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Managing data from atomistic models

@ Atomistic simulations provide too much information
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Managing data from atomistic models

@ Atomistic simulations provide too much information
@ It is hard to decipher the essential features in structurally-complex
compounds, materials, proteins, etc.
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Describing structural complexity )

@ We are looking for collective variables that can describe this structural
complexity

o Discriminate between different structures
e Follow the system across transitions
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Angioletti, Ceriotti, Lee, Finnis PRB 2010
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Describing structural complexity

@ We are looking for collective variables that can describe this structural
complexity

o Discriminate between different structures
e Follow the system across transitions

@ Finding these variables is time-consuming and error-prone: can we
automate the process?

T

Tribello, Ceriotti, Parrinello PNAS 2010
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Dimensionality reduction )

@ We can describe a complex atomistic structure as a point in a
high-dimensional space. Then finding CVs means finding a
low-dimensional map to describe the accessible configurations!
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Dimensionality reduction

@ We can describe a complex atomistic structure as a point in a
high-dimensional space. Then finding CVs means finding a
low-dimensional map to describe the accessible configurations!

o Take a set of configurations = high-dim. landmark points

Us r r

Uy

Michele Ceriotti - EPFL - COSMO Probabilistic Analysis of Molecular Motifs



Dimensionality reduction

@ We can describe a complex atomistic structure as a point in a
high-dimensional space. Then finding CVs means finding a
low-dimensional map to describe the accessible configurations!

o Take a set of configurations = high-dim. landmark points
e Find the distances between the points

Michele Ceriotti - EPFL - COSMO Probabilistic Analysis of Molecular Motifs



Dimensionality reduction

@ We can describe a complex atomistic structure as a point in a
high-dimensional space. Then finding CVs means finding a
low-dimensional map to describe the accessible configurations!

o Take a set of configurations = high-dim. landmark points
e Find the distances between the points

e Arrange low-dim. points so that the distances are preserved

Michele Ceriotti - EPFL - COSMO

Probabilistic Analysis of Molecular Motifs



Dimensionality reduction

@ We can describe a complex atomistic structure as a point in a
high-dimensional space. Then finding CVs means finding a
low-dimensional map to describe the accessible configurations!

o Take a set of configurations = high-dim. landmark points
e Find the distances between the points

e Arrange low-dim. points so that the distances are preserved
e Locate other configurations with an out-of-sample embedding

Michele Ceriotti - EPFL - COSMO Probabilistic Analysis of Molecular Motifs



Dimensionality reduction )

@ We can describe a complex atomistic structure as a point in a
high-dimensional space. Then finding CVs means finding a
low-dimensional map to describe the accessible configurations!

o Take a set of configurations = high-dim. landmark points
e Find the distances between the points

e Arrange low-dim. points so that the distances are preserved
e Locate other configurations with an out-of-sample embedding

Michele Ceriotti - EPFL - COSMO

Probabilistic Analysis of Molecular Motifs



Non-linear dimensionality reduction

@ Non-linear dimensionality reduction algorithms:

o Describe curved, “locally-flat” manifolds

o Developed by the CS community (image recognition)

e Attempts to apply to chemical problems (PCA, ISOMAP, Diff. maps,...)
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Top arch articulation

Bottom loop articulation

Tenenbaum et al., Science (200'0)
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Non-linear dimensionality reduction

@ Non-linear dimensionality reduction algorithms:

o Describe curved, “locally-flat” manifolds
o Developed by the CS community (image recognition)
e Attempts to apply to chemical problems (PCA, ISOMAP, Diff. maps,...)

@ Atomistic simulations are harder:

e Thermal fluctuations are high-dimensional
o A network of transition pathways with a complex topology

Probabilistic Analysis of Molecular Motifs
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Introducing sketch-map

@ Developing a more robust NLDR method

o Basic idea: we don't need a precise, isometric map.
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Introducing sketch-map )

@ Developing a more robust NLDR method

o Basic idea: we don't need a precise, isometric map.
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Introducing sketch-map )

@ Developing a more robust NLDR method

o Basic idea: we don't need a precise, isometric map.
e We need the computational equivalent of a hand sketched map
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Proximity matching

@ We would like to capture the low-dimensional structure of complex
transitions

Ceriotti, Tribello, Parrinello, PNAS 2011
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Proximity matching

@ We would like to capture the low-dimensional structure of complex
transitions

@ Some portions of the landscape cannot be projected by matching high

and low-dimensional distances. Thermal fluctuations exhibit inherent full
dimensionality!
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Proximity matching

@ We would like to capture the low-dimensional structure of complex
transitions

@ Some portions of the landscape cannot be projected by matching high

and low-dimensional distances. Thermal fluctuations exhibit inherent full
dimensionality!

