Finding Patterns and Drawing Maps in the Configuration Space of Materials and Molecules

Michele Ceriotti, EPFL-IMX-COSMO

ML 2015 - IPAM Los Angeles

Managing data from atomistic models

- Atomistic simulations provide too much information
- It is hard to decipher the essential features in structurally-complex compounds, materials, proteins, etc.

ORIGX3	0.000000 0.000000	1.000000 0.	00000	ATON 35	CE LYS A	13 37.938	23.820 -25.257 1.0	0 47.26
SCALE1	0.008865 0.000000	0.000854 0.	00000	ATON 46	NZ LYSA	13 37.912	22.956 -26.427 1.0	0 49.91
SCALE2	0.000000 0.007278	0.000000 0.	00000	ATON 41	L N GLY A	14 36.505	24.051 -18.598 1.0	0 30.23
SCALE3	0.000000 0.000000	0.016243 0.	00000	ATON 42	CA GLY A	14 36.043	23.437 -17.381 1.0	0 27.07
ATOM	1 N GLY A 9	47.259 34.115 -24	1.044 1.00 77.25 N	ATON 43	B C GLY A	14 34.720	22.725 -17.623 1.0	0 24.90
ATOM	2 CA GLY A 9	45.958 33.894 -23	8.454 1.00 76.17 C	ATON 44	O GLY A	14 33.931	23.085 -18.502 1.0	0 24.28
ATOM	3 C GLY A 9	45.745 32.394 -23	1.509 1.00 75.52 C	ATON 45	5 N THRA	15 34.467	21.648 -16.891 1.0	0 23.77
ATOM	4 0 GLY A 9	46.734 31.684 -23	8.748 1.00 76.41 0	ATON 46	5 CA THR A	15 33.165	21.008 -16.888 1.0	0 21.99
ATOM	5 N HISA 10	44.513 31.959 -23	8.246 1.00 73.46 N	ATON 47	C THRA	15 32.851	20.876 -15.366 1.0	0 20.67
ATOM	6 CA HIS A 10	44.063 30.580 -23	8.344 1.00 70.95 C	ATON 48	B O THRA	15 33.636	20.316 -14.589 1.0	0 20.91
ATOM	7 C HIS A 10	42.713 30.547 -22	2.665 1.00 67.35 C	ATON 49	CB THR A	15 33.307	19.663 -17.787 1.0	0 21.11
ATOM	8 0 HIS A 10	42.504 31.258 -21	1.692 1.00 67.42 0	ATON 50	OG1 THR A	15 32.445	18.636 -17.266 1.0	0 20.61
ATOM	9 CB HIS A 10	44.916 29.565 -22	2.586 1.00 72.64 C	ATON 51	CG2 THR A	15 34.731	19.148 -17.867 1.0	0 21.03
ATOM	10 CG HIS A 10	44.712 28.203 -23	8.207 1.00 74.51 C	ATON 52	N VALA	16 31.766	21.535 -14.909 1.0	0 19.46
ATOM	11 ND1 HIS A 10	43.872 27.232 -22	2.873 1.00 76.95 N	ATON 53	G CA VALA	16 31.240	21.613 -13.527 1.0	0 18.05
ATOM	12 CD2 HIS A 10	45.380 27.790 -24	.333 1.00 75.61 C	ATON 54	1 C VALA	16 30.213	20.539 -13.297 1.0	0 17.95
ATOM	13 CE1 HIS A 10	43.995 26.255 -23	8.743 1.00 77.59 C	ATON 55	5 O VALA	16 29.183	20.596 -13.979 1.0	0 20.19
ATOM	14 NE2 HIS A 10	44.904 26.606 -24	.617 1.00 77.04 N	ATON 56	5 CB VAL A	16 30.558	23.011 -13.268 1.0	0 17.93
ATOM	15 N LYS A 11	41.767 29.785 -23	8.185 1.00 62.39 N	ATON 57	7 CG1 VAL A	16 29.522	23.084 -12.125 1.0	0 14.31
ATOM	16 CA LYS A 11	48.518 29.596 -22	2.485 1.00 57.64 C	ATON 58	GC VAL A	16 31.695	23.927 -12.855 1.0	0 19.85
