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The electronic structure problem 

•  Use atomic units 
•  Born-Oppenheimer 

approximation 
•  All non-relativistic 

(but added back in) 
•  Wavefunctions 

antisymmetric and 
normalized 

•  Only discuss ground-
state electronic 
problem here, but 
many variations. 

Hamiltonian

Hamiltonian for N electrons in the presence of external potential v(r):
Ĥ = T̂ + V̂ee + V̂ ,

where the kinetic and elec-elec repulsion energies are

T̂ = ≠1
2

Nÿ

i=1
Ò2

i

, V̂ee =
1
2

Nÿ

i=1

Nÿ

j ”=i

1
|r

i

≠ r

j

| ,

and di�erence between systems is N and the one-body potential

V̂ =
Nÿ

i=1
v(r

i

)

Often v(r) is electron-nucleus attraction

v(r) = ≠
ÿ

–

Z–

|r ≠ R–|

where – runs over all nuclei, plus weak applied E and B fields.
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Schrödinger equation

6N-dimensional Schrödinger equation for stationary states

{T̂ + V̂ee + V̂ } = E  ,  antisym

The one-particle density is much simpler than  :

n(r) = N
ÿ

‡1

. . .
ÿ

‡
N

⁄
d3r2 . . . d3r

N

| (r‡1, r2‡2, . . . , r

N

‡
N

)|2

and n(r) d3r gives probability of finding any electron in d3r around r.
Wavefunction variational principle:

I E [ ] © È |Ĥ| Í is a functional
I Extrema of E [ ] are stationary states, and ground-state energy is

E = min
 

È |T̂ + V̂ee + V̂ | Í

where  is normalized and antisym.
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DFT method 
Kohn-Sham 1965

Define fictitious non-interacting electrons satisfying:

;
≠1

2Ò2 + vS(r)
<

„
j

(r) = ‘
j

„
j

(r),
Nÿ

j=1
|„

j

(r)|2 = n(r).

where vS(r) is defined to yield n(r).
Define TS as the kinetic energy of the KS electrons, U as their
Hartree energy and

T + Vee = TS + U + EXC

the remainder is the exchange-correlation energy.
Most important result of exact DFT:

vS(r) = v(r) +
⁄

d3r n(rÕ)

|r ≠ r

Õ| + vXC[n](r), vXC(r) =
”EXC

”n(r)
Knowing EXC[n] gives closed set of self-consistent equations.
Kieron (UC Irvine) ABC of ground-state DFT Weizmann14 14 / 39

KS potential of He atom
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Every density has (at most) one KS
potential.a
Red line: vS(r) is the exact KS
potential.

a

Accurate exchange-correlation

potentials and total-energy components for

the helium isoelectronic series, C. J.
Umrigar and X. Gonze, Phys. Rev. A 50,
3827 (1994).
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1964:	
  HK	
  theorem:	
  	
  There	
  exists	
  F[n]	
  

Orbital-­‐free	
  DFT:	
  	
  Approximate	
  Ts[n]	
  directly,	
  and	
  go	
  much,	
  much	
  faster.	
  

F=	
  



Papers	
  using	
  DFT	
  

file: k7˙30 Total pages: 12

popular in solid-state physics and materials science. In
reality, both are used in both fields and many others as
well.
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FIG. 2. The number of DFT citations has exploded (as have
ab initio methods). PBE is the number of citations of of Ref.
[22], and B88 of Ref. [18]. Dark indicates papers using either
of these approximations without citing the original papers,
while other is all other DFT papers. All numbers are esti-
mates.

Cultural wars: The LDA was defined by Kohn and
Sham in 1965; there is no controversy about how it
was designed. On the other hand, adding complexity to
functional approximations demands choices about how
to take the next step. Empirical functional developers
fit their approximations to sets of highly accurate refer-
ence data on atoms and molecules. Non-empirical de-
velopers use exact mathematical conditions on the func-
tional and rely on reference systems like the uniform and
slowly-varying electron gases. The most popular empiri-
cal functional approximation is the B3LYP hybrid, while
the PBE GGA is the most popular non-empirical ap-
proximation. Modern DFT conferences usually include
debates about the morality of this kind of empiricism.

Both philosophies have been incredibly successful, as
shown by their large followings among developers and
users, but each of these successes is accompanied by fail-
ures. No single approximation works well enough for ev-
ery property of every material of interest. Many users
sit squarely and pragmatically in the middle of the two
factions, taking what is best from both of their accom-
plishments and insights. Often, empiricists and non-
empiricists find themselves with similar end products, a
good clue that something valuable has been created with
the strengths of both.

To illustrate this idea, we give a brief allegory from
an alternative universe. Since at least the 1960’s, ac-
curate HF energies of atoms have been available due to
the e↵orts of Charlotte Froese Fischer and others[25, 26].
A bright young chemistry student plots these X ener-
gies as a function of Z, the atomic number and notices
they behave roughly as Z5/3, as in Fig. 3. She’s an
organic chemistry student, and mostly only cares about
main-group elements, so she fits the curve by choosing a
constant to minimize the error on the first 18 elements,
finding EX = �0.25Z5/3. Much later, she hears about
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FIG. 3. Exchange energy of atoms from a HF calculation as
a function of Z, atomic number, and two LDAX calculations,
one with the theoretical asymptote, the other fitted.

KS DFT, and the need to approximate the XC energy.
A little experimentation shows that if

Xopt = C
0

Z
d3r ⇢4/3(r), (5)

this goes as Z5/3 when Z is large, and choosing C
0

=
�0.80 makes it agree with her fit.

In our alternate timeline, a decade later, Paul Dirac,
a very famous physicist, proves[] that for a uniform gas,
C

0

= AX = �(3/4)(3/⇡)1/3 = �0.738. Worse still, Ju-
lian Schwinger proves[27] that, inserting the TF density
into Dirac’s expression, becomes exact as Z ! 1, so that
EX ! �0.2201Z5/3. Thus theirs is the ‘correct’ LDA for
X, and our brave young student should bow her head in
shame.

Or should she? If we evaluate the mean absolute er-
rors in exchange for the first 20 atoms, her functional is
significantly better than the ‘correct’ one[28]. If lives de-
pend on which functional is more accurate for those 20
atoms, which would you choose?[29]

This simple fable contains the seeds of our actual cul-
tural wars in DFT derivations.

(i) An intuitive, inspired functional need not wait for an
o�cial derivation. One parameter might be extracted by
fitting, and later derived.

(ii) A fitted functional will usually be more accurate than
the derived version for the cases where it was fitted. The
magnitude of the errors will be smaller, but less system-
atic.

(iii) The fitted functional will miss universal properties of
a derived functional. We see later that the correct LDA
for exchange is a universal limit of all systems, not just
atoms.

(iv) If you want to add the next correction to LDA, start-
ing with the wrong constant will make life very di�cult
(see later).

3

Oct	
  15,	
  2014	
   Boston	
  Area	
  Theo	
  Chem	
  

DFT:	
  A	
  Theory	
  Full	
  of	
  Holes,	
  	
  Aurora	
  Pribram-­‐Jones,	
  David	
  A.	
  Gross,	
  Kieron	
  Burke,	
  
Annual	
  Review	
  of	
  Physical	
  Chemistry	
  (2014).	
  



Semiclassical work in progress 

•  Almost exact exchange at almost no 
cost  
–   for 1d boxes, do LDA calculation, then 

evaluate semiclassical exchange. 
•  Turning points 

–  Finally derived and proved formulas in 
presence of turning points 

•  Asymptotic expansion for correlation 
–  Gives new version of PBE, more accurate 

for atoms 
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The coauthors:
Stefano Pittalis

Andrea Floris, Hardy Gross,
Cesar Proetto, Antonio Sanna

And Kieron Burke

Density functional theory (DFT) has become an enormously successful tool for electronic structure 
calculations. The Kohn-Sham scheme is now used in over 10,000 papers per year. Literally hundreds 
of distinct approximations are now available in modern electronic structure codes in both chemistry 
and materials science. The best of these are non-empirical interpolations among known limits of 
quantum mechanics; the worst are mere fits of empirical data. Starting with the original work of 
Thomas and Fermi, strong connections were developed between density functional approximations 
and semiclassical methods. Recent work has sought to re-examine the link between DFT, 
semiclassical approximations, and functional analysis. Numerical and heuristic results suggest a 
close (but subtle) underlying link. Understanding of these links, and using them to build new and 
more powerful approximations, could have tremendous impact in modern electronic structure  
calculations. The aim of this workshop is to reunite these disparate strands and begin a conversation 
among the different communities, including researchers from mathematics, physics, and theoretical 
chemistry.

Participation
Additional information about this workshop including links to register and to apply for funding, can be 
found on the webpage listed below. Encouraging the careers of women and minority 
mathematicians and scientists is an important component of IPAM's mission, and we welcome their 
applications. 

www.ipam.ucla.edu/programs/dft2013

IPAM is an NSF funded institute

Confirmed Speakers
Kieron Burke (UC Irvine), Eric Cances (École Nationale des Ponts-et-Chaussées), Berthold-Georg 
Englert (National University of Singapore), Gero Friesecke (Technische Universtitat München), 
Carlos Garcia-Cervera (UC Santa Barbara), Paola Gori-Giorgi (Vrije Universiteit), Hardy Gross 
(Max Planck Institute of Microstructure Physics), Eric Heller (Harvard), Elliott Lieb (Princeton), Lin 
Lin (Lawrence Berkeley Lab), Francis Nier (Université de Rennes I), Qian Niu (University of Texas 
at Austin), Thierry Paul (École Polytechnique), Igor Rodnianski (MIT), Michael Seidl (Universität 
Regensburg), Barry Simon (Cal Tech), Jan Philip (Solovej University of Copenhagen)

Semiclassical Origins of Density 
Functional Approximations

ORGANIZING COMMITTEE: Kieron Burke (UC Irvine), Eric Cances (École Nationale des 
Ponts-et-Chaussées), Hardy Gross (Max Planck Institute of Microstructure Physics), Igor 
Rodnianski (MIT)

Scientific Overview
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•  Ongoing project with Steve White at UCI 
•  Apply DMRG to continuum problems 
•  Understand limitations and failures of standard 

DFT approximations 
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C.	
  Machines	
  
12 Chapter 1. Introduction

(a) (b)

Figure 1.10 a) 25 randomly chosen 64 × 64 pixel images from the Olivetti face database. (b) The mean
and the first three principal component basis vectors (eigenfaces). Figure generated by pcaImageDemo.

When used as input to other statistical models, such low dimensional representations often
result in better predictive accuracy, because they focus on the “essence” of the object, filtering
out inessential features. Also, low dimensional representations are useful for enabling fast
nearest neighbor searches and two dimensional projections are very useful for visualizing high
dimensional data.

The most common approach to dimensionality reduction is called principal components
analysis or PCA. This can be thought of as an unsupervised version of (multi-output) linear
regression, where we observe the high-dimensional response y, but not the low-dimensional
“cause” z. Thus the model has the form z → y; we have to “invert the arrow”, and infer the
latent low-dimensional z from the observed high-dimensional y. See Section 12.1 for details.

Dimensionality reduction, and PCA in particular, has been applied in many different areas.
Some examples include the following:

• In biology, it is common to use PCA to interpret gene microarray data, to account for the
fact that each measurement is usually the result of many genes which are correlated in their
behavior by the fact that they belong to different biological pathways.

• In natural language processing, it is common to use a variant of PCA called latent semantic
analysis for document retrieval (see Section 27.2.2).

• In signal processing (e.g., of acoustic or neural signals), it is common to use ICA (which is a
variant of PCA) to separate signals into their different sources (see Section 12.6).

• In computer graphics, it is common to project motion capture data to a low dimensional
space, and use it to create animations. See Section 15.5 for one way to tackle such problems.
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Machine learning 

•  Powerful branch of artificial intelligence 
•  Essentially fitting and interpolating 
•  Maps problem into much higher-dimension 

feature space, using a simple kernel 
•  Higher-dimension often means more linear 
•  Perform regression in feature space 
•  Project back to original problem 
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Kernel ridge regression Method

http://www.ics.uci.edu/~welling/classnotes/papers_class/Kernel-Ridge.pdf

f̂(x) =
MX

j=1

�jk(xj ,x)

k(x,x0
) = exp(�kx� x

0k2/(2�2
))

• Kernel ridge regression (KRR).  Given {xj , fj}

• Minimize:

C(↵) =
MX

j=1

(f̂(xj)� fj)
2 + ⇥2⇥�⇥2

↵ = (K + �2I)�1f
noise level

length scale
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ML applications in electronic structure 

•  Most with Klaus Mueller of TU Berlin, 
computer science. 