o ldea: simplify the task, aim for proximity matching: close<>close, far<far

Uy

Ceriotti, Tribello, Parrinello, PNAS 2011
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Sketch-map algorithm )

@ In “metric” MDS a stress function that measures how well distances are
reproduced is minimized

N
2
X =0 11X = Xl =[x — xl]
ij=1

Ceriotti, Tribello,Parrinello PNAS 2011
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Sketch-map algorithm )

@ In “metric” MDS a stress function that measures how well distances are
reproduced is minimized

@ Modify the objective function to aim for proximity matching
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Sketch-map algorithm

@ In “metric” MDS a stress function that measures how well distances are
reproduced is minimized

@ Modify the objective function to aim for proximity matching

e Distances are transformed by sigmoid functions in both high and low
dimension

N
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Sketch-mapping the folding landscape of ¢ )
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Sketch-mapping the folding landscape of ¢ )
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Sketch-mapping the folding landscape of ¢ )

F[k]/mol]

“Conventional” CVs
recognize the folded
state, but many
meta-stable structures
overlap with each other

e
w

MSD [nm?]

Ceriotti, Tribello,
Parrinello, PNAS 2011
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Sketch-mapping the folding landscape of ¢ )

Sketch-map CVs give a
very detailed picture,
where each meta-stable
configuration is clearly
singled out

F[kJ/mol]

Ceriotti, Tribello, 0 10 20 30 40 50 60
Parrinello, PNAS 2011
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Sketch-mapping the folding landscape of ¢ )

Sketch-map CVs give a
very detailed picture,
where each meta-stable
configuration is clearly
singled out

Can be used effectively
for accelerated
dynamics:
field-overlap
metadynamics

F[kJ/mol]

Tribello, Ceriotti, 0 10 2 30 40 50
Parrinello, PNAS 2012
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Accelerating rare events )

@ When there are high free energy barriers it takes very long simulations
to see interesting events

F(s)

> < > <

Laio, Parrinello, PNAS 2002, Huber, Torda, van Gunsteren, JCAMD 1994

Michele Ceriotti - EPFL - COSMO Probabilistic Analysis of Molecular Motifs



Accelerating rare events )

@ When there are high free energy barriers it takes very long simulations
to see interesting events

F(s)

Laio, Parrinello, PNAS 2002, Huber, Torda, van Gunsteren, JCAMD 1994

Michele Ceriotti - EPFL - COSMO Probabilistic Analysis of Molecular Motifs



Accelerating rare events )

@ When there are high free energy barriers it takes very long simulations
to see interesting events

F(s)

Laio, Parrinello, PNAS 2002, Huber, Torda, van Gunsteren, JCAMD 1994

Michele Ceriotti - EPFL - COSMO Probabilistic Analysis of Molecular Motifs



Accelerating rare events )

@ When there are high free energy barriers it takes very long simulations
to see interesting events

F(s)

Laio, Parrinello, PNAS 2002, Huber, Torda, van Gunsteren, JCAMD 1994

Michele Ceriotti - EPFL - COSMO Probabilistic Analysis of Molecular Motifs



Accelerating rare events )

@ When there are high free energy barriers it takes very long simulations
to see interesting events
@ Use a bias to discourage the system from staying in the same
configuration and explore more efficiently (e.g. metadynamics)
2
(s(x) —s)”
V (x,t) Z Wexp — =

F(s)+V(s) t<t

Laio, Parrinello, PNAS 2002, Huber, Torda, van Gunsteren, JCAMD 1994
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Metadynamics and Hidden CVs )

@ 2d-metadynamics: the
orthogonal degree of freedom
is not sampled at alll
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Metadynamics and Hidden CVs )

@ 2d-metadynamics: the
orthogonal degree of freedom
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Metadynamics and Hidden CVs )

@ 2d-metadynamics: the
orthogonal degree of freedom
is not sampled at alll

o Field-overlap using (2d!)
sketch-map coordinates
thoroughly samples in all
directions
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(-hairpin Mutants )

@ Sketch map can be used to compare the stability of different systems

@ Consider a 16-residue hairpin-folding protein fragment

B-hairpin

Ardevol, Tribello, Ceriotti, Parrinello, JCTC (2015)
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G-hairpin Mutants

@ Sketch map can be used to compare the stability of different systems
@ Consider a 16-residue hairpin-folding protein fragment

e Many structures are locally stable other than the “folded” hairpin

Ardevol, Tribello, Ceriotti, Parrinello, JCTC (2015)
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B-hairpin Mutants )

@ Sketch map can be used to compare the stability of different systems

@ Consider a 16-residue hairpin-folding protein fragment

e Many structures are locally stable other than the “folded” hairpin
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(-hairpin Mutants )