ATOM	17 C LYS A 11	40.757 28.268 -21	L.807 1.00 52.94 C	ATON 59	9 N VALA	17 30.388	19.552 -12.431 1.0	0 16.80
ATOM	18 0 LYS A 11	41.131 27.357 -22	2.559 1.00 53.17 0	ATON 66	CA VALA	17 29.315	18.588 -12.315 1.0	0 16.32
ATOM	19 CB LYS A 11	39.356 29.487 -23	8.461 1.00 59.00 C	ATON 61	L C VALA	17 28.619	18.942 -11.011 1.0	0 16.99
ATOM	20 CG LYS A 11	38.836 30.831 -23	8.964 1.00 61.16 C	ATON 62	2 0 VALA	17 29.259	19.312 -10.011 1.0	0 15.91
ATOM	21 CD LYS A 11	37.618 30.622 -24	.865 1.00 62.37 C	ATON 63	B CB VAL A	17 29.896	17.152 -12.354 1.0	0 14.31
ATOM	22 CE LYS A 11	36.592 31.732 -24	1.665 1.00 64.46 C	ATON 64	CG1 VAL A	17 28.785	16.193 -12.693 1.0	0 12.71
ATOM	23 NZ LYS A 11	35.966 31.661 -23	8.353 1.00 65.05 N	ATON 65	5 CG2 VAL A	17 30.900	16.974 -13.474 1.0	0 15.05
ATOM	24 N ILE A 12	40.730 28.077 -20	0.482 1.00 46.69 N	ATON 66	5 N LEUA	18 27.289	18.817 -11.016 1.0	0 18.12
ATOM	25 CA ILE A 12	40.865 26.731 -19	0.945 1.00 41.32 C	ATON 67	CA LEU A	18 26.438	19.322 -9.949 1.0	0 18.03
ATOM	26 C ILE A 12	39.470 26.180 -20	0.031 1.00 38.16 C	ATON 68	B C LEUA	18 25.212	18.444 -9.785 1.0	0 17.64
ATOM	27 0 ILE A 12	38.510 26.898 -19	0.759 1.00 37.75 0	ATOM 65	0 LEUA	18 25.012	17.524 -10.585 1.0	0 18.53
ATOM	28 CB ILE A 12	41.293 26.663 -18	8.468 1.00 41.62 C	ATON 76	B CB LEU A	18 26.164	20.740 -10.401 1.0	0 18.68
ATOM	29 CG1 ILE A 12	42.663 27.279 -18	8.246 1.00 43.09 C	ATON 71	L CG LEU A	18 25.172	21.740 -9.940 1.0	0 18.30
ATOM	30 CG2 ILE A 12	41.377 25.188 -18	8.060 1.00 42.11 C	ATON 72	CD1 LEU A	18 25.617	23.036 -10.575 1.0	0 17.40
ATOM	31 CD1 ILE A 12	43.236 27.086 -16	5.815 1.00 42.37 C	ATON 73	B CD2 LEU A	18 23.754	21.431 -10.378 1.0	0 16.91
ATOM	32 N LYS A 13	39.303 24.956 -20	0.484 1.00 36.05 N	ATON 74	N META	19 24.409	18.702 -8.762 1.0	0 15.77
ATOM	33 CA LYS A 13	37.973 24.393 -20	0.494 1.00 35.27 C	ATON 75	S CA META	19 23.175	17.995 -8.504 1.0	0 14.82
ATOM	34 C LYS A 13	37.680 23.777 -19	0.138 1.00 33.46 C	ATON 76	5 C META	19 22.185	19.042 -8.012 1.0	0 17.55
ATOM	35 0 LYS A 13	38.529 23.068 -18	8.585 1.00 34.67 0	ATON 77	7 O META	19 22.536	19.924 -7.218 1.0	0 17.69
ATOM	36 CB LYS A 13	37.851 23.326 -21	L.554 1.00 34.84 C	ATON 78	G CB MET A	19 23.405	16.974 -7.440 1.0	0 13.63
ATOM	37 CG LYS A 13	37.848 24.027 -22	2.853 1.00 38.81 C	ATON 79	G MET A	19 23.984	15.656 -7.949 1.0	0 17.04

Michele Ceriotti - EPFL - COSMO

Probabilistic Analysis of Molecular Motifs

Managing data from atomistic models

- Atomistic simulations provide too much information
- It is hard to decipher the essential features in structurally-complex compounds, materials, proteins, etc.