•  ML now being applied directly to, e.g., 
molecular energies from geometries for 
drug design, many by Matthias Rupp (U. 
Basel) 

•  Our efforts are focused on finding Ts[n] 
from examples, headed by John Snyder 
(Humboldt fellow at TU Berlin/MPI Halle) 
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Demo problem in DFT 

• Represent the density on a grid with spacing

2

x ⇤ 1, with hard walls. For continuous potentials v(x),
we can solve the Schrödinger equation numerically with the
lowest N orbitals occupied, finding the KE T (N) and the
electronic density n(x), which is the sum of the squares of
the occupied orbitals. Our aim is to construct a ML-DFA
for the kinetic energy T [n] that bypasses the need to solve
the Schrödinger equation, enabling a 1d analog of orbital-
free DFT. In 1d orbital-free DFT, the local approximation,
as used in Thomas-Fermi theory, is typically accurate to
within 10%, and the addition of the leading gradient cor-
rection reduces the error to about 1%[]. Unfortunately, even
this small an error in the total KE is too large to give accu-
rate chemical properties.

The first step is to choose a representation for the density.
We discretize n(x) on a uniform grid, xj = j/(G � 1),
j = 0, . . . , G � 1, with spacing �x = 1/(G � 1). Next
we specify a class of potentials to generate a dataset from.
We choose a linear combination of 3 Gaussian dips with
di�erent depths, widths, and centers:

v(x) = �
3X

i=1

ai exp(�(x� bi)
2/(2c2i )). (1)

We generate potentials vj(x) for j = 1, . . . , 2000, randomly
sampling ai ⌅ [1, 10], bi ⌅ [0.4, 0.6], and ci ⌅ [0.03, 0.1].
For each potential vj(x), we solve for the KE Tj,N and den-
sity nj,N ⌅ RG on the grid using Numerov’s method, for
N = 1, . . . , 4. For G = 500, the error in Tj,N due to dis-
cretization is less than 1.5⇥10�7, which is too small to limit
the accuracy of the functional. We use samples 1 through
M for training, and designate samples 1001 through 2000
as the test set.

We use kernel ridge regression (KRR) to approximate the
KE functional. KRR is a non-linear version of regression
with regularization to prevent overfitting [10]. In KRR, the
ML-DFA takes the form

T̂ (n) = T̄
MX

j=1

�jk(nj ,n), (2)

where �j are weights to be determined, nj are training den-
sities and k is the kernel, which measures similarity between
densities. Here T̄ =

PM
j=1 Tj/M , arbitrarily chosen as the

KE scale, and Tj is the exact KE of nj . We choose the
Gaussian kernel, used commonly in ML:

k(n,n⇥) = exp(�⇧n� n⇥⇧2/(2⌅2)), (3)

where ⌅ is a hyperparameter called the length scale. The
weights are found by minimizing the cost function

C(↵) =
MX

j=1

�T 2
j + ⇥2⇧↵⇧2, (4)

where �Tj = T̂ (nj) � Tj and ↵ = (�1, . . . ,�M ). The
second term is known as a regularizer, and penalizes large
weights to prevent overfitting. The hyperparameter ⇥ is
called the noise level. Minimizing C(↵) gives

↵ = (K + ⇥2I)�1T, (5)

whereK is the kernel matrix with elementsKij = k(ni,nj),
I is the identity matrix, and T = (T1, . . . , TM ).
The hyperparameters, ⌅ and ⇥, are determined through

cross-validation: The training set is partitioned into 10 bins
of equal size. For each bin, the functional is trained on the
remaining samples and ⌅ and ⇥ are optimized by minimizing
the mean absolute error (MAE) on the bin. The partitioning
is repeated up to 40 times and the hyperparameters are
given by the median over all bins.
Table I gives the performance of the ML-DFA (Eq. 2)

trained on M N -electron densities and evaluated on the
corresponding N -electron test set. The mean KE of the
test set for N = 1 is 5.40 Hartree (3390 kcal/mol). To con-
trast, the LDA in 1d is T loc[n] = ⇤2

R
dxn3(x)/6 and the

von Weizsäcker functional is TW[n] =
R
dxn⇥(x)2/(8n(x)).

For N = 1, the MAE of T loc on the test set is 223
kcal/mol and the modified gradient expansion approxima-
tion[], TMGEA[n] = T loc[n] � c TW[n], has a MAE of 159
kcal/mol, where c = 0.0556 has been chosen to minimize
the error. For the ML-DFA, both the mean and maximum
absolute errors improve asM increases, and improve slightly
as N increases. At M = 80, we have already achieved
“chemical accuracy,” i.e., a MAE below 1 kcal/mol. At
M = 200, even the maximum absolute error on the entire
test set is below this mark. In addition, incorporating dif-
ferent N into the training set has little e�ect on the overall
performance.

N M � ⇥ |�T | |�T |std |�T |max

1

40 2.4� 10�5 238 3.3 3.0 23.

60 1.0� 10�5 95 1.2 1.2 10.

80 6.7� 10�6 48 0.43 0.54 7.1

100 3.4� 10�7 43 0.15 0.24 3.2

150 2.5� 10�7 33 0.060 0.10 1.3

200 1.7� 10�7 28 0.031 0.053 0.65

2 100 1.3� 10�7 52 0.13 0.20 1.8

3 100 2.0� 10�7 74 0.12 0.18 1.8

4 100 1.4� 10�7 73 0.078 0.14 2.3

1-4† 400 1.8� 10�7 47 0.12 0.20 3.6

TABLE I. Dependence of the performance of the ML-DFA on
the number of training densities, M , and electron number,
N . The noise level, �, and the length scale, ⇥, are deter-
mined via cross-validation. The performance is given by the
mean (|�T |), standard deviation (|�T |std), and maximum
(|�T |max) of the absolute errors, in kcal/mol, of the func-
tional evaluated on the test set. †Training set includes nj,N

for j = 1, . . . , 100 and N = 1, . . . , 4.

With such unheard of accuracy, it is tempting to declare
“mission accomplished,” but this would be premature. A
functional that predicts only the energy is useless in prac-
tice, since DFT uses functional derivatives in self-consistent
procedures to find the density within a given approximation.
For non-interacting fermions in a potential v(x), minimizing

Prototype

• N non-interacting same-spin fermions confined to 1d box

• ML-DFA for KE:

2

x ⇤ 1, with hard walls. For continuous potentials v(x),
we can solve the Schrödinger equation numerically with the
lowest N orbitals occupied, finding the KE T (N) and the
electronic density n(x), which is the sum of the squares of
the occupied orbitals. Our aim is to construct a ML-DFA
for the kinetic energy T [n] that bypasses the need to solve
the Schrödinger equation, enabling a 1d analog of orbital-
free DFT. In 1d orbital-free DFT, the local approximation,
as used in Thomas-Fermi theory, is typically accurate to
within 10%, and the addition of the leading gradient cor-
rection reduces the error to about 1%[]. Unfortunately, even
this small an error in the total KE is too large to give accu-
rate chemical properties.

The first step is to choose a representation for the density.
We discretize n(x) on a uniform grid, xj = j/(G � 1),
j = 0, . . . , G � 1, with spacing �x = 1/(G � 1). Next
we specify a class of potentials to generate a dataset from.
We choose a linear combination of 3 Gaussian dips with
di�erent depths, widths, and centers:

v(x) = �
3X

i=1

ai exp(�(x� bi)
2/(2c2i )). (1)

We generate potentials vj(x) for j = 1, . . . , 2000, randomly
sampling ai ⌅ [1, 10], bi ⌅ [0.4, 0.6], and ci ⌅ [0.03, 0.1].
For each potential vj(x), we solve for the KE Tj,N and den-
sity nj,N ⌅ RG on the grid using Numerov’s method, for
N = 1, . . . , 4. For G = 500, the error in Tj,N due to dis-
cretization is less than 1.5⇥10�7, which is too small to limit
the accuracy of the functional. We use samples 1 through
M for training, and designate samples 1001 through 2000
as the test set.

We use kernel ridge regression (KRR) to approximate the
KE functional. KRR is a non-linear version of regression
with regularization to prevent overfitting [10]. In KRR, the
ML-DFA takes the form

T̂ (n) = T̄
MX

j=1

�jk(nj ,n), (2)

where �j are weights to be determined, nj are training den-
sities and k is the kernel, which measures similarity between
densities. Here T̄ =

PM
j=1 Tj/M , arbitrarily chosen as the

KE scale, and Tj is the exact KE of nj . We choose the
Gaussian kernel, used commonly in ML:

k(n,n⇥) = exp(�⇧n� n⇥⇧2/(2⌅2)), (3)

where ⌅ is a hyperparameter called the length scale. The
weights are found by minimizing the cost function

C(↵) =
MX

j=1

�T 2
j + ⇥2⇧↵⇧2, (4)

where �Tj = T̂ (nj) � Tj and ↵ = (�1, . . . ,�M ). The
second term is known as a regularizer, and penalizes large
weights to prevent overfitting. The hyperparameter ⇥ is
called the noise level. Minimizing C(↵) gives

↵ = (K + ⇥2I)�1T, (5)

whereK is the kernel matrix with elementsKij = k(ni,nj),
I is the identity matrix, and T = (T1, . . . , TM ).
The hyperparameters, ⌅ and ⇥, are determined through

cross-validation: The training set is partitioned into 10 bins
of equal size. For each bin, the functional is trained on the
remaining samples and ⌅ and ⇥ are optimized by minimizing
the mean absolute error (MAE) on the bin. The partitioning
is repeated up to 40 times and the hyperparameters are
given by the median over all bins.
Table I gives the performance of the ML-DFA (Eq. 2)

trained on M N -electron densities and evaluated on the
corresponding N -electron test set. The mean KE of the
test set for N = 1 is 5.40 Hartree (3390 kcal/mol). To con-
trast, the LDA in 1d is T loc[n] = ⇤2

R
dxn3(x)/6 and the

von Weizsäcker functional is TW[n] =
R
dxn⇥(x)2/(8n(x)).

For N = 1, the MAE of T loc on the test set is 223
kcal/mol and the modified gradient expansion approxima-
tion[], TMGEA[n] = T loc[n] � c TW[n], has a MAE of 159
kcal/mol, where c = 0.0556 has been chosen to minimize
the error. For the ML-DFA, both the mean and maximum
absolute errors improve asM increases, and improve slightly
as N increases. At M = 80, we have already achieved
“chemical accuracy,” i.e., a MAE below 1 kcal/mol. At
M = 200, even the maximum absolute error on the entire
test set is below this mark. In addition, incorporating dif-
ferent N into the training set has little e�ect on the overall
performance.

N M � ⇥ |�T | |�T |std |�T |max

1

40 2.4� 10�5 238 3.3 3.0 23.

60 1.0� 10�5 95 1.2 1.2 10.

80 6.7� 10�6 48 0.43 0.54 7.1

100 3.4� 10�7 43 0.15 0.24 3.2

150 2.5� 10�7 33 0.060 0.10 1.3

200 1.7� 10�7 28 0.031 0.053 0.65

2 100 1.3� 10�7 52 0.13 0.20 1.8

3 100 2.0� 10�7 74 0.12 0.18 1.8

4 100 1.4� 10�7 73 0.078 0.14 2.3

1-4† 400 1.8� 10�7 47 0.12 0.20 3.6

TABLE I. Dependence of the performance of the ML-DFA on
the number of training densities, M , and electron number,
N . The noise level, �, and the length scale, ⇥, are deter-
mined via cross-validation. The performance is given by the
mean (|�T |), standard deviation (|�T |std), and maximum
(|�T |max) of the absolute errors, in kcal/mol, of the func-
tional evaluated on the test set. †Training set includes nj,N

for j = 1, . . . , 100 and N = 1, . . . , 4.