@ Sketch map can be used to compare the stability of different systems
@ Consider a 16-residue hairpin-folding protein fragment

e Many structures are locally stable other than the “folded” hairpin
o We do a series of point mutations, and see how they affect stability

AG(kgT)
10

Ardevol, Tribello, Ceriotti, Parrinello, JCTC (2015)
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(-hairpin Mutants )

@ Sketch map can be used to compare the stability of different systems
@ Consider a 16-residue hairpin-folding protein fragment

e Many structures are locally stable other than the “folded” hairpin
o We do a series of point mutations, and see how they affect stability

TrpZipd G(kT)

10

Ardevol, Tribello, Ceriotti, Parrinello, JCTC (2015)
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From clusters to defects in the bulk

@ Start building a map for a Lennard-Jones cluster




From clusters to defects in the bulk )

@ Start building a map for a Lennard-Jones cluster
@ The same map describes the cluster across phase transitions
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From clusters to defects in the bulk )

@ Start building a map for a Lennard-Jones cluster
@ The same map describes the cluster across phase transitions
@ ... and can even recognize the nature of defects in a bulk system!
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Recognizing molecular patterns

@ We still need an effective high-dimensional description to start with

@ “Chemical intuition” builds on recognizing recurring patterns in atomic
configurations

@ Automatic scheme to single out structural motifs in atomistic simulations

Sp Sp Sp

Michele Ceriotti - EPFL - COSMO

Probabilistic Analysis of Molecular Motifs



Probabilistic Analysis of Molecular Motifs )

@ Evaluate the probability distribution of molecular structures

T2

T1

Piero Gasparotto & Michele Ceriotti, JCP 174110, 141 (2014)
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Probabilistic Analysis of Molecular Motifs

@ Evaluate the probability distribution of molecular structures

Piero Gasparotto & Michele Ceriotti, JCP 174110, 141 (2014)
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Probabilistic Analysis of Molecular Motifs

@ Evaluate the probability distribution of molecular structures
@ Cluster it around the modes of the distribution

Piero Gasparotto & Michele Ceriotti, JCP 174110, 141 (2014)
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Probabilistic Analysis of Molecular Motifs

@ Evaluate the probability distribution of molecular structures
@ Cluster it around the modes of the distribution

P(x) m Y3y piG (x[ g, Zi)

T

Piero Gasparotto & Michele Ceriotti, JCP 174110, 141 (2014)
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Probabilistic Analysis of Molecular Motifs

@ Evaluate the probability distribution of molecular structures
@ Cluster it around the modes of the distribution

@ Naturally gives a fuzzy and continuous partitioning of configuration space

Piero Gasparotto & Michele Ceriotti, JCP 174110, 141 (2014)
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An Agnostic Definition of the H-Bond

@ Most general description of a H-bond geometry: 3 distances
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An Agnostic Definition of the H-Bond

@ Most general description of a H-bond geometry: 3 distances
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@ Most general description of a H-bond geometry: 3 distances
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An Agnostic Definition of the H-Bond

@ Most general description of a H-bond geometry: 3 distances

@ PAMM recognizes multiple modes - one corresponds to the H-bond
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An Agnostic Definition of the H-Bond

@ Most general description of a H-bond geometry: 3 distances
@ PAMM recognizes multiple modes - one corresponds to the H-bond

@ PAMM H-bond fingerprints can be used as HB counts, but are adaptive,
unbiased and fuzzy
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A H-bonding Environment Map )

e PAMM gives for each (D, H,A) triplet a H-bond count spya
o Define integrated H-bond counts, e.g. sp = > _,; A SDHA
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A H-bonding Environment Map

e PAMM gives for each (D, H,A) triplet a H-bond count spya
@ Define integrated H-bond counts, e.g. sp = ZH’A SDHA
@ An “identity card” of H-bonding
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A H-bonding Environment Map )

e PAMM gives for each (D, H,A) triplet a H-bond count spya
@ Define integrated H-bond counts, e.g. sp = ZH’A SDHA
@ An “identity card” of H-bonding

@ Nuclear quantum effects trigger transient proton jumps

Ceriotti, Cuny, Parrinello, Manolopoulos, PNAS 110, 15591 (2013)
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A H-bonding Environment Map )

e PAMM gives for each (D, H,A) triplet a H-bond count spya
o Define integrated H-bond counts, e.g. sp = > _,; A SDHA

@ An “identity card” of H-bonding

@ Nuclear quantum effects trigger transient proton jumps
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A H-bonding Environment Map

e PAMM gives for each (D, H, A) triplet a H-bond count spya
@ Define integrated H-bond counts, e.g. sp = ZH’A SDHA
@ An “identity card” of H-bonding

@ Nuclear quantum effects trigger transient proton jumps
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What’'s an Excess Proton? )

@ Due to quantum fluctuations, it is not trivial to recognize an excess
proton

Giberti, Hassanali, Ceriotti, Parrinello J. Phys. Chem B, 15591 (2014)
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What’'s an Excess Proton? )

@ Due to quantum fluctuations, it is not trivial to recognize an excess

proton
@ One can recognize protons by a cumbersome cluster analysis

0.04 &MC:

Probability

Number of Oxygen in the cluster

Giberti, Hassanali, Ceriotti, Parrinello J. Phys. Chem B, 15591 (2014)
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What’'s an Excess Proton?