Michele Ceriotti - EPFL - COSMO

Probabilistic Analysis of Molecular Motifs

Describing structural complexity

- We are looking for **collective variables** that can describe this structural complexity
 - Discriminate between different structures
 - Follow the system across transitions
- Finding these variables is time-consuming and error-prone: can we **automate** the process?

Angioletti, Ceriotti, Lee, Finnis PRB 2010

- We are looking for **collective variables** that can describe this structural complexity
 - Discriminate between different structures
 - Follow the system across transitions
- Finding these variables is time-consuming and error-prone: can we **automate** the process?

Tribello, Ceriotti, Parrinello PNAS 2010

Dimensionality reduction

- (PH
- We can describe a complex atomistic structure as a point in a high-dimensional space. Then finding CVs means finding a low-dimensional **map** to describe the accessible configurations!
 - Take a set of configurations \Rightarrow high-dim. **landmark points**
 - Find the distances between the points
 - Arrange low-dim. points so that the distances are preserved
 - Locate other configurations with an out-of-sample embedding

Dimensionality reduction

- (PH
- We can describe a complex atomistic structure as a point in a high-dimensional space. Then finding CVs means finding a low-dimensional **map** to describe the accessible configurations!
 - Take a set of configurations \Rightarrow high-dim. **landmark points**
 - Find the distances between the points
 - Arrange low-dim. points so that the distances are preserved
 - Locate other configurations with an out-of-sample embedding

- We can describe a complex atomistic structure as a point in a high-dimensional space. Then finding CVs means finding a low-dimensional **map** to describe the accessible configurations!
 - Take a set of configurations \Rightarrow high-dim. **landmark points**
 - Find the distances between the points
 - Arrange low-dim. points so that the distances are preserved
 - Locate other configurations with an out-of-sample embedding

- (Pfl
- We can describe a complex atomistic structure as a point in a high-dimensional space. Then finding CVs means finding a low-dimensional **map** to describe the accessible configurations!
 - Take a set of configurations \Rightarrow high-dim. **landmark points**
 - Find the distances between the points
 - Arrange low-dim. points so that the distances are preserved
 - Locate other configurations with an out-of-sample embedding

- We can describe a complex atomistic structure as a point in a high-dimensional space. Then finding CVs means finding a low-dimensional **map** to describe the accessible configurations!
 - Take a set of configurations \Rightarrow high-dim. **landmark points**
 - Find the distances between the points
 - Arrange low-dim. points so that the distances are preserved
 - Locate other configurations with an out-of-sample embedding

- (PA
- We can describe a complex atomistic structure as a point in a high-dimensional space. Then finding CVs means finding a low-dimensional **map** to describe the accessible configurations!
 - Take a set of configurations \Rightarrow high-dim. **landmark points**
 - Find the distances between the points
 - Arrange low-dim. points so that the distances are preserved
 - Locate other configurations with an out-of-sample embedding

Non-linear dimensionality reduction

- Non-linear dimensionality reduction algorithms:
 - Describe curved, "locally-flat" manifolds
 - Developed by the CS community (image recognition)
 - Attempts to apply to chemical problems (PCA, ISOMAP, Diff. maps,...)
- Atomistic simulations are harder:
 - Thermal fluctuations are high-dimensional
 - A network of transition pathways with a complex topology

Non-linear dimensionality reduction

- Non-linear dimensionality reduction algorithms:
 - Describe curved, "locally-flat" manifolds
 - Developed by the CS community (image recognition)
 - Attempts to apply to chemical problems (PCA, ISOMAP, Diff. maps,...)
- Atomistic simulations are harder:
 - Thermal fluctuations are high-dimensional
 - A network of transition pathways with a complex topology

Introducing sketch-map

(PH

- Developing a more robust NLDR method
 - Basic idea: we don't need a precise, isometric map.
 - We need the computational equivalent of a hand sketched map