With such unheard of accuracy, it is tempting to declare
“mission accomplished,” but this would be premature. A
functional that predicts only the energy is useless in prac-
tice, since DFT uses functional derivatives in self-consistent
procedures to find the density within a given approximation.
For non-interacting fermions in a potential v(x), minimizing

• Define class of potential:

2

x ⇤ 1, with hard walls. For continuous potentials v(x),
we can solve the Schrödinger equation numerically with the
lowest N orbitals occupied, finding the KE T (N) and the
electronic density n(x), which is the sum of the squares of
the occupied orbitals. Our aim is to construct a ML-DFA
for the kinetic energy T [n] that bypasses the need to solve
the Schrödinger equation, enabling a 1d analog of orbital-
free DFT. In 1d orbital-free DFT, the local approximation,
as used in Thomas-Fermi theory, is typically accurate to
within 10%, and the addition of the leading gradient cor-
rection reduces the error to about 1%[]. Unfortunately, even
this small an error in the total KE is too large to give accu-
rate chemical properties.

The first step is to choose a representation for the density.
We discretize n(x) on a uniform grid, xj = j/(G � 1),
j = 0, . . . , G � 1, with spacing �x = 1/(G � 1). Next
we specify a class of potentials to generate a dataset from.
We choose a linear combination of 3 Gaussian dips with
di�erent depths, widths, and centers:

v(x) = �
3X

i=1

ai exp(�(x� bi)
2/(2c2i )). (1)

We generate potentials vj(x) for j = 1, . . . , 2000, randomly
sampling ai ⌅ [1, 10], bi ⌅ [0.4, 0.6], and ci ⌅ [0.03, 0.1].
For each potential vj(x), we solve for the KE Tj,N and den-
sity nj,N ⌅ RG on the grid using Numerov’s method, for
N = 1, . . . , 4. For G = 500, the error in Tj,N due to dis-
cretization is less than 1.5⇥10�7, which is too small to limit
the accuracy of the functional. We use samples 1 through
M for training, and designate samples 1001 through 2000
as the test set.

We use kernel ridge regression (KRR) to approximate the
KE functional. KRR is a non-linear version of regression
with regularization to prevent overfitting [10]. In KRR, the
ML-DFA takes the form

T̂ (n) = T̄
MX

j=1

�jk(nj ,n), (2)

where �j are weights to be determined, nj are training den-
sities and k is the kernel, which measures similarity between
densities. Here T̄ =

PM
j=1 Tj/M , arbitrarily chosen as the

KE scale, and Tj is the exact KE of nj . We choose the
Gaussian kernel, used commonly in ML:

k(n,n⇥) = exp(�⇧n� n⇥⇧2/(2⌅2)), (3)

where ⌅ is a hyperparameter called the length scale. The
weights are found by minimizing the cost function

C(↵) =
MX

j=1

�T 2
j + ⇥2⇧↵⇧2, (4)

where �Tj = T̂ (nj) � Tj and ↵ = (�1, . . . ,�M ). The
second term is known as a regularizer, and penalizes large
weights to prevent overfitting. The hyperparameter ⇥ is
called the noise level. Minimizing C(↵) gives

↵ = (K + ⇥2I)�1T, (5)

whereK is the kernel matrix with elementsKij = k(ni,nj),
I is the identity matrix, and T = (T1, . . . , TM ).
The hyperparameters, ⌅ and ⇥, are determined through

cross-validation: The training set is partitioned into 10 bins
of equal size. For each bin, the functional is trained on the
remaining samples and ⌅ and ⇥ are optimized by minimizing
the mean absolute error (MAE) on the bin. The partitioning
is repeated up to 40 times and the hyperparameters are
given by the median over all bins.
Table I gives the performance of the ML-DFA (Eq. 2)

trained on M N -electron densities and evaluated on the
corresponding N -electron test set. The mean KE of the
test set for N = 1 is 5.40 Hartree (3390 kcal/mol). To con-
trast, the LDA in 1d is T loc[n] = ⇤2

R
dxn3(x)/6 and the

von Weizsäcker functional is TW[n] =
R
dxn⇥(x)2/(8n(x)).

For N = 1, the MAE of T loc on the test set is 223
kcal/mol and the modified gradient expansion approxima-
tion[], TMGEA[n] = T loc[n] � c TW[n], has a MAE of 159
kcal/mol, where c = 0.0556 has been chosen to minimize
the error. For the ML-DFA, both the mean and maximum
absolute errors improve asM increases, and improve slightly
as N increases. At M = 80, we have already achieved
“chemical accuracy,” i.e., a MAE below 1 kcal/mol. At
M = 200, even the maximum absolute error on the entire
test set is below this mark. In addition, incorporating dif-
ferent N into the training set has little e�ect on the overall
performance.

N M � ⇥ |�T | |�T |std |�T |max

1

40 2.4� 10�5 238 3.3 3.0 23.

60 1.0� 10�5 95 1.2 1.2 10.

80 6.7� 10�6 48 0.43 0.54 7.1

100 3.4� 10�7 43 0.15 0.24 3.2

150 2.5� 10�7 33 0.060 0.10 1.3

200 1.7� 10�7 28 0.031 0.053 0.65

2 100 1.3� 10�7 52 0.13 0.20 1.8

3 100 2.0� 10�7 74 0.12 0.18 1.8

4 100 1.4� 10�7 73 0.078 0.14 2.3

1-4† 400 1.8� 10�7 47 0.12 0.20 3.6

TABLE I. Dependence of the performance of the ML-DFA on
the number of training densities, M , and electron number,
N . The noise level, �, and the length scale, ⇥, are deter-
mined via cross-validation. The performance is given by the
mean (|�T |), standard deviation (|�T |std), and maximum
(|�T |max) of the absolute errors, in kcal/mol, of the func-
tional evaluated on the test set. †Training set includes nj,N

for j = 1, . . . , 100 and N = 1, . . . , 4.

With such unheard of accuracy, it is tempting to declare
“mission accomplished,” but this would be premature. A
functional that predicts only the energy is useless in prac-
tice, since DFT uses functional derivatives in self-consistent
procedures to find the density within a given approximation.
For non-interacting fermions in a potential v(x), minimizing
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Performance

LDA ~ 223 kcal/mol, Gradient correction ~ 159 kcal/mol

2

x ⇤ 1, with hard walls. For continuous potentials v(x),
we can solve the Schrödinger equation numerically with the
lowest N orbitals occupied, finding the KE T (N) and the
electronic density n(x), which is the sum of the squares of
the occupied orbitals. Our aim is to construct a ML-DFA
for the kinetic energy T [n] that bypasses the need to solve
the Schrödinger equation, enabling a 1d analog of orbital-
free DFT. In 1d orbital-free DFT, the local approximation,
as used in Thomas-Fermi theory, is typically accurate to
within 10%, and the addition of the leading gradient cor-
rection reduces the error to about 1%[]. Unfortunately, even
this small an error in the total KE is too large to give accu-
rate chemical properties.

The first step is to choose a representation for the density.
We discretize n(x) on a uniform grid, xj = j/(G � 1),
j = 0, . . . , G � 1, with spacing �x = 1/(G � 1). Next
we specify a class of potentials to generate a dataset from.
We choose a linear combination of 3 Gaussian dips with
di�erent depths, widths, and centers:

v(x) = �
3X

i=1

ai exp(�(x� bi)
2/(2c2i )). (1)

We generate potentials vj(x) for j = 1, . . . , 2000, randomly
sampling ai ⌅ [1, 10], bi ⌅ [0.4, 0.6], and ci ⌅ [0.03, 0.1].
For each potential vj(x), we solve for the KE Tj,N and den-
sity nj,N ⌅ RG on the grid using Numerov’s method, for
N = 1, . . . , 4. For G = 500, the error in Tj,N due to dis-
cretization is less than 1.5⇥10�7, which is too small to limit
the accuracy of the functional. We use samples 1 through
M for training, and designate samples 1001 through 2000
as the test set.

We use kernel ridge regression (KRR) to approximate the
KE functional. KRR is a non-linear version of regression
with regularization to prevent overfitting [10]. In KRR, the
ML-DFA takes the form

T̂ (n) = T̄
MX

j=1

�jk(nj ,n), (2)

where �j are weights to be determined, nj are training den-
sities and k is the kernel, which measures similarity between
densities. Here T̄ =

PM
j=1 Tj/M , arbitrarily chosen as the

KE scale, and Tj is the exact KE of nj . We choose the
Gaussian kernel, used commonly in ML:

k(n,n⇥) = exp(�⇧n� n⇥⇧2/(2⌅2)), (3)

where ⌅ is a hyperparameter called the length scale. The
weights are found by minimizing the cost function

C(↵) =
MX

j=1

�T 2
j + ⇥2⇧↵⇧2, (4)

where �Tj = T̂ (nj) � Tj and ↵ = (�1, . . . ,�M ). The
second term is known as a regularizer, and penalizes large
weights to prevent overfitting. The hyperparameter ⇥ is
called the noise level. Minimizing C(↵) gives

↵ = (K + ⇥2I)�1T, (5)

whereK is the kernel matrix with elementsKij = k(ni,nj),
I is the identity matrix, and T = (T1, . . . , TM ).
The hyperparameters, ⌅ and ⇥, are determined through

cross-validation: The training set is partitioned into 10 bins
of equal size. For each bin, the functional is trained on the
remaining samples and ⌅ and ⇥ are optimized by minimizing
the mean absolute error (MAE) on the bin. The partitioning
is repeated up to 40 times and the hyperparameters are
given by the median over all bins.
Table I gives the performance of the ML-DFA (Eq. 2)

trained on M N -electron densities and evaluated on the
corresponding N -electron test set. The mean KE of the
test set for N = 1 is 5.40 Hartree (3390 kcal/mol). To con-
trast, the LDA in 1d is T loc[n] = ⇤2

R
dxn3(x)/6 and the

von Weizsäcker functional is TW[n] =
R
dxn⇥(x)2/(8n(x)).

For N = 1, the MAE of T loc on the test set is 223
kcal/mol and the modified gradient expansion approxima-
tion[], TMGEA[n] = T loc[n] � c TW[n], has a MAE of 159
kcal/mol, where c = 0.0556 has been chosen to minimize
the error. For the ML-DFA, both the mean and maximum
absolute errors improve asM increases, and improve slightly
as N increases. At M = 80, we have already achieved
“chemical accuracy,” i.e., a MAE below 1 kcal/mol. At
M = 200, even the maximum absolute error on the entire
test set is below this mark. In addition, incorporating dif-
ferent N into the training set has little e�ect on the overall
performance.

N M � ⇥ |�T | |�T |std |�T |max

1

40 2.4� 10�5 238 3.3 3.0 23.

60 1.0� 10�5 95 1.2 1.2 10.

80 6.7� 10�6 48 0.43 0.54 7.1

100 3.4� 10�7 43 0.15 0.24 3.2

150 2.5� 10�7 33 0.060 0.10 1.3

200 1.7� 10�7 28 0.031 0.053 0.65

2 100 1.3� 10�7 52 0.13 0.20 1.8

3 100 2.0� 10�7 74 0.12 0.18 1.8

4 100 1.4� 10�7 73 0.078 0.14 2.3

1-4† 400 1.8� 10�7 47 0.12 0.20 3.6

TABLE I. Dependence of the performance of the ML-DFA on
the number of training densities, M , and electron number,
N . The noise level, �, and the length scale, ⇥, are deter-
mined via cross-validation. The performance is given by the
mean (|�T |), standard deviation (|�T |std), and maximum
(|�T |max) of the absolute errors, in kcal/mol, of the func-
tional evaluated on the test set. †Training set includes nj,N

for j = 1, . . . , 100 and N = 1, . . . , 4.

With such unheard of accuracy, it is tempting to declare
“mission accomplished,” but this would be premature. A
functional that predicts only the energy is useless in prac-
tice, since DFT uses functional derivatives in self-consistent
procedures to find the density within a given approximation.
For non-interacting fermions in a potential v(x), minimizing
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functional derivative? 

Functional derivative 3

the total energy gives

⇥T [n]

⇥n(x)
= µ� v(x), (6)

which can be used to find the ground-state density within a
given approximation for T [n], while µ is adjusted to produce
the required particle number. The (discretized) functional
derivative of the ML-DFA is given by

1

�x
⌅nT̂ (n) =

M�

j=1

�⇥
j(nj � n)k(nj ,n) (7)

where �⇥
j = �j/(⇧2�x). In Fig. 2, we compare the func-

tional derivative of the ML-DFA with the exact derivative
for a sample density. If it captures any information about
the derivative, it is drowned out by oscillations. This is typ-
ical of the ML-DFA’s performance on the test set, and does
not improve with increasing M .
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FIG. 2. We compare the functional derivative of the ML-
DFA, evaluated on a sample test density with N = 1, M =
100, � = 3.4 � 10�7 and ⇥ = 43, with the exact functional
derivative.