@ Due to quantum fluctuations, it is not trivial to recognize an excess

proton
@ One can recognize protons by a cumbersome cluster analysis
@ Can we exploit explicit knowledge of the electronic structure?

O O’
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Giberti, Hassanali, Ceriotti, Parrinello J. Phys. Chem B, 15591 (2014)
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What’'s an Excess Proton? )

@ Due to quantum fluctuations, it is not trivial to recognize an excess
proton

@ One can recognize protons by a cumbersome cluster analysis

@ Can we exploit explicit knowledge of the electronic structure?
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Giberti, Hassanali, Ceriotti, Parrinello J. Phys. Chem B, 15591 (2014)
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What’'s an Excess Proton? )

@ Due to quantum fluctuations, it is not trivial to recognize an excess
proton
@ One can recognize protons by a cumbersome cluster analysis

@ Can we exploit explicit knowledge of the electronic structure?
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PAMM Analysis of a Water Wire )

o Can we use PAMM to identify proton-like water molecules in a wire?

"4\’1)\"&!’&!‘*rvk" € a g4 g

Mariana Rossi & MC, Work in Progress...
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PAMM Analysis of a Water Wire

@ Can we use PAMM to identify proton-like water molecules in a wire?
@ The key variables are the distances of the “intermediate” Wannier
centers from the O atoms

"“’\”‘!)\r’&g’&r"r‘”i‘“" € a g4 g

w k

Mariana Rossi & MC, Work in Progress...
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PAMM Analysis of a Water Wire )

o Can we use PAMM to identify proton-like water molecules in a wire?
@ The key variables are the distances of the “intermediate” Wannier
centers from the O atoms

0.5}
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03 0.35 0.4 Q045

Mariana Rossi & MC, Work in Progress...
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PAMM Analysis of a Water Wire )

o Can we use PAMM to identify proton-like water molecules in a wire?
@ The key variables are the distances of the “intermediate” Wannier
centers from the O atoms

@ Despite the very weak “proton” signal (1/20!) one can recognize two
clear clusters

0.5

d3

0.45¢

]

03 0.35 0.4 0.45
dz
Mariana Rossi & MC, Work in Progress...

Michele Ceriotti - EPFL - COSMO Probabilistic Analysis of Molecular Motifs



PAMM Analysis of a Water Wire )

o Can we use PAMM to identify proton-like water molecules in a wire?
@ The key variables are the distances of the “intermediate” Wannier
centers from the O atoms

@ Despite the very weak “proton” signal (1/20!) one can recognize two
clear clusters
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Mariana Rossi & MC, Work in Progress...
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PAMM Protons are Delocalized )

@ PAMM fingerprints recognize a “proton wavepacket’ moving in a
concerted way along the wire
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PAMM Protons are Delocalized )

@ PAMM fingerprints recognize a “proton wavepacket’ moving in a

concerted way along the wire
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PAMM Protons are Delocalized )

e PAMM fingerprints recognize a “proton wavepacket” moving in a
concerted way along the wire

@ Center-of-charge, or “oxygen-coordination” definitions of the proton are
either discontinuous or contaminated by dipole fluctuations
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PAMM Protons are Delocalized )

e PAMM fingerprints recognize a “proton wavepacket” moving in a
concerted way along the wire

@ Center-of-charge, or “oxygen-coordination” definitions of the proton are
either discontinuous or contaminated by dipole fluctuations

@ The center of the PAMM proton is a more satisfactory description

3OL —— PAMM-weighed centroid

10t
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Machine-learning the Ramachandran plot )

@ Use data from the PDB, and “learn” with PAMM the stable patterns of
proteins in dihedral space

@ [rad]
Q
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Challenges for machine learning )

@ Machine learning can be used to process (large and/or high-dimensional)
simulation data in a simpler-to-understand form

o Use the ML description to improve simulations
o Can we formalize “intuitive understanding” as a goal for ML descriptors?
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Challenges for machine learning )

@ Machine learning can be used to process (large and/or high-dimensional)
simulation data in a simpler-to-understand form

o Use the ML description to improve simulations
o Can we formalize “intuitive understanding” as a goal for ML descriptors?

http:/ /epfl-cosmo.github.io/sketchmap
http://github.com/epfl-cosmo/pamm
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