Introducing sketch-map

• Developing a more robust NLDR method

- Basic idea: we don't need a precise, isometric map.
- We need the computational equivalent of a hand sketched map

Introducing sketch-map

- Developing a more robust NLDR method
 - Basic idea: we don't need a precise, isometric map.
 - We need the computational equivalent of a hand sketched map

Proximity matching

- We would like to capture the low-dimensional structure of complex transitions
- Some portions of the landscape cannot be projected by matching high and low-dimensional distances. Thermal fluctuations exhibit inherent full dimensionality!
 - Idea: simplify the task, aim for proximity matching: close↔close, far↔far

Proximity matching

- We would like to capture the low-dimensional structure of complex transitions
- Some portions of the landscape cannot be projected by matching high and low-dimensional distances. Thermal fluctuations exhibit inherent full dimensionality!
 - Idea: simplify the task, aim for proximity matching: close↔close, far↔far

- (PH)
- We would like to capture the low-dimensional structure of complex transitions
- Some portions of the landscape cannot be projected by matching high and low-dimensional distances. Thermal fluctuations exhibit inherent full dimensionality!
 - Idea: simplify the task, aim for proximity matching: close↔close, far↔far

- We would like to capture the low-dimensional structure of complex transitions
- Some portions of the landscape cannot be projected by matching high and low-dimensional distances. Thermal fluctuations exhibit inherent full dimensionality!
 - Idea: simplify the task, aim for proximity matching: close↔close, far↔far

Sketch-map algorithm

- In "metric" MDS a stress function that measures how well distances are reproduced is minimized
- Modify the objective function to aim for proximity matching
 - Distances are transformed by sigmoid functions in both high and low dimension

$$\chi^2 = \sum_{i,j=1}^{N} [|X_i - X_j| - |x_i - x_j|]^2$$

- In "metric" MDS a stress function that measures how well distances are reproduced is minimized
- Modify the objective function to aim for proximity matching
 - Distances are transformed by sigmoid functions in both high and low dimension

$$\chi^2 = \sum_{i,j=1}^{N} [|X_i - X_j| - |x_i - x_j|]^2$$

- In "metric" MDS a stress function that measures how well distances are reproduced is minimized
- Modify the objective function to aim for proximity matching
 - Distances are transformed by **sigmoid functions** in both high and low dimension

"Conventional" CVs recognize the folded state, but many meta-stable structures overlap with each other

Michele Ceriotti - EPFL - COSMO Probabilistic

Sketch-map CVs give a very detailed picture, where each meta-stable configuration is clearly singled out

Ceriotti, Tribello, Parrinello, PNAS 2011

9

Michele Ceriotti - EPFL - COSMO Probal

Sketch-map CVs give a very detailed picture, where each meta-stable configuration is clearly singled out

Can be used effectively for accelerated dynamics: field-overlap metadynamics

Tribello, Ceriotti, Parrinello, PNAS 2012

Michele Ceriotti - EPFL - COSMO

Probabilistic Analysis of Molecular Motifs

- When there are high **free energy barriers** it takes very long simulations to see interesting events
- Use a bias to discourage the system from staying in the same configuration and explore more efficiently (e.g. metadynamics)

Laio, Parrinello, PNAS 2002, Huber, Torda, van Gunsteren, JCAMD 1994

Michele Ceriotti - EPFL - COSMO Probabilistic Analysis of Molecular Motifs

- When there are high **free energy barriers** it takes very long simulations to see interesting events
- Use a bias to discourage the system from staying in the same configuration and explore more efficiently (e.g. metadynamics)

- When there are high **free energy barriers** it takes very long simulations to see interesting events
- Use a bias to discourage the system from staying in the same configuration and explore more efficiently (e.g. metadynamics)

- When there are high **free energy barriers** it takes very long simulations to see interesting events
- Use a bias to discourage the system from staying in the same configuration and explore more efficiently (e.g. metadynamics)

- When there are high **free energy barriers** it takes very long simulations to see interesting events
- Use a **bias** to discourage the system from staying in the same configuration and explore more efficiently (e.g. metadynamics)

- When there are high **free energy barriers** it takes very long simulations to see interesting events
- Use a bias to discourage the system from staying in the same configuration and explore more efficiently (e.g. metadynamics)