To identify the origin of this behavior, we apply a standard
ML tool: principal component analysis (PCA). The space of
all densities is contained in RG, but we assume only a few
directions in this space are relevant. For a given density n,
find m training densities (nj1 , . . . ,njm) which are closest
to n. Construct the covariance matrix of directions from n
to each training density

C =
1

m
X⇤X, (8)

where X = (nj1 � n, . . . ,njm � n)⇤. Diagonalizing
C ⇤ RG�G gives eigenvalues ⌅j and eigenvectors xj ordered
such that ⌅j ⇥ ⌅j+1. The xj with larger ⌅j are directions
showing substantial variation in the dataset. Those with ⌅j

below some cuto� are irrelevant (see supplemental mate-
rial). In these extraneous dimensions, there is infinitesimal
variation within the dataset, producing noise in the func-
tional derivative. By projecting the functional derivative

onto the subspace spanned by the relevant dimensions, we
can eliminate this noise. This projection is given by

Pm,�(n) = V ⇤V, (9)

where V = (x1, . . . ,x�)⇤ and ⌃ is the number of relevant
eigenvectors. In Fig 1, the projected functional derivatives
show near exact agreement, for m = 15 and ⌃ = 5.
The final test of the ML-DFA is to produce a density that

minimizes the total energy and check its error. Typically, we
expect the error to be larger than that of the functional eval-
uated on the exact density. For example, T loc on particles
in 1d flat boxes always gives a ratio of 4. (Although, for
a parabolic potential, T loc on the minimizing density is ex-
act). To find a minimizing density for a given potential,
we perform a gradient descent search restricted to the local
PCA subspace: Starting from a guess n(0), take a small step
the opposite direction of the projected functional derivative
of the total energy for each iteration:

n(j+1) = n(j) � ⇤Pm,�(n
(j))(v+⌅nT̂ (n

(j))/�x), (10)

where n(j+1) is the next density, ⇤ is a small number and
v is the discretized potential. The search is unstable for
large ⌃, inaccurate for small ⌃ but relatively insensitive to
m. A coarse optimization yields m = 15 and ⌃ = 5 (see
supplemental material).

JS: should I add a fig with sample self-consistent vs exact densities? puts us

over 4 pgs... could put in supplemental material

The overall performance of the ML-DFA in finding self-
consistent densities is given in Table II. The MAE is an order
of magnitude larger than that of the ML-DFA on the exact
densities—a bit worse than T loc. We do not find a unique
density, but instead a set of similar densities depending on
the initial guess. In addition, the density with lowest to-
tal energy does not have the smallest error. Although the
search does not produce a unique minimum, it produces a
range of similar but valid approximate densities, each with
a small error. Even with an order of magnitude larger error,
we can still reach chemical accuracy, now on self-consistent
densities. No previous approximate KE DFA comes close to
this performance.

N |�T sc| |�T sc|std |�T sc|max |�T sc|/|�T |

1 3.0 5.3 46. 21.

2 1.4 3.0 37. 9.7

3 0.88 1.5 14. 6.8

4 0.62 0.82 6.3 8.1

TABLE II. Errors in the KE of self-consistent densities. We
report the mean (|�T |), standard deviation (|�T |std), and
maximum (|�T |max) of the absolute errors, in kcal/mol, of the
ML-DFA evaluated on self-consistent densities for 500 mini-
mizations (see Eq. 10) with randomly chosen potentials and
initial guesses within the test set. The last column is the ratio
of the MAE on the self-consistent densities to the MAE on
the exact densities. The functional is trained with M = 100,
and parameters � and ⇥ as in Table I.
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the total energy gives

⇥T [n]

⇥n(x)
= µ� v(x), (6)

which can be used to find the ground-state density within a
given approximation for T [n], while µ is adjusted to produce
the required particle number. The (discretized) functional
derivative of the ML-DFA is given by
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where �⇥
j = �j/(⇧2�x). In Fig. 2, we compare the func-

tional derivative of the ML-DFA with the exact derivative
for a sample density. If it captures any information about
the derivative, it is drowned out by oscillations. This is typ-
ical of the ML-DFA’s performance on the test set, and does
not improve with increasing M .
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FIG. 2. We compare the functional derivative of the ML-
DFA, evaluated on a sample test density with N = 1, M =
100, � = 3.4 � 10�7 and ⇥ = 43, with the exact functional
derivative.

To identify the origin of this behavior, we apply a standard
ML tool: principal component analysis (PCA). The space of
all densities is contained in RG, but we assume only a few
directions in this space are relevant. For a given density n,
find m training densities (nj1 , . . . ,njm) which are closest
to n. Construct the covariance matrix of directions from n
to each training density

C =
1

m
X⇤X, (8)

where X = (nj1 � n, . . . ,njm � n)⇤. Diagonalizing
C ⇤ RG�G gives eigenvalues ⌅j and eigenvectors xj ordered
such that ⌅j ⇥ ⌅j+1. The xj with larger ⌅j are directions
showing substantial variation in the dataset. Those with ⌅j

below some cuto� are irrelevant (see supplemental mate-
rial). In these extraneous dimensions, there is infinitesimal
variation within the dataset, producing noise in the func-
tional derivative. By projecting the functional derivative

onto the subspace spanned by the relevant dimensions, we
can eliminate this noise. This projection is given by

Pm,�(n) = V ⇤V, (9)

where V = (x1, . . . ,x�)⇤ and ⌃ is the number of relevant
eigenvectors. In Fig 1, the projected functional derivatives
show near exact agreement, for m = 15 and ⌃ = 5.
The final test of the ML-DFA is to produce a density that

minimizes the total energy and check its error. Typically, we
expect the error to be larger than that of the functional eval-
uated on the exact density. For example, T loc on particles
in 1d flat boxes always gives a ratio of 4. (Although, for
a parabolic potential, T loc on the minimizing density is ex-
act). To find a minimizing density for a given potential,
we perform a gradient descent search restricted to the local
PCA subspace: Starting from a guess n(0), take a small step
the opposite direction of the projected functional derivative
of the total energy for each iteration:

n(j+1) = n(j) � ⇤Pm,�(n
(j))(v+⌅nT̂ (n

(j))/�x), (10)

where n(j+1) is the next density, ⇤ is a small number and
v is the discretized potential. The search is unstable for
large ⌃, inaccurate for small ⌃ but relatively insensitive to
m. A coarse optimization yields m = 15 and ⌃ = 5 (see
supplemental material).

JS: should I add a fig with sample self-consistent vs exact densities? puts us

over 4 pgs... could put in supplemental material

The overall performance of the ML-DFA in finding self-
consistent densities is given in Table II. The MAE is an order
of magnitude larger than that of the ML-DFA on the exact
densities—a bit worse than T loc. We do not find a unique
density, but instead a set of similar densities depending on
the initial guess. In addition, the density with lowest to-
tal energy does not have the smallest error. Although the
search does not produce a unique minimum, it produces a
range of similar but valid approximate densities, each with
a small error. Even with an order of magnitude larger error,
we can still reach chemical accuracy, now on self-consistent
densities. No previous approximate KE DFA comes close to
this performance.

N |�T sc| |�T sc|std |�T sc|max |�T sc|/|�T |

1 3.0 5.3 46. 21.

2 1.4 3.0 37. 9.7

3 0.88 1.5 14. 6.8

4 0.62 0.82 6.3 8.1

TABLE II. Errors in the KE of self-consistent densities. We
report the mean (|�T |), standard deviation (|�T |std), and
maximum (|�T |max) of the absolute errors, in kcal/mol, of the
ML-DFA evaluated on self-consistent densities for 500 mini-
mizations (see Eq. 10) with randomly chosen potentials and
initial guesses within the test set. The last column is the ratio
of the MAE on the self-consistent densities to the MAE on
the exact densities. The functional is trained with M = 100,
and parameters � and ⇥ as in Table I.
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the total energy gives

⇥T [n]

⇥n(x)
= µ� v(x), (6)

which can be used to find the ground-state density within a
given approximation for T [n], while µ is adjusted to produce
the required particle number. The (discretized) functional
derivative of the ML-DFA is given by

1
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where �⇥
j = �j/(⇧2�x). In Fig. 2, we compare the func-

tional derivative of the ML-DFA with the exact derivative
for a sample density. If it captures any information about
the derivative, it is drowned out by oscillations. This is typ-
ical of the ML-DFA’s performance on the test set, and does
not improve with increasing M .
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FIG. 2. We compare the functional derivative of the ML-
DFA, evaluated on a sample test density with N = 1, M =
100, � = 3.4 � 10�7 and ⇥ = 43, with the exact functional
derivative.

To identify the origin of this behavior, we apply a standard
ML tool: principal component analysis (PCA). The space of
all densities is contained in RG, but we assume only a few
directions in this space are relevant. For a given density n,
find m training densities (nj1 , . . . ,njm) which are closest
to n. Construct the covariance matrix of directions from n
to each training density

C =
1

m
X⇤X, (8)

where X = (nj1 � n, . . . ,njm � n)⇤. Diagonalizing
C ⇤ RG�G gives eigenvalues ⌅j and eigenvectors xj ordered
such that ⌅j ⇥ ⌅j+1. The xj with larger ⌅j are directions
showing substantial variation in the dataset. Those with ⌅j

below some cuto� are irrelevant (see supplemental mate-
rial). In these extraneous dimensions, there is infinitesimal
variation within the dataset, producing noise in the func-
tional derivative. By projecting the functional derivative

onto the subspace spanned by the relevant dimensions, we
can eliminate this noise. This projection is given by

Pm,�(n) = V ⇤V, (9)

where V = (x1, . . . ,x�)⇤ and ⌃ is the number of relevant
eigenvectors. In Fig 1, the projected functional derivatives
show near exact agreement, for m = 15 and ⌃ = 5.
The final test of the ML-DFA is to produce a density that

minimizes the total energy and check its error. Typically, we
expect the error to be larger than that of the functional eval-
uated on the exact density. For example, T loc on particles
in 1d flat boxes always gives a ratio of 4. (Although, for
a parabolic potential, T loc on the minimizing density is ex-
act). To find a minimizing density for a given potential,
we perform a gradient descent search restricted to the local
PCA subspace: Starting from a guess n(0), take a small step
the opposite direction of the projected functional derivative
of the total energy for each iteration:

n(j+1) = n(j) � ⇤Pm,�(n
(j))(v+⌅nT̂ (n

(j))/�x), (10)

where n(j+1) is the next density, ⇤ is a small number and
v is the discretized potential. The search is unstable for
large ⌃, inaccurate for small ⌃ but relatively insensitive to
m. A coarse optimization yields m = 15 and ⌃ = 5 (see
supplemental material).
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The overall performance of the ML-DFA in finding self-
consistent densities is given in Table II. The MAE is an order
of magnitude larger than that of the ML-DFA on the exact
densities—a bit worse than T loc. We do not find a unique
density, but instead a set of similar densities depending on
the initial guess. In addition, the density with lowest to-
tal energy does not have the smallest error. Although the
search does not produce a unique minimum, it produces a
range of similar but valid approximate densities, each with
a small error. Even with an order of magnitude larger error,
we can still reach chemical accuracy, now on self-consistent
densities. No previous approximate KE DFA comes close to
this performance.

N |�T sc| |�T sc|std |�T sc|max |�T sc|/|�T |

1 3.0 5.3 46. 21.

2 1.4 3.0 37. 9.7

3 0.88 1.5 14. 6.8

4 0.62 0.82 6.3 8.1

TABLE II. Errors in the KE of self-consistent densities. We
report the mean (|�T |), standard deviation (|�T |std), and
maximum (|�T |max) of the absolute errors, in kcal/mol, of the
ML-DFA evaluated on self-consistent densities for 500 mini-
mizations (see Eq. 10) with randomly chosen potentials and
initial guesses within the test set. The last column is the ratio
of the MAE on the self-consistent densities to the MAE on
the exact densities. The functional is trained with M = 100,
and parameters � and ⇥ as in Table I.
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the total energy gives

⇥T [n]

⇥n(x)
= µ� v(x), (6)

which can be used to find the ground-state density within a
given approximation for T [n], while µ is adjusted to produce
the required particle number. The (discretized) functional
derivative of the ML-DFA is given by

1

�x
⌅nT̂ (n) =

M�

j=1

�⇥
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where �⇥
j = �j/(⇧2�x). In Fig. 2, we compare the func-

tional derivative of the ML-DFA with the exact derivative
for a sample density. If it captures any information about
the derivative, it is drowned out by oscillations. This is typ-
ical of the ML-DFA’s performance on the test set, and does
not improve with increasing M .
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FIG. 2. We compare the functional derivative of the ML-
DFA, evaluated on a sample test density with N = 1, M =
100, � = 3.4 � 10�7 and ⇥ = 43, with the exact functional
derivative.

