First the forward problem: Given a set of interactions, solve
for the structure and equilibrium properties of the system.

Φ({R}, {V }) =
∑
ij

V2(Ri ,Rj) +
∑
ijk

V3(Ri ,Rj ,Rk) + . . .

Φ({R}, {V })⇒ {R}eq

Hence the inverse problem: Given a target configuration of
the system, solve for the optimal set of interactions which will
spontaneously produce the desired structure.

Φ({R}, {V })⇐ {R}eq
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Applications of the Inverse Problem

The inverse problem is much more general—conversion of
“observables” (obtained via measurement) are transformed
into physical information that characterizes a system.

Inverse problems can be found in many different contexts:

Natural Sciences: medical imaging, systems biology,
population genetics, biochemistry, . . .

Physical Sciences: astronomy, geophysics, statistical
mechanics, chemistry, engineering, . . .

Computer Sciences: pattern recognition, computer vision,
machine learning, remote sensing, . . .

Social Sciences: linguistics, human behavior, economics,
archaeology, . . .
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A Brief Overview of the Ising Model

Used to describe the the fundamental physics underlying the
phenomenon of ferromagnetism in materials.

The simplest form consists of a two-state (up/down) spin
system interacting through a nearest-neighbor potential.

Spins are usually arranged on a lattice—isomorphic to an
array of black/white pixels, the lattice gas model, etc.
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The Ising Model: Applications

The Ising model has also been used in many applications:

Reconstruction of complex (collective) biological networks of
neurons, genes, and proteins.
Abnormal cell growth dynamics and tumor formation.

In addition, the inverse approach applied to the Ising model
has many promising applications:

Design and reverse engineering of materials with desired spin
(magnetic) properties.
Study of spontaneous pattern formation in nature.
Pattern prediction/recognition and image processing.
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The Standard/Simplest Ising Spin Model

One of the simplest Ising models is discretized on a periodic
2-D (square → torus) lattice consisting of N spins with spin
projection values of σi ± 1.

The standard Ising Hamiltonian takes on the following form:

H (J) = −J
∑
<ij>

σiσj ,

in which <ij> restricts the sum to include only unique pairs of
nearest neighbor (NN) spins and J is the coupling constant.

The ground states of the ferromagnetic (J = +1) and
anti-ferromagnetic (J = −1) NN interactions are well-known
(all up/down and the checkerboard).
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A Generalized Ising Spin Model

In this work, we extend the length of interactions beyond NN,
but still restrict to a radial two-body potential only, i.e.,

H ({J}) = −
∑
i<j

J(Rij)σiσj ,

Distances (Rij) and associated degeneracies (g(Rij)) are given
by the theta series corresponding to a square lattice:

θ23(λ) = 1 + 4λ+ 4λ2 + 4λ4 + 8λ5 + 4λ8 + 4λ9 + 8λ10 + . . .

The solution of the inverse spin problem is attained by finding
the optimal set of J(R) that yields a target spin configuration

as a possible unique (non-degenerate) ground state.
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A Generalized Ising Spin Model

It is now convenient to define the S2 vector, a quantity closely
related to the spin-spin correlation function, <σiσj>, with
components given by:

S2(R) ≡ 1

N

∑
i<j

σiσjδR,Rij
.

This formalism allows for direct computation of the energy per
spin, ε, via the scalar product of S2 with J,

ε ≡ E

N
= −

∑
R

J(R)S2(R) = −J · S2.

|S2(R)| assumes a maximum value when all spins separated by
R are aligned or anti-aligned, reflecting the coordination at R.
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Solving the Inverse Spin Problem

We have developed a competitor-based 0 K optimization
scheme that combines both forward and inverse techniques.

Given a target spin configuration, T , the goal is to find the
shortest-range potential that favors T by energetically
disfavoring all possible competitors.

Mona Lisa (RGB GS B/W)→ →

This potential maximizes ∆εk = εCk − εT , the difference
between the energetically closest competitor, Ck , and T , over
the entire set of available competitors.

Robert A. DiStasio Jr. Designer Spin Systems via Inverse Statistical Mechanics
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Solving the Inverse Spin Problem

Obtaining this potential is achieved via global optimization of
z , the corresponding objective function:

z ≡ max
J

[
min
Ck

[
∆εk

]]
= max

J

[
min
Ck

[
−
∑
R

J(R)
[
SCk
2 (R)− ST

2 (R)
]]]

.

Subject to the constraints that ∆εk ≥ 0 ∀ k and the set of
J(R) are bounded within the interval [−1,+1].

Since the ∆εk is linear in the {J(λ)}, linear programming
(LP) is used to efficiently generate the biasing potential
exactly (i.e., to machine precision).
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Algorithm

STEP 0: To initiate the procedure, the target structure and a
single competitor are required.

In a sequential loop over the allowed distances R ′ ≤ Rmax :

STEP 1: LP generates a potential with a maximum extent of
R ′ s.t. εT < εCk ∀ k , if this potential exists.

STEP 2: SA-MC employs this potential to find a new
competitor Ck+1 s.t. εCk+1 ≤ εT , if this competitor exists.