- When there are high free energy barriers it takes very long simulations to see interesting events
- Use a bias to discourage the system from staying in the same configuration and explore more efficiently (e.g. metadynamics)

- When there are high free energy barriers it takes very long simulations to see interesting events
- Use a **bias** to discourage the system from staying in the same configuration and explore more efficiently (e.g. metadynamics)

Accelerating rare events

- When there are high free energy barriers it takes very long simulations to see interesting events
- Use a **bias** to discourage the system from staying in the same configuration and explore more efficiently (e.g. metadynamics)

Laio, Parrinello, PNAS 2002, Huber, Torda, van Gunsteren, JCAMD 1994

Metadynamics and Hidden CVs

- 2d-metadynamics: the orthogonal degree of freedom is not sampled at all!
- Field-overlap using (2d!) sketch-map coordinates thoroughly samples in all directions

Metadynamics and Hidden CVs

- 2d-metadynamics: the orthogonal degree of freedom is not sampled at all!
- Field-overlap using (2d!) sketch-map coordinates thoroughly samples in all directions

Metadynamics and Hidden CVs

- 2d-metadynamics: the orthogonal degree of freedom is not sampled at all!
- Field-overlap using (2d!) sketch-map coordinates thoroughly samples in all directions

- Sketch map can be used to compare the stability of different systems
- Consider a 16-residue hairpin-folding protein fragment
 - Many structures are locally stable other than the "folded" hairpin
 - We do a series of point mutations, and see how they affect stability

- Sketch map can be used to compare the stability of different systems
- Consider a 16-residue hairpin-folding protein fragment
 - Many structures are locally stable other than the "folded" hairpin
 - We do a series of point mutations, and see how they affect stability

- Sketch map can be used to compare the stability of different systems
- Consider a 16-residue hairpin-folding protein fragment
 - Many structures are locally stable other than the "folded" hairpin
 - We do a series of point mutations, and see how they affect stability

- Sketch map can be used to compare the stability of different systems
- Consider a 16-residue hairpin-folding protein fragment
 - Many structures are locally stable other than the "folded" hairpin
 - We do a series of point mutations, and see how they affect stability

- Sketch map can be used to compare the stability of different systems
- Consider a 16-residue hairpin-folding protein fragment
 - Many structures are locally stable other than the "folded" hairpin
 - We do a series of point mutations, and see how they affect stability

From clusters to defects in the bulk

(Pfl

- Start building a map for a Lennard-Jones cluster
- The same map describes the cluster across phase transitions
 ... and can even recognize the nature of defects in a bulk system!

Michele Ceriotti - EPFL - COSMO Probabilistic Analysis of Molecular Motifs

From clusters to defects in the bulk

- Start building a map for a Lennard-Jones cluster
- The same map describes the cluster across phase transitions
- ... and can even recognize the nature of defects in a bulk system!

From clusters to defects in the bulk

- Start building a map for a Lennard-Jones cluster
- The same map describes the cluster across phase transitions
- ... and can even recognize the nature of defects in a bulk system!

Recognizing molecular patterns

- We still need an effective high-dimensional description to start with
- "Chemical intuition" builds on recognizing recurring patterns in atomic configurations
- Automatic scheme to single out structural motifs in atomistic simulations

• Evaluate the probability distribution of molecular structures

- Cluster it around the modes of the distribution
- Naturally gives a fuzzy and continuous partitioning of configuration space

- Evaluate the probability distribution of molecular structures
- Cluster it around the modes of the distribution
- Naturally gives a fuzzy and continuous partitioning of configuration space

- Evaluate the probability distribution of molecular structures
- Cluster it around the modes of the distribution
- Naturally gives a fuzzy and continuous partitioning of configuration space

- Evaluate the probability distribution of molecular structures
- Cluster it around the modes of the distribution
- Naturally gives a fuzzy and continuous partitioning of configuration space

- Evaluate the probability distribution of molecular structures
- Cluster it around the modes of the distribution
- Naturally gives a fuzzy and continuous partitioning of configuration space

- Evaluate the probability distribution of molecular structures
- Cluster it around the modes of the distribution
- Naturally gives a fuzzy and continuous partitioning of configuration space