To identify the origin of this behavior, we apply a standard
ML tool: principal component analysis (PCA). The space of
all densities is contained in RG, but we assume only a few
directions in this space are relevant. For a given density n,
find m training densities (nj1 , . . . ,njm) which are closest
to n. Construct the covariance matrix of directions from n
to each training density

C =
1

m
X⇤X, (8)

where X = (nj1 � n, . . . ,njm � n)⇤. Diagonalizing
C ⇤ RG�G gives eigenvalues ⌅j and eigenvectors xj ordered
such that ⌅j ⇥ ⌅j+1. The xj with larger ⌅j are directions
showing substantial variation in the dataset. Those with ⌅j

below some cuto� are irrelevant (see supplemental mate-
rial). In these extraneous dimensions, there is infinitesimal
variation within the dataset, producing noise in the func-
tional derivative. By projecting the functional derivative

onto the subspace spanned by the relevant dimensions, we
can eliminate this noise. This projection is given by

Pm,�(n) = V ⇤V, (9)

where V = (x1, . . . ,x�)⇤ and ⌃ is the number of relevant
eigenvectors. In Fig 1, the projected functional derivatives
show near exact agreement, for m = 15 and ⌃ = 5.
The final test of the ML-DFA is to produce a density that

minimizes the total energy and check its error. Typically, we
expect the error to be larger than that of the functional eval-
uated on the exact density. For example, T loc on particles
in 1d flat boxes always gives a ratio of 4. (Although, for
a parabolic potential, T loc on the minimizing density is ex-
act). To find a minimizing density for a given potential,
we perform a gradient descent search restricted to the local
PCA subspace: Starting from a guess n(0), take a small step
the opposite direction of the projected functional derivative
of the total energy for each iteration:

n(j+1) = n(j) � ⇤Pm,�(n
(j))(v+⌅nT̂ (n

(j))/�x), (10)

where n(j+1) is the next density, ⇤ is a small number and
v is the discretized potential. The search is unstable for
large ⌃, inaccurate for small ⌃ but relatively insensitive to
m. A coarse optimization yields m = 15 and ⌃ = 5 (see
supplemental material).
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The overall performance of the ML-DFA in finding self-
consistent densities is given in Table II. The MAE is an order
of magnitude larger than that of the ML-DFA on the exact
densities—a bit worse than T loc. We do not find a unique
density, but instead a set of similar densities depending on
the initial guess. In addition, the density with lowest to-
tal energy does not have the smallest error. Although the
search does not produce a unique minimum, it produces a
range of similar but valid approximate densities, each with
a small error. Even with an order of magnitude larger error,
we can still reach chemical accuracy, now on self-consistent
densities. No previous approximate KE DFA comes close to
this performance.

N |�T sc| |�T sc|std |�T sc|max |�T sc|/|�T |

1 3.0 5.3 46. 21.

2 1.4 3.0 37. 9.7

3 0.88 1.5 14. 6.8

4 0.62 0.82 6.3 8.1

TABLE II. Errors in the KE of self-consistent densities. We
report the mean (|�T |), standard deviation (|�T |std), and
maximum (|�T |max) of the absolute errors, in kcal/mol, of the
ML-DFA evaluated on self-consistent densities for 500 mini-
mizations (see Eq. 10) with randomly chosen potentials and
initial guesses within the test set. The last column is the ratio
of the MAE on the self-consistent densities to the MAE on
the exact densities. The functional is trained with M = 100,
and parameters � and ⇥ as in Table I.
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the total energy gives

⇥T [n]

⇥n(x)
= µ� v(x), (6)

which can be used to find the ground-state density within a
given approximation for T [n], while µ is adjusted to produce
the required particle number. The (discretized) functional
derivative of the ML-DFA is given by

1
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⌅nT̂ (n) =

M�

j=1
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j(nj � n)k(nj ,n) (7)

where �⇥
j = �j/(⇧2�x). In Fig. 2, we compare the func-

tional derivative of the ML-DFA with the exact derivative
for a sample density. If it captures any information about
the derivative, it is drowned out by oscillations. This is typ-
ical of the ML-DFA’s performance on the test set, and does
not improve with increasing M .
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FIG. 2. We compare the functional derivative of the ML-
DFA, evaluated on a sample test density with N = 1, M =
100, � = 3.4 � 10�7 and ⇥ = 43, with the exact functional
derivative.

To identify the origin of this behavior, we apply a standard
ML tool: principal component analysis (PCA). The space of
all densities is contained in RG, but we assume only a few
directions in this space are relevant. For a given density n,
find m training densities (nj1 , . . . ,njm) which are closest
to n. Construct the covariance matrix of directions from n
to each training density

C =
1

m
X⇤X, (8)

where X = (nj1 � n, . . . ,njm � n)⇤. Diagonalizing
C ⇤ RG�G gives eigenvalues ⌅j and eigenvectors xj ordered
such that ⌅j ⇥ ⌅j+1. The xj with larger ⌅j are directions
showing substantial variation in the dataset. Those with ⌅j

below some cuto� are irrelevant (see supplemental mate-
rial). In these extraneous dimensions, there is infinitesimal
variation within the dataset, producing noise in the func-
tional derivative. By projecting the functional derivative

onto the subspace spanned by the relevant dimensions, we
can eliminate this noise. This projection is given by

Pm,�(n) = V ⇤V, (9)

where V = (x1, . . . ,x�)⇤ and ⌃ is the number of relevant
eigenvectors. In Fig 1, the projected functional derivatives
show near exact agreement, for m = 15 and ⌃ = 5.
The final test of the ML-DFA is to produce a density that

minimizes the total energy and check its error. Typically, we
expect the error to be larger than that of the functional eval-
uated on the exact density. For example, T loc on particles
in 1d flat boxes always gives a ratio of 4. (Although, for
a parabolic potential, T loc on the minimizing density is ex-
act). To find a minimizing density for a given potential,
we perform a gradient descent search restricted to the local
PCA subspace: Starting from a guess n(0), take a small step
the opposite direction of the projected functional derivative
of the total energy for each iteration:

n(j+1) = n(j) � ⇤Pm,�(n
(j))(v+⌅nT̂ (n

(j))/�x), (10)

where n(j+1) is the next density, ⇤ is a small number and
v is the discretized potential. The search is unstable for
large ⌃, inaccurate for small ⌃ but relatively insensitive to
m. A coarse optimization yields m = 15 and ⌃ = 5 (see
supplemental material).
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The overall performance of the ML-DFA in finding self-
consistent densities is given in Table II. The MAE is an order
of magnitude larger than that of the ML-DFA on the exact
densities—a bit worse than T loc. We do not find a unique
density, but instead a set of similar densities depending on
the initial guess. In addition, the density with lowest to-
tal energy does not have the smallest error. Although the
search does not produce a unique minimum, it produces a
range of similar but valid approximate densities, each with
a small error. Even with an order of magnitude larger error,
we can still reach chemical accuracy, now on self-consistent
densities. No previous approximate KE DFA comes close to
this performance.

N |�T sc| |�T sc|std |�T sc|max |�T sc|/|�T |

1 3.0 5.3 46. 21.

2 1.4 3.0 37. 9.7

3 0.88 1.5 14. 6.8

4 0.62 0.82 6.3 8.1

TABLE II. Errors in the KE of self-consistent densities. We
report the mean (|�T |), standard deviation (|�T |std), and
maximum (|�T |max) of the absolute errors, in kcal/mol, of the
ML-DFA evaluated on self-consistent densities for 500 mini-
mizations (see Eq. 10) with randomly chosen potentials and
initial guesses within the test set. The last column is the ratio
of the MAE on the self-consistent densities to the MAE on
the exact densities. The functional is trained with M = 100,
and parameters � and ⇥ as in Table I.
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the total energy gives

⇥T [n]

⇥n(x)
= µ� v(x), (6)

which can be used to find the ground-state density within a
given approximation for T [n], while µ is adjusted to produce
the required particle number. The (discretized) functional
derivative of the ML-DFA is given by
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where �⇥
j = �j/(⇧2�x). In Fig. 2, we compare the func-

tional derivative of the ML-DFA with the exact derivative
for a sample density. If it captures any information about
the derivative, it is drowned out by oscillations. This is typ-
ical of the ML-DFA’s performance on the test set, and does
not improve with increasing M .
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FIG. 2. We compare the functional derivative of the ML-
DFA, evaluated on a sample test density with N = 1, M =
100, � = 3.4 � 10�7 and ⇥ = 43, with the exact functional
derivative.

To identify the origin of this behavior, we apply a standard
ML tool: principal component analysis (PCA). The space of
all densities is contained in RG, but we assume only a few
directions in this space are relevant. For a given density n,
find m training densities (nj1 , . . . ,njm) which are closest
to n. Construct the covariance matrix of directions from n
to each training density

C =
1

m
X⇤X, (8)

where X = (nj1 � n, . . . ,njm � n)⇤. Diagonalizing
C ⇤ RG�G gives eigenvalues ⌅j and eigenvectors xj ordered
such that ⌅j ⇥ ⌅j+1. The xj with larger ⌅j are directions
showing substantial variation in the dataset. Those with ⌅j

below some cuto� are irrelevant (see supplemental mate-
rial). In these extraneous dimensions, there is infinitesimal
variation within the dataset, producing noise in the func-
tional derivative. By projecting the functional derivative

onto the subspace spanned by the relevant dimensions, we
can eliminate this noise. This projection is given by

Pm,�(n) = V ⇤V, (9)

where V = (x1, . . . ,x�)⇤ and ⌃ is the number of relevant
eigenvectors. In Fig 1, the projected functional derivatives
show near exact agreement, for m = 15 and ⌃ = 5.
The final test of the ML-DFA is to produce a density that

minimizes the total energy and check its error. Typically, we
expect the error to be larger than that of the functional eval-
uated on the exact density. For example, T loc on particles
in 1d flat boxes always gives a ratio of 4. (Although, for
a parabolic potential, T loc on the minimizing density is ex-
act). To find a minimizing density for a given potential,
we perform a gradient descent search restricted to the local
PCA subspace: Starting from a guess n(0), take a small step
the opposite direction of the projected functional derivative
of the total energy for each iteration:

n(j+1) = n(j) � ⇤Pm,�(n
(j))(v+⌅nT̂ (n

(j))/�x), (10)

where n(j+1) is the next density, ⇤ is a small number and
v is the discretized potential. The search is unstable for
large ⌃, inaccurate for small ⌃ but relatively insensitive to
m. A coarse optimization yields m = 15 and ⌃ = 5 (see
supplemental material).
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The overall performance of the ML-DFA in finding self-
consistent densities is given in Table II. The MAE is an order
of magnitude larger than that of the ML-DFA on the exact
densities—a bit worse than T loc. We do not find a unique
density, but instead a set of similar densities depending on
the initial guess. In addition, the density with lowest to-
tal energy does not have the smallest error. Although the
search does not produce a unique minimum, it produces a
range of similar but valid approximate densities, each with
a small error. Even with an order of magnitude larger error,
we can still reach chemical accuracy, now on self-consistent
densities. No previous approximate KE DFA comes close to
this performance.

N |�T sc| |�T sc|std |�T sc|max |�T sc|/|�T |

1 3.0 5.3 46. 21.