STEPS 1 and 2 are then iterated until:

For a given {Ck}, LP is unable to generate a potential that
favors T . GO TO 1
For a given {J(R)}, SA-MC is unable to locate a competitor
that is lower in energy than T . EXIT
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Analyzing the Solutions

CLASS I: Solutions in which a potential was found that
generates T as a unique (non-degenerate) ground state up to
translations, rotations, reflections, and spin inversion
operations.

CLASS II: Solutions in which a potential was found that
generates T as a non-unique ground state, with degenerate
spin configurations having the same S2 as T (S2-type
degeneracies). Remark : S2-type degeneracies remain
isoenergetic for any choice of the spin-spin interaction
potential.

CLASS III: Solutions that are not contained in either Class I
or II as defined above.

Robert A. DiStasio Jr. Designer Spin Systems via Inverse Statistical Mechanics

∗Uniqueness is defined here to allow for translations, rotations,
reflections, and spin inversion of the target structure.
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Mapping Spin Configurational Space onto S2

S2(R) ≡ 1

N

∑
i<j

σiσjδR,Rij

Nearest-neighbor S2 values for select spin configurations.

The gray shading represents the entire spectrum of possible
spin configurations discretized on a periodic square lattice.
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Mapping Spin Configurational Space onto S2
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Target Structures: Striped Phases

Graphical depiction of the SP[m, n] striped phase spin configuration

Found in a variety of materials, including magnetic films,
monolayers, and liquid crystals.

Tailoring the electronic and magnetic properties of SP
materials has many direct technological applications.

An understanding of the interactions necessary to generate SP
would prove invaluable in the design of striped materials.
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The SP[n,n] Spin Configurations

Systematic study of n = 1, 2, . . . , 10 revealed that all SP[n, n]
spin configurations are unique ground states (Class I).

These finite-range potentials (of length n) are discrete by
construction and have compact support.

Alternative to the infinite-range interactions known to
generate SP comprised of short-range ferromagnetic and
long-range anti-ferromagnetic (dipolar-like) interactions.

Robert A. DiStasio Jr. Designer Spin Systems via Inverse Statistical Mechanics
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Target Structures: Block Checkerboards

Graphical depiction of the CB[m, n] block checkerboard spin configuration

Generalizations of the classic anti-ferromagnetic Ising spin
configuration, i.e., the simple checkerboard (CB[1, 1]).

The lattice-gas analogs provide model systems to study
varying pore sizes (ion channels, transport proteins, cell
membranes, metal organic frameworks).

Robert A. DiStasio Jr. Designer Spin Systems via Inverse Statistical Mechanics



The CB[n,n] Spin Configurations

With the exception of CB[1, 1], a systematic study of
n = 2, 3, . . . , 10 revealed that all CB[n, n] spin configurations
are degenerate ground states (Class II).

Like the SP[n,n] cases, the shortest radial interaction
potentials are of length n.

As Class II solutions, the CB[n, n] spin configurations have a
finite set of S2-degeneracies.
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The CB[n,n] Spin Configurations

S2-type degeneracies for the CB[2, 2] spin configuration.
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The CB[n,n] Spin Configurations

S2-type degeneracies for the CB[4, 4] spin configuration. The number of

microstates (clockwise from upper left-hand corner) is 32, 128, 128, 32.
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The CB[n,n] Spin Configurations

The number of S2-type degeneracies for the CB[n, n] spin
configurations g(n) was found as:

g(n) = 1 +
bn2c

(
bn2c+ 1

)
2

from which it is clear that g(n) increases quadratically with n.

1 2 3 4 5 6 7 8 9 10
n

0

2

4

6

8

10

12

14

16

18

g
(n
)
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The SP[m,n] and CB[m,n] Spin Configurations

Solution classes for the SP[m, n] and CB[m, n] spin configurations.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
n

1

2

3

4

5

m

Class I

Class III

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
n

1

2

3

4

5

m

Class I

Class II

Class III

For the n 6= m case, the situation is a bit more complicated...

Both SP[m, n] and CB[m, n] admit Class III solutions if and
only if n/m ∈ Z ≥ 3.

Indicative of the limitations of a radial pairwise interactions in
stabilizing configurations with two distinct length scales.
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Some Open Questions...

What types of target spin configurations can be generated as
unique ground states using radial pairwise interactions?

Are there any “rules of thumb” regarding the solution class
corresponding to a given spin configuration?

Type and extent of symmetries (order) exhibited by a given
spin configuration do not seem to correlate with solution class.

Is it safe to assume that the number of Class I solutions will
asymptotically tend to zero in the large system limit? What
about Class II solutions?
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Ground State Enumeration & Classification

Number of spin configurations in each solution class existing on the n× n

square lattice from an exhaustive enumeration of all 2n×n possibilities.