- Evaluate the probability distribution of molecular structures
- Cluster it around the modes of the distribution
- Naturally gives a fuzzy and continuous partitioning of configuration space

- Evaluate the probability distribution of molecular structures
- Cluster it around the modes of the distribution
- Naturally gives a fuzzy and continuous partitioning of configuration space

- Evaluate the probability distribution of molecular structures
- Cluster it around the modes of the distribution
- Naturally gives a fuzzy and continuous partitioning of configuration space

- Most general description of a H-bond geometry: 3 distances
- PAMM recognizes multiple modes one corresponds to the H-bond
- PAMM H-bond fingerprints can be used as HB counts, but are adaptive, unbiased and fuzzy

- Most general description of a H-bond geometry: 3 distances
- PAMM recognizes multiple modes one corresponds to the H-bond
- PAMM H-bond fingerprints can be used as HB counts, but are adaptive, unbiased and fuzzy

- Most general description of a H-bond geometry: 3 distances
- PAMM recognizes multiple modes one corresponds to the H-bond
- PAMM H-bond fingerprints can be used as HB counts, but are adaptive, unbiased and fuzzy

- Most general description of a H-bond geometry: 3 distances
- PAMM recognizes multiple modes one corresponds to the H-bond
- PAMM H-bond fingerprints can be used as HB counts, but are adaptive, unbiased and fuzzy

- Most general description of a H-bond geometry: 3 distances
- PAMM recognizes multiple modes one corresponds to the H-bond
- PAMM H-bond fingerprints can be used as HB counts, but are adaptive, unbiased and fuzzy

- Most general description of a H-bond geometry: 3 distances
- PAMM recognizes multiple modes one corresponds to the H-bond
- PAMM H-bond fingerprints can be used as HB counts, but are adaptive, unbiased and fuzzy

- Most general description of a H-bond geometry: 3 distances
- PAMM recognizes multiple modes one corresponds to the H-bond
- PAMM H-bond fingerprints can be used as HB counts, but are adaptive, unbiased and fuzzy

- PAMM gives for each (D, H, A) triplet a H-bond count s_{DHA}
- Define integrated H-bond counts, e.g. $s_{\rm D} = \sum_{\rm H,A} s_{\rm DHA}$
- An "identity card" of H-bonding
- Nuclear quantum effects trigger transient proton jumps

- PAMM gives for each (D, H, A) triplet a H-bond count s_{DHA}
- Define integrated H-bond counts, e.g. $s_{\rm D} = \sum_{\rm H,A} s_{\rm DHA}$
- An "identity card" of H-bonding
- Nuclear quantum effects trigger transient proton jumps

Michele Ceriotti - EPFL - COSMO Probabilistic Analysis of Molecular Motifs

- PAMM gives for each (D, H, A) triplet a H-bond count s_{DHA}
- Define integrated H-bond counts, e.g. $s_{D} = \sum_{H,A} s_{DHA}$
- An "identity card" of H-bonding
- Nuclear quantum effects trigger transient proton jumps

Ceriotti, Cuny, Parrinello, Manolopoulos, PNAS 110, 15591 (2013)

- PAMM gives for each (D, H, A) triplet a H-bond count s_{DHA}
- $\bullet\,$ Define integrated H-bond counts, e.g. $\textit{s}_{D} = \sum_{H,A}\textit{s}_{DHA}$
- An "identity card" of H-bonding
- Nuclear quantum effects trigger transient proton jumps

- PAMM gives for each (D, H, A) triplet a H-bond count s_{DHA}
- Define integrated H-bond counts, e.g. $s_{D} = \sum_{H,A} s_{DHA}$
- An "identity card" of H-bonding
- Nuclear quantum effects trigger transient proton jumps

What's an Excess Proton?

- Due to quantum fluctuations, it is not trivial to recognize an excess proton
- One can recognize protons by a cumbersome cluster analysis
 Can we exploit explicit knowledge of the electronic structure?

Giberti, Hassanali, Ceriotti, Parrinello J. Phys. Chem B , 15591 (2014)

What's an Excess Proton?

- Due to quantum fluctuations, it is not trivial to recognize an excess proton
- One can recognize protons by a cumbersome cluster analysis
- Can we exploit explicit knowledge of the electronic structure?