2 1.4 3.0 37. 9.7

3 0.88 1.5 14. 6.8

4 0.62 0.82 6.3 8.1

TABLE II. Errors in the KE of self-consistent densities. We
report the mean (|�T |), standard deviation (|�T |std), and
maximum (|�T |max) of the absolute errors, in kcal/mol, of the
ML-DFA evaluated on self-consistent densities for 500 mini-
mizations (see Eq. 10) with randomly chosen potentials and
initial guesses within the test set. The last column is the ratio
of the MAE on the self-consistent densities to the MAE on
the exact densities. The functional is trained with M = 100,
and parameters � and ⇥ as in Table I.
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which can be used to find the ground-state density within a
given approximation for T [n], while µ is adjusted to produce
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for a sample density. If it captures any information about
the derivative, it is drowned out by oscillations. This is typ-
ical of the ML-DFA’s performance on the test set, and does
not improve with increasing M .
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FIG. 2. We compare the functional derivative of the ML-
DFA, evaluated on a sample test density with N = 1, M =
100, � = 3.4 � 10�7 and ⇥ = 43, with the exact functional
derivative.

To identify the origin of this behavior, we apply a standard
ML tool: principal component analysis (PCA). The space of
all densities is contained in RG, but we assume only a few
directions in this space are relevant. For a given density n,
find m training densities (nj1 , . . . ,njm) which are closest
to n. Construct the covariance matrix of directions from n
to each training density

C =
1

m
X⇤X, (8)

where X = (nj1 � n, . . . ,njm � n)⇤. Diagonalizing
C ⇤ RG�G gives eigenvalues ⌅j and eigenvectors xj ordered
such that ⌅j ⇥ ⌅j+1. The xj with larger ⌅j are directions
showing substantial variation in the dataset. Those with ⌅j

below some cuto� are irrelevant (see supplemental mate-
rial). In these extraneous dimensions, there is infinitesimal
variation within the dataset, producing noise in the func-
tional derivative. By projecting the functional derivative

onto the subspace spanned by the relevant dimensions, we
can eliminate this noise. This projection is given by

Pm,�(n) = V ⇤V, (9)

where V = (x1, . . . ,x�)⇤ and ⌃ is the number of relevant
eigenvectors. In Fig 1, the projected functional derivatives
show near exact agreement, for m = 15 and ⌃ = 5.
The final test of the ML-DFA is to produce a density that

minimizes the total energy and check its error. Typically, we
expect the error to be larger than that of the functional eval-
uated on the exact density. For example, T loc on particles
in 1d flat boxes always gives a ratio of 4. (Although, for
a parabolic potential, T loc on the minimizing density is ex-
act). To find a minimizing density for a given potential,
we perform a gradient descent search restricted to the local
PCA subspace: Starting from a guess n(0), take a small step
the opposite direction of the projected functional derivative
of the total energy for each iteration:

n(j+1) = n(j) � ⇤Pm,�(n
(j))(v+⌅nT̂ (n

(j))/�x), (10)

where n(j+1) is the next density, ⇤ is a small number and
v is the discretized potential. The search is unstable for
large ⌃, inaccurate for small ⌃ but relatively insensitive to
m. A coarse optimization yields m = 15 and ⌃ = 5 (see
supplemental material).
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The overall performance of the ML-DFA in finding self-
consistent densities is given in Table II. The MAE is an order
of magnitude larger than that of the ML-DFA on the exact
densities—a bit worse than T loc. We do not find a unique
density, but instead a set of similar densities depending on
the initial guess. In addition, the density with lowest to-
tal energy does not have the smallest error. Although the
search does not produce a unique minimum, it produces a
range of similar but valid approximate densities, each with
a small error. Even with an order of magnitude larger error,
we can still reach chemical accuracy, now on self-consistent
densities. No previous approximate KE DFA comes close to
this performance.

N |�T sc| |�T sc|std |�T sc|max |�T sc|/|�T |

1 3.0 5.3 46. 21.

2 1.4 3.0 37. 9.7

3 0.88 1.5 14. 6.8

4 0.62 0.82 6.3 8.1

TABLE II. Errors in the KE of self-consistent densities. We
report the mean (|�T |), standard deviation (|�T |std), and
maximum (|�T |max) of the absolute errors, in kcal/mol, of the
ML-DFA evaluated on self-consistent densities for 500 mini-
mizations (see Eq. 10) with randomly chosen potentials and
initial guesses within the test set. The last column is the ratio
of the MAE on the self-consistent densities to the MAE on
the exact densities. The functional is trained with M = 100,
and parameters � and ⇥ as in Table I.
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= µ� v(x), (6)

which can be used to find the ground-state density within a
given approximation for T [n], while µ is adjusted to produce
the required particle number. The (discretized) functional
derivative of the ML-DFA is given by
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for a sample density. If it captures any information about
the derivative, it is drowned out by oscillations. This is typ-
ical of the ML-DFA’s performance on the test set, and does
not improve with increasing M .
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FIG. 2. We compare the functional derivative of the ML-
DFA, evaluated on a sample test density with N = 1, M =
100, � = 3.4 � 10�7 and ⇥ = 43, with the exact functional
derivative.

To identify the origin of this behavior, we apply a standard
ML tool: principal component analysis (PCA). The space of
all densities is contained in RG, but we assume only a few
directions in this space are relevant. For a given density n,
find m training densities (nj1 , . . . ,njm) which are closest
to n. Construct the covariance matrix of directions from n
to each training density

C =
1

m
X⇤X, (8)

where X = (nj1 � n, . . . ,njm � n)⇤. Diagonalizing
C ⇤ RG�G gives eigenvalues ⌅j and eigenvectors xj ordered
such that ⌅j ⇥ ⌅j+1. The xj with larger ⌅j are directions
showing substantial variation in the dataset. Those with ⌅j

below some cuto� are irrelevant (see supplemental mate-
rial). In these extraneous dimensions, there is infinitesimal
variation within the dataset, producing noise in the func-
tional derivative. By projecting the functional derivative

onto the subspace spanned by the relevant dimensions, we
can eliminate this noise. This projection is given by

Pm,�(n) = V ⇤V, (9)

where V = (x1, . . . ,x�)⇤ and ⌃ is the number of relevant
eigenvectors. In Fig 1, the projected functional derivatives
show near exact agreement, for m = 15 and ⌃ = 5.
The final test of the ML-DFA is to produce a density that

minimizes the total energy and check its error. Typically, we
expect the error to be larger than that of the functional eval-
uated on the exact density. For example, T loc on particles
in 1d flat boxes always gives a ratio of 4. (Although, for
a parabolic potential, T loc on the minimizing density is ex-
act). To find a minimizing density for a given potential,
we perform a gradient descent search restricted to the local
PCA subspace: Starting from a guess n(0), take a small step
the opposite direction of the projected functional derivative
of the total energy for each iteration:

n(j+1) = n(j) � ⇤Pm,�(n
(j))(v+⌅nT̂ (n

(j))/�x), (10)

where n(j+1) is the next density, ⇤ is a small number and
v is the discretized potential. The search is unstable for
large ⌃, inaccurate for small ⌃ but relatively insensitive to
m. A coarse optimization yields m = 15 and ⌃ = 5 (see
supplemental material).
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The overall performance of the ML-DFA in finding self-
consistent densities is given in Table II. The MAE is an order
of magnitude larger than that of the ML-DFA on the exact
densities—a bit worse than T loc. We do not find a unique
density, but instead a set of similar densities depending on
the initial guess. In addition, the density with lowest to-
tal energy does not have the smallest error. Although the
search does not produce a unique minimum, it produces a
range of similar but valid approximate densities, each with
a small error. Even with an order of magnitude larger error,
we can still reach chemical accuracy, now on self-consistent
densities. No previous approximate KE DFA comes close to
this performance.

N |�T sc| |�T sc|std |�T sc|max |�T sc|/|�T |

1 3.0 5.3 46. 21.

2 1.4 3.0 37. 9.7

3 0.88 1.5 14. 6.8

4 0.62 0.82 6.3 8.1

TABLE II. Errors in the KE of self-consistent densities. We
report the mean (|�T |), standard deviation (|�T |std), and
maximum (|�T |max) of the absolute errors, in kcal/mol, of the
ML-DFA evaluated on self-consistent densities for 500 mini-
mizations (see Eq. 10) with randomly chosen potentials and
initial guesses within the test set. The last column is the ratio
of the MAE on the self-consistent densities to the MAE on
the exact densities. The functional is trained with M = 100,
and parameters � and ⇥ as in Table I.
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Using standard methods from machine learning, we introduce a novel technique for density functional
approximation. We use kernel ridge regression with a Gaussian kernel to approximate the non-interacting
kinetic energy of 1d multi-electron systems. With fewer than 100 training densities, we can achieve
mean absolute errors of less than 1 kcal/mol on new densities. We determine densities for which our
new functional will fail or perform well. Finally, we use principle component analysis to extract accurate
functional derivatives from our functional, enabling an orbital-free minimization of the total energy to
find a self-consistent density. This empirical method has two parameters, set via cross-validation, and
requires no human intuition. In principle, this general technique can be extended to multi-dimensional
systems, and be used to approximate exchange-correlation density functionals.

More than 10,000 papers per year report solutions to
electronic structure problems using Kohn-Sham (KS) den-
sity functional theory (DFT) [1, 2], all approximating the
exchange-correlation (XC) energy as a functional of the elec-
tronic spin densities. The quality of the results depends
crucially on these density functional approximations (DFAs)
[]. Present DFAs often fail for strongly correlated systems[],
rendering the methodology useless for some of the most
interesting problems.

There is a never-ending search for improved XC approxi-
mations. The original local density approximation (LDA) of
Kohn and Sham [2] is uniquely defined by the properties of
the uniform gas, and has been argued to be a universal limit
of all systems [3, 4]. But the refinements that have proved
useful in chemistry and materials are not, and di�er both in
their derivations and details. Traditionally, physicists have
championed a non-empirical approach, deriving approxima-
tions from quantum mechanics and avoiding fitting to spe-
cific finite systems[]. But chemists typically use a few [5, 6]
or several dozen [7] parameters to improve accuracy on a
limited class of molecules. Non-empirical functionals can be
considered controlled extrapolations that work well across a
broad range of systems and properties, bridging the divide
between molecules and solids. Empirical functionals are lim-
ited interpolations that are more accurate for the molecular
systems they are fitted to, but often fail for solids. A re-
cent example is the van der Waals functional of Langreth
and Lundquist [8], and an empirical derivative for which no
derivation was deemed necessary[]. Passionate debates are
fueled by this cultural divide.

Machine learning (ML) is a powerful tool for finding pat-
terns in high-dimensional spaces. It employs algorithms by
which the computer learns from empirical data via induc-
tion. ML has been very successful in many applications,
including neuroscience ?? and chemistry [9]. In this work,
we apply ML methodology to a prototype density functional
problem: non-interacting spinless fermions confined to a
1d box, subject to a smooth potential. The accuracy we
achieve in approximating the kinetic energy (KE) of this
system is far beyond the capabilities of present human-
designed approximations and is su⇥cient to produce highly

accurate self-consistent densities—the functional derivative
is extremely accurate. We also define key technical concepts
needed to apply ML to DFT problems.
Empirical DFAs employ the basic types of approximations

derived from general principles, fitting the parameters to
training sets of energy di�erences[]. They explore only an
infinitesimal fraction of all possible functionals and use rel-
atively few data points. The ML-derived DFA (ML-DFA)
achieves chemical accuracy using many more inputs, with-
out reference to any of the underlying physics. Intuition
is kept to a minimum but remains necessary to specify the
basic mechanism and representation of data.
We illustrate the accuracy of the ML-DFA in Fig. 1, in

which the functional was constructed from 100 densities on
a dense grid. The successful construction of this functional
opens up a new approach to functional approximation, en-
tirely distinct from previous approaches: The ML-DFA con-
tains on the order of 104 empirical numbers and satisfies
none of the standard exact conditions.
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x

ML�DFA
Exact

FIG. 1. Comparison of a sample projected (see within) func-
tional derivative of the ML-DFA with the projected exact
derivative.

The prototype DFT problem we consider is N non-
interacting spinless Fermions confined to a 1d box, 0 �

m = 15, � = 5
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the total energy gives

⇥T [n]

⇥n(x)
= µ� v(x), (6)

which can be used to find the ground-state density within a
given approximation for T [n], while µ is adjusted to produce
the required particle number. The (discretized) functional
derivative of the ML-DFA is given by

1

�x
⌅nT̂ (n) =

M�

j=1

�⇥
j(nj � n)k(nj ,n) (7)

where �⇥
j = �j/(⇧2�x). In Fig. 2, we compare the func-

tional derivative of the ML-DFA with the exact derivative
for a sample density. If it captures any information about
the derivative, it is drowned out by oscillations. This is typ-
ical of the ML-DFA’s performance on the test set, and does
not improve with increasing M .
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x
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Exact

FIG. 2. We compare the functional derivative of the ML-
DFA, evaluated on a sample test density with N = 1, M =
100, � = 3.4 � 10�7 and ⇥ = 43, with the exact functional
derivative.