Size NI NII NIII Nconf

1 × 1 1 0 0 2
2 × 2 3 0 1 16
3 × 3 3 2 6 512
4 × 4 5 1 266 65,536
5 × 5 74 29 8209 33,554,432

While the number of Class I and II solutions increases with
system size, their relative population tends to zero in the
same limit.
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Ground State Enumeration & Classification

|〈σ〉| NI NII NIII

0.04 28 25 1737
0.12 16 4 1690
0.20 17 0 1415
0.28 4 0 1226
0.36 4 0 903
0.44 4 0 623
0.52 0 0 357
0.60 0 0 169
0.68 0 0 64
0.76 0 0 19
0.84 0 0 5
0.92 0 0 1
1.00 1 0 0

The number of Class I and II solutions also decreases with an
increase in the absolute magnetization.
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Ground State Enumeration & Classification

Is there a correlation between symmetry, complexity, or order and
solution class determination?

All 5 × 5 Class I spin configurations (N = 20) that are not left invariant

under any combination of symmetry operations, displayed left-to-right,

top-to-bottom, in order of decreasing absolute magnetization |〈σ〉|.
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Ground State Enumeration & Classification

All 5× 5 Class I spin configurations (N = 54) that are left invariant under

some combination of symmetry operations, displayed left-to-right, top-to-

bottom, in order of decreasing absolute magnetization |〈σ〉|.
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Phases (States) of Matter

Traditional Criteria

Homogeneous phase in thermodynamic equilibrium

Interacting entities are microscopic objects, e.g., atoms,
molecules or spins

Are often distinguished by symmetry-breaking and/or some
qualitative change in a bulk property
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Phases (States) of Matter

Non-Traditional/Broader Criteria

Reproducible long-lived metastable or non-equilibrium phases,
e.g., spin and structural glasses

Interacting entities need not be microscopic, can include
larger building blocks, e.g., colloids and metamaterials

Endowed with unique properties
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New Phases (States) of Matter

Let Ω be a spherical window of radius R in Rd and
σ2 ≡ 〈N2(R)〉 − 〈N(R)〉2 be the number variance.

For Poisson and many disordered point patterns: σ2 ∼ Rd .

Hyperuniform point patterns: σ2 grows slower than Rd .

Infinite-wavelength density fluctuation vanish.

Implies that S(k) = 1
N

∣∣∣∑N
j=1 exp[ik · rj ]

∣∣∣2 → 0 as k→ 0.

Robert A. DiStasio Jr. Designer Spin Systems via Inverse Statistical Mechanics



New Phases (States) of Matter

Let Ω be a spherical window of radius R in Rd and
σ2 ≡ 〈N2(R)〉 − 〈N(R)〉2 be the number variance.

For Poisson and many disordered point patterns: σ2 ∼ Rd .

Hyperuniform point patterns: σ2 grows slower than Rd .

Infinite-wavelength density fluctuation vanish.

Implies that S(k) = 1
N

∣∣∣∑N
j=1 exp[ik · rj ]

∣∣∣2 → 0 as k→ 0.

Robert A. DiStasio Jr. Designer Spin Systems via Inverse Statistical Mechanics



All Crystals Are Trivially Hyperuniform

All perfect crystals are hyperuniform in that σ2 ∼ Rd−1.

The degree to which they suppress large-scale density
fluctuations varies.

Robert A. DiStasio Jr. Designer Spin Systems via Inverse Statistical Mechanics



Which Point Pattern Is Hyperuniform?

Characterized by “hidden order” on long/large length scales.

Examples of hyperuniform systems in nature: ultracold gases
of atoms, avian cone photoreceptors.
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Hyperuniform Avian Cone Receptors

Not located on the “ideal” triangular lattice as found in
insects and some fish.

Each of the 5 cones form disordered/irregular patterns that
are hyperuniform (i.e., forming a multi-hyperuniform system).
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All Stealthy Patterns Are Hyperuniform

“Stealthy” point patterns take hyperuniformity one step
further and are characterized by S(k) = 0 for 0 < k ≤ K .

Applications include the design of photonic devices with large
complete band gaps and color sensors.

Concept can also be extended to S(k) = 0 for K1 < k ≤ K2

for selective suppression of radiation absorption.
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Do Discrete Disordered Stealthy Patterns Exist?

To answer this question, we first turned to exhaustive enumeration
of the point patterns discretized on the periodic 2-D lattice...

Limited to small system sizes (6× 6⇒ 236 configurations).

Order/Disorder metric based on signature of disordered
continuous systems (e.g., ideal gas)...
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Do Discrete Disordered Stealthy Patterns Exist?

Can we efficiently generate larger disordered stealthy patterns?

Simulated Annealing (MC) with the following fictitious energy:

θ =
∑
k≤K

[
S(k)− ST (k)

]2
=
∑
k≤K

[S(k)− 0]2 =
∑
k≤K

[S(k)]2

Efficient and works best for small K and low concentrations.
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Conclusions and Future Work

In this work, we developed a competitor-based 0 K
optimization scheme which provides a general framework in
which one can attack the inverse problem.

This algorithm was systematically applied in the study of
several fundamental spin patterns (SP and CB) as well as in
a general enumeration study on the 2D square lattice.

Also presented were some preliminary results proving
computational evidence of the existence of discrete and
disordered stealthy/hyperuniform patterns.

It would be interesting to utilize these approaches in the
design of novel materials with desired properties.
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