Giberti, Hassanali, Ceriotti, Parrinello J. Phys. Chem B , 15591 (2014)
What's an Excess Proton?

- Due to quantum fluctuations, it is not trivial to recognize an excess proton
- One can recognize protons by a cumbersome cluster analysis
- Can we exploit explicit knowledge of the electronic structure?

Giberti, Hassanali, Ceriotti, Parrinello J. Phys. Chem B , 15591 (2014)

What's an Excess Proton?

- Due to quantum fluctuations, it is not trivial to recognize an excess proton
- One can recognize protons by a cumbersome cluster analysis
- Can we exploit explicit knowledge of the electronic structure?

Giberti, Hassanali, Ceriotti, Parrinello J. Phys. Chem B , 15591 (2014)

What's an Excess Proton?

- Due to quantum fluctuations, it is not trivial to recognize an excess proton
- One can recognize protons by a cumbersome cluster analysis
- Can we exploit explicit knowledge of the electronic structure?

Giberti, Hassanali, Ceriotti, Parrinello J. Phys. Chem B , 15591 (2014)

- (Pfl
- Can we use PAMM to identify proton-like water molecules in a wire?
- The key variables are the distances of the "intermediate" Wannier centers from the O atoms
- Despite the very weak "proton" signal (1/20!) one can recognize two clear clusters

- Can we use PAMM to identify proton-like water molecules in a wire?
- The key variables are the distances of the "intermediate" Wannier centers from the O atoms
- Despite the very weak "proton" signal (1/20!) one can recognize two clear clusters

- Can we use PAMM to identify proton-like water molecules in a wire?
- The key variables are the distances of the "intermediate" Wannier centers from the O atoms
- Despite the very weak "proton" signal (1/20!) one can recognize two clear clusters

- Can we use PAMM to identify proton-like water molecules in a wire?
- The key variables are the distances of the "intermediate" Wannier centers from the O atoms
- Despite the very weak "proton" signal (1/20!) one can recognize two clear clusters

- Can we use PAMM to identify proton-like water molecules in a wire?
- The key variables are the distances of the "intermediate" Wannier centers from the O atoms
- Despite the very weak "proton" signal (1/20!) one can recognize two clear clusters

- PAMM fingerprints recognize a "proton wavepacket" moving in a concerted way along the wire
- Center-of-charge, or "oxygen-coordination" definitions of the proton are either discontinuous or contaminated by dipole fluctuations
- The center of the PAMM proton is a more satisfactory description

- PAMM fingerprints recognize a "proton wavepacket" moving in a concerted way along the wire
- Center-of-charge, or "oxygen-coordination" definitions of the proton are either discontinuous or contaminated by dipole fluctuations
- The center of the PAMM proton is a more satisfactory description

- PAMM fingerprints recognize a "proton wavepacket" moving in a concerted way along the wire
- Center-of-charge, or "oxygen-coordination" definitions of the proton are either discontinuous or contaminated by dipole fluctuations

• The center of the PAMM proton is a more satisfactory description

- PAMM fingerprints recognize a "proton wavepacket" moving in a concerted way along the wire
- Center-of-charge, or "oxygen-coordination" definitions of the proton are either discontinuous or contaminated by dipole fluctuations
- The center of the PAMM proton is a more satisfactory description

Machine-learning the Ramachandran plot

• Use data from the PDB, and "learn" with PAMM the stable patterns of proteins in dihedral space

Piero Gasparotto

Michele Parrinello Gareth Tribello

Centro Svizzero di Calcolo Scientifico Swiss National Supercomputing Centre

Mariana Rossi

Challenges for machine learning

- Machine learning can be used to process (large and/or high-dimensional) simulation data in a simpler-to-understand form
 - Use the ML description to improve simulations
 - Can we formalize "intuitive understanding" as a goal for ML descriptors?

Challenges for machine learning

- Machine learning can be used to process (large and/or high-dimensional) simulation data in a simpler-to-understand form
 - Use the ML description to improve simulations
 - Can we formalize "intuitive understanding" as a goal for ML descriptors?

http://epfl-cosmo.github.io/sketchmap http://github.com/epfl-cosmo/pamm