To identify the origin of this behavior, we apply a standard
ML tool: principal component analysis (PCA). The space of
all densities is contained in RG, but we assume only a few
directions in this space are relevant. For a given density n,
find m training densities (nj1 , . . . ,njm) which are closest
to n. Construct the covariance matrix of directions from n
to each training density

C =
1

m
X⇤X, (8)

where X = (nj1 � n, . . . ,njm � n)⇤. Diagonalizing
C ⇤ RG�G gives eigenvalues ⌅j and eigenvectors xj ordered
such that ⌅j ⇥ ⌅j+1. The xj with larger ⌅j are directions
showing substantial variation in the dataset. Those with ⌅j

below some cuto� are irrelevant (see supplemental mate-
rial). In these extraneous dimensions, there is infinitesimal
variation within the dataset, producing noise in the func-
tional derivative. By projecting the functional derivative

onto the subspace spanned by the relevant dimensions, we
can eliminate this noise. This projection is given by

Pm,�(n) = V ⇤V, (9)

where V = (x1, . . . ,x�)⇤ and ⌃ is the number of relevant
eigenvectors. In Fig 1, the projected functional derivatives
show near exact agreement, for m = 15 and ⌃ = 5.
The final test of the ML-DFA is to produce a density that

minimizes the total energy and check its error. Typically, we
expect the error to be larger than that of the functional eval-
uated on the exact density. For example, T loc on particles
in 1d flat boxes always gives a ratio of 4. (Although, for
a parabolic potential, T loc on the minimizing density is ex-
act). To find a minimizing density for a given potential,
we perform a gradient descent search restricted to the local
PCA subspace: Starting from a guess n(0), take a small step
the opposite direction of the projected functional derivative
of the total energy for each iteration:

n(j+1) = n(j) � ⇤Pm,�(n
(j))(v+⌅nT̂ (n

(j))/�x), (10)

where n(j+1) is the next density, ⇤ is a small number and
v is the discretized potential. The search is unstable for
large ⌃, inaccurate for small ⌃ but relatively insensitive to
m. A coarse optimization yields m = 15 and ⌃ = 5 (see
supplemental material).

JS: should I add a fig with sample self-consistent vs exact densities? puts us

over 4 pgs... could put in supplemental material

The overall performance of the ML-DFA in finding self-
consistent densities is given in Table II. The MAE is an order
of magnitude larger than that of the ML-DFA on the exact
densities—a bit worse than T loc. We do not find a unique
density, but instead a set of similar densities depending on
the initial guess. In addition, the density with lowest to-
tal energy does not have the smallest error. Although the
search does not produce a unique minimum, it produces a
range of similar but valid approximate densities, each with
a small error. Even with an order of magnitude larger error,
we can still reach chemical accuracy, now on self-consistent
densities. No previous approximate KE DFA comes close to
this performance.

N |�T sc| |�T sc|std |�T sc|max |�T sc|/|�T |

1 3.0 5.3 46. 21.

2 1.4 3.0 37. 9.7

3 0.88 1.5 14. 6.8

4 0.62 0.82 6.3 8.1

TABLE II. Errors in the KE of self-consistent densities. We
report the mean (|�T |), standard deviation (|�T |std), and
maximum (|�T |max) of the absolute errors, in kcal/mol, of the
ML-DFA evaluated on self-consistent densities for 500 mini-
mizations (see Eq. 10) with randomly chosen potentials and
initial guesses within the test set. The last column is the ratio
of the MAE on the self-consistent densities to the MAE on
the exact densities. The functional is trained with M = 100,
and parameters � and ⇥ as in Table I.

• Gradient descent search:

m = 15, � = 5

N = 1
M = 100

�Tj = 0.154 kcal/mol

�T sc
j = 6.53 kcal/mol

Ratio = 43
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Supplementary Information for “Finding Density Functionals with Machine Learning” dft.uci.edu

j ↵j a1 b1 c1 a2 b2 c2 a3 b3 c3
1 14.34267159730358 1.180270056381577 0.07195101071267996 0.5299345325943254 9.01320520984288 0.092675711955144 0.5396431787675333 7.21030205171728 0.0740833092851918 0.4120341150720884
2 5.175360849250056 6.168993733519782 0.082993252991643 0.5167227315230085 8.30495143619142 0.0890145060213322 0.4169122081529295 8.80487613349391 0.0965994509648079 0.5711057094413816
3 0.835534193378979 9.08090433047071 0.07685302774688097 0.5622686436063149 3.911674577648888 0.07551832009012722 0.5086649497775319 1.809709070880952 0.095976684502697 0.4024220371493795
4 �5.373806223157635 8.69723148795899 0.06384871663070496 0.5859464293596277 8.67330877015531 0.0876928787020957 0.4850650257010839 4.189229162595343 0.04518368077127609 0.5819244871260409
5 �0.3190730633815225 1.880199805158718 0.03425540298495952 0.4874044587130534 3.541514636747403 0.0983660639956121 0.4515151404198366 9.82668062409708 0.03264617089733192 0.4352642564533179
6 0.4351315890942081 3.522977833467916 0.07218055206599771 0.4489170887611125 3.332712157375289 0.07852548530734836 0.5852941028010116 8.14461268619626 0.04848929881736392 0.5484789894348707
7 �5.783654943336363 5.286896436167961 0.04973324501652048 0.4653609943491444 7.135152688153955 0.0956349249199585 0.4408949440211174 2.243825016881491 0.05865588304821763 0.5687481170088626
8 5.857253335721763 1.896112874949486 0.03260897886438952 0.4501033283280557 5.885541925485173 0.06240932269593134 0.5618611754744713 6.486450948532671 0.07293633775145438 0.5695359084287562
9 0.3627795973240678 7.516612508143043 0.0993184090181399 0.5699793290550055 5.262683987610352 0.0972169632428748 0.4726711603381638 8.89032075863951 0.05632091198742537 0.4056148051043074
10 29.95678925033907 8.49309248159469 0.0647507853307116 0.4481376527388373 3.62263291813646 0.04018659271978259 0.5253173968297499 1.155756643175955 0.0910615024672208 0.5870317055827734
11 �8.10086522849575 7.105439309279282 0.0843184446680493 0.4223871323591302 4.606936643431428 0.06326693058647106 0.5381643193286885 2.832289239384128 0.07970384658584057 0.4171275695759011
12 �1.631527652578485 8.53955034289036 0.07284904722467074 0.5839058233689045 1.340024891088614 0.0781592051575039 0.5383353695983426 7.396341414064901 0.05945110164542845 0.4924043842188951
13 11.0617514474351 7.853417776611835 0.07070077317679758 0.5080787363762617 4.408481706562826 0.06298528328388489 0.4611686076617371 7.90542867326401 0.03887933278705098 0.5872227397532248
14 4.44089329011033 6.39698431139937 0.05730660668578378 0.5964415398755241 5.472334579600375 0.06570186368826426 0.5473728709183074 4.715521015256764 0.0803629674069167 0.5354179520994888
15 2.731504789238804 4.228544205571447 0.06071899009977901 0.4135235776817701 2.550224851908171 0.06424771468342688 0.5203395167113864 4.842862964307187 0.06333995603635176 0.5244121975227667
16 �12.35513145514341 2.579686666551495 0.0664318905447018 0.4888525450630048 3.764107410086705 0.06576720199559433 0.5481686020053234 1.399253719979948 0.07540490302513119 0.4655456988965731
17 11.55095248921101 1.107700596345898 0.05955381913217193 0.5359207521608914 2.706093393731662 0.06561841006617781 0.4269114966922994 1.501048590877154 0.06352034496843162 0.4331821043592771
18 0.1703484854064119 8.26435624701031 0.04624196264776803 0.4236237608297072 7.025290029097274 0.07980750197266955 0.4683927184025036 2.822503099972245 0.05222522416667061 0.4810998521431096
19 �0.13017855474333 8.74124547878586 0.0628793144768381 0.4736196423196364 8.59166251408243 0.084738261964188 0.4564662508099403 8.22877749776242 0.03727774324972055 0.4697350798193826
20 �1.646528531854399 4.545173787725101 0.03433189693421491 0.4919021595234177 1.726935494533148 0.03135796595505673 0.580800322296872 2.502191185545461 0.0856788809687475 0.5909621331611888
21 �2.371179702223466 1.015154584908506 0.07726595708511765 0.4008988537732911 6.688534202733123 0.0869544063742346 0.403293222827825 6.297133313147086 0.03345369328197418 0.5433070470097552
22 13.69383242214402 3.283098134816701 0.06841617803957927 0.4304195496937475 5.887062834756559 0.05152399439496422 0.4321995606997443 3.207122477750064 0.07371808389404321 0.4967284534354185
23 �2.216419772035322 2.056773486230531 0.0825699915945694 0.479224783903814 6.945590707033352 0.07408636456892297 0.4957750456547108 5.846222671659907 0.0836452454472081 0.4094720200825416
24 �6.00076435563604 2.03703352205463 0.07605517542793995 0.4501291515683585 1.45256356478288 0.07433692379389613 0.4233969076404344 8.95059302019488 0.05703615620837187 0.4679023659842935
25 8.16409108667899 6.400475835681034 0.03425589949139343 0.5544095818848655 6.086484474478635 0.07282844956128038 0.4272596897186396 5.36207646433345 0.05780634160661002 0.5503173198658324
26 �22.3897314906413 3.751807395744921 0.0852624107335768 0.4453450848668749 7.559337237177321 0.05840909867970421 0.4990223467101435 4.729884445483556 0.0929218712306724 0.5590503374710945
27 5.595799173773367 4.522456026868127 0.03620201946841309 0.5050210060676815 1.885091277540955 0.06521780385848891 0.4961601035955842 9.47421945496329 0.0556740133396159 0.4834045749740091
28 1.94645582566549 2.751346713386582 0.0948195528516815 0.4901204212506473 7.863592227266858 0.0951797983951825 0.5196620049802691 9.51608680035275 0.07785377315463609 0.5806015592262945
29 �1.105559822533069 5.725277193011525 0.03097303116261406 0.5511177785567803 7.988513342309234 0.0928323179868588 0.5146415116367569 1.101098863639624 0.0882939028519791 0.5265108634130272
30 �3.886381532577754 4.95871172966177 0.06823254438777603 0.5645951313008806 9.08135225317634 0.04472856905840844 0.4299117124064201 8.24973637849809 0.08854431361856 0.5416193648861009
31 �1.341930696378109 6.451869235304859 0.05482804889270922 0.5694170176403242 4.416924333519995 0.04212208612720639 0.5897125000677342 8.86521100790565 0.0866581794842557 0.5311744230227635
32 �10.16467121571373 6.705508349541454 0.0934749698077619 0.4420693171728495 2.858371131410651 0.03722557506068529 0.4216580500297413 6.670274811535954 0.0977332470946321 0.538756085129185
33 �1.107633246744663 7.390220519784453 0.07970661674181083 0.5081940602224835 3.815123656821275 0.04965529863397879 0.497023655525965 9.69945245311718 0.07039341131023045 0.4990744291774679
34 10.39451871866851 1.478170300165134 0.03602109509210016 0.5799113381048154 2.105782960173057 0.0861928382367878 0.4812528298377607 7.010226383015251 0.03535327789989237 0.4969989664577149
35 �0.139925361351959 4.045190240200832 0.03579955552582782 0.5678362348598895 9.32386837735074 0.0858648976559044 0.5698752996855582 9.81895903799508 0.04704020956533079 0.5708692337579542
36 3.656124569605117 4.944179742822627 0.0931916525333049 0.4834640277977335 9.3847979419491 0.0840810063497973 0.4090254720704045 3.673880603434117 0.07158934023489803 0.5598196803643543
37 8.06734679112684 2.988178201634472 0.07482186947515447 0.4950144569660614 1.910770315838324 0.03877152903045122 0.5786659568499292 4.285706479098184 0.05940487550770145 0.4844513368813702
38 0.3011566621835722 8.78996207364355 0.04833452393773747 0.459203937360375 9.93467757777873 0.0973964303071365 0.4280349684453508 4.931948094146255 0.0969410287755626 0.4560660353529726
39 �0.2469178958324283 6.242957525364009 0.0989568314234112 0.4205662570527381 4.73983230004983 0.0450110225161678 0.559400017887981 9.11978947943194 0.06189826031162779 0.493100819449519
40 �5.704905642148452 4.447521595114223 0.06770523205457797 0.5047965897298675 3.987888630073714 0.03595136615254331 0.5929011044925536 5.22121823715344 0.04029431905467698 0.514129411681418
41 0.1425795779687519 6.919606258393273 0.0821756368975312 0.5976799418614426 8.04099037018168 0.03129262110881438 0.4686530881925831 3.421695873368174 0.05166215779587051 0.4208560803818513
42 0.6843702894502789 8.27200587323167 0.0547013388431661 0.4453254786423237 7.433883810628654 0.04612202343826998 0.5269730370279639 8.3641619521824 0.07996879390804805 0.5036755718396144
43 �14.06571757369153 6.220712308892191 0.04765956545437692 0.4898959293071353 8.72249431241257 0.05059967705235588 0.4421274052875277 2.416276423317733 0.07373660930828208 0.5403850652535799
44 8.32346109443768 9.29716067662943 0.0656810603414827 0.4960066859011466 6.796263459296078 0.04037116107097755 0.4389885737869158 2.206183147865627 0.0804910989081056 0.5806221323132373
45 �5.252317079780442 3.424683176707511 0.0867529985575643 0.4322548560407479 6.859255296971943 0.0955962752949951 0.517620399931194 5.826144942819697 0.0910408442631135 0.4167014408128501
46 6.18641388898792 3.789578783769164 0.07617326304382499 0.5418490045761073 1.363177133649232 0.03197249245240319 0.5284999992906743 4.9879001955338 0.04126125322920861 0.4895167206754735
47 0.4821906326173532 1.195769022526768 0.04928749082970199 0.5286859472378347 8.76714063033632 0.0870852412295278 0.5989638152903285 2.489565114307663 0.05568685410478115 0.5787056957942209
48 5.707663438868804 4.058614230578957 0.04743875933294599 0.4981149890354436 1.015171237842736 0.085826684646538 0.5470349320774566 6.343764732282688 0.0878769436185823 0.5449452367497044
49 �0.1857958679022612 5.159763617905121 0.0850570422587659 0.5311491284465588 7.238990148015965 0.05867048711393652 0.5662410781222187 8.70600609334284 0.04088387548046445 0.5305143392409284
50 2.321594443893878 3.319181325761367 0.05391080867981007 0.5914435434600773 9.11776045377491 0.03583354001918901 0.4669413688494417 6.117669336479262 0.04553014156422459 0.4131324263527175
51 2.451069994722774 4.005247740100538 0.07620861067494449 0.5759225433332955 6.743529978394792 0.0967347280360008 0.4980631985926895 5.505849306951131 0.0971440363586883 0.45173467721102
52 �0.961350897030818 7.710615861039985 0.07131617125307138 0.4007362522722102 3.372061685311945 0.04579335436967417 0.4845503268496217 8.6021995929235 0.0634681851083368 0.4207242810824543
53 �10.67971490671366 4.728468083127391 0.06509200806253813 0.4959400801351127 9.81266481664175 0.0951346706530719 0.5047212015277842 3.180268423645401 0.06891913385037023 0.5758580789792047
54 1.375998039323297 2.740626958875014 0.06438323836566841 0.5077158168564866 1.813952930718781 0.0845523320869031 0.407247659218711 1.054506345314588 0.0998274789144316 0.5956344420441539
55 �4.330863793299111 3.209443235555092 0.05150806767094947 0.5932432195310449 4.682408324655706 0.03641376226612134 0.4491940043173043 9.57800470422746 0.089704223465467 0.4702887735348434
56 6.961655278126058 3.013659237176324 0.0802684211883349 0.5733460791404235 7.441047648005995 0.0924462539370359 0.5216671466381739 8.15403131934562 0.05611934350568269 0.4910483719005932
57 �5.30540083281513 2.088882156026381 0.07464091227469428 0.4740072756248339 4.228694369663863 0.03993178348974601 0.4402946238148492 4.912298433960689 0.06528359492264517 0.4923580906843156
58 3.395104400983763 7.9733680986292 0.0911843583955236 0.5314007871406556 6.375772536276909 0.0933026364108379 0.447244215655568 7.387561983870292 0.0977643384454912 0.479824590293356
59 1.330224789015745 5.105339790874075 0.06331718284342962 0.5503804706506275 9.5740821641842 0.07463500644132846 0.5814481952546582 5.810342341443878 0.03327635127803191 0.5550216356360829
60 �0.2920604955263079 6.773414983805557 0.07595819905259191 0.5210834626114553 4.229974804881476 0.03532177545633547 0.5725615130215063 8.88452823254966 0.0932985710685446 0.5046388124857028
61 �26.41840990525562 6.41701161854283 0.06246944646172664 0.4258923441426071 1.379491105318868 0.06306367927818108 0.4531443030507202 2.189456974183496 0.098078005933584 0.5174384564079299
62 6.630393088825135 6.476325542442256 0.07599435647188182 0.4345528705798566 6.969363897694016 0.06669302037176108 0.517427894398595 3.961825639220393 0.0929115322244988 0.4621043570336795
63 3.065748817227897 1.300093759156537 0.06741885075599173 0.4866345116967513 6.942052331590217 0.07107963920756023 0.4930672781311588 7.834870626014938 0.06446115603870624 0.5367219218216266
64 �1.743105697039855 3.145607697855832 0.0415292992761004 0.5859414343226601 5.945295724435049 0.07414379406386953 0.4548629476738681 1.062923665624632 0.07636214080338054 0.4330291254331895
65 �1.631255302904965 3.121291975208031 0.03133561741752311 0.524510056949801 8.03118879837252 0.0987376029412809 0.5128559599511593 7.572783963151993 0.0936192481138518 0.4523240987335903
66 �9.50982692642515 7.367027947839741 0.07398108515426552 0.4753257600466925 1.589160147317211 0.07398588942349949 0.4644105814910987 1.719981611302808 0.04986976063479617 0.5394709698394433
67 �4.496736421068983 8.56498650586069 0.0870950155799119 0.4807004710871501 8.85815411069566 0.0936690521145114 0.4120764594786555 2.422694718173737 0.05651923264880363 0.4832351547748815
68 �1.002977917543076 9.43121814362608 0.03689894383172801 0.4801850915018365 6.762463110315146 0.0977990134875495 0.5880377299069773 8.48288777357423 0.05983735955021298 0.4837560035001434
69 �9.23106545170694 8.47929696159459 0.05472141225455761 0.4949989702352598 4.776138672418544 0.03835162624659654 0.5785166211495689 4.459069855546714 0.06892772167363432 0.5908529311844791
70 14.99926304831282 4.708917711658332 0.0907364284065382 0.4550033334959929 5.373320800648651 0.03739924536269347 0.4468132406615605 1.831662246071428 0.05825558914206748 0.566434199642786
71 4.189181104505013 7.583635162152007 0.0936829708421792 0.4110679099121856 6.09002215219153 0.05895044789139901 0.5451253692040614 6.851478307492325 0.04763840334231468 0.5010633160850224
72 8.32837188138842 3.414315967033806 0.05054048464274665 0.5043307410524706 3.070996567281799 0.06968276328974509 0.5702669702356848 5.360783854112533 0.0388888383066967 0.5784155467566237
73 �21.84200888491582 1.625552430388586 0.04546236831654488 0.5426078576324179 4.091176923293506 0.03836885039652842 0.504879512949007 4.527748284314512 0.05975894102927981 0.4670598506496871
74 6.604738977945651 3.42187897931262 0.0894449950697187 0.4941485628974172 4.96749741331263 0.06031151123783582 0.4119028637456998 4.581927607849956 0.0871948963692279 0.4176805754532423
75 15.27988423246628 6.229538426957454 0.0821521091215863 0.4118748449252315 2.377028497509498 0.0963110933106458 0.4746736556808109 5.398545541594487 0.0822574656780643 0.5258947233190487
76 1.377130763885458 9.15176346333775 0.04818682488618507 0.574408949666749 2.366656226877287 0.05059199769749539 0.4731074949729489 4.34290365370739 0.07492904049493838 0.4038656375892337
77 �0.7756959351484244 8.1525112801581 0.0812975344211981 0.5112853751964107 4.530310672134927 0.06652912486134806 0.5946245231853162 1.568860626254933 0.04256882025605258 0.5491027801043556
78 �9.50432792804336 4.670517118870347 0.04398267799553492 0.4519472673718893 2.155276187476066 0.0489411436180854 0.5694756278652033 1.947130206816878 0.06321309041201674 0.4122312147733568
79 3.754137123031758 6.801389212739803 0.07003309342623426 0.5129214842481318 9.92433910143913 0.0931392820982872 0.4104016495146404 5.23036608102518 0.0919529182014262 0.4465294974738288
80 �4.499804654067136 4.406584351091798 0.0970211159011626 0.4772975938521527 2.270764431848441 0.0853562757122116 0.4669596920988839 4.42557413334857 0.0517800509473799 0.5645191809121128
81 �13.9999061688152 8.30408622139241 0.0903948738093222 0.5053209583744364 2.454354187669313 0.0857681690400504 0.576877467653029 7.167289037979035 0.0831206320171505 0.4221339680792799
82 �4.878405649764898 7.975675712689654 0.0809649515974139 0.5831990158889571 1.696376490191135 0.06783046119270637 0.5788560723486603 5.118512758012828 0.06554617006512321 0.5571586558825978
83 �8.70611662690158 3.078380132262833 0.06327626752293522 0.4017988981679418 2.138629261588504 0.05374733302715019 0.5432443229891937 7.596013793576791 0.0999924467044729 0.5115245622576321
84 3.578654662113496 4.294915349281119 0.0664706641817281 0.5566289165852036 3.387516420897519 0.06654228293431248 0.4304935498494862 8.43232828156106 0.06121769693920587 0.5527076848906498
85 0.0423259541153967 9.56936665353494 0.06825963823641594 0.5532353068476618 7.233942984150266 0.07736032999103362 0.4274316541541941 8.96022693099 0.03996347733060968 0.5091073130786462
86 �6.387446031119123 5.052123646744015 0.05306973453715137 0.4657297418468141 1.261670338009784 0.05392235260994765 0.4355571344074666 9.81884128475822 0.0434164193614162 0.546118275633825
87 3.029693711282459 1.767169254935782 0.0386273054889003 0.4174202422881018 9.99189882836594 0.0347107535224807 0.5316587974869709 4.794411329362948 0.04866392717198935 0.5202815575942617
88 �0.791031105864576 8.38082427065573 0.0552127907704862 0.5821800194923659 3.864226559651998 0.05464216708052787 0.5051543239785165 4.445064096761643 0.03386907179361738 0.4659081177469465
89 2.97083681738158 9.22706363472046 0.06912140386549836 0.5630023378185795 2.929880196570098 0.07966659968684009 0.4992263633935188 6.920427033384797 0.03123407491202272 0.4077156601519876
90 �7.110772604917624 3.106633667560681 0.04873990025387701 0.5697049535893381 8.30700777463754 0.05249501630989304 0.5669783762910612 1.13457393933062 0.07200760153994357 0.444672072474744
91 �7.162305080703513 5.387619660361665 0.04581500385875453 0.5197835066282974 8.22551991773337 0.0831226693907787 0.4274987667560087 6.828948529150043 0.05943349593138421 0.5115861497137036
92 1.720368406482304 6.780548897314363 0.0870012111933092 0.5984908484842784 6.587571277412653 0.05694105237128053 0.5226697825342788 5.99005641944593 0.07837921322316456 0.4668236040752577
93 0.1494884045649762 8.09818524171748 0.0976595255928496 0.4848535596042637 2.153483785757176 0.04734211110674212 0.4077222220507315 7.143110762448606 0.04682210332386052 0.509084643832387
94 �0.962821097034532 7.260437643310942 0.05083396575279076 0.54745303715986 8.38162990306018 0.05791050943688269 0.5794395625497382 2.722302743095399 0.083744615781603 0.5395428417251624
95 0.935122045036145 2.31788301454997 0.05976249487823031 0.5809204376238206 8.19172407354263 0.06806778195768599 0.5479374417815378 9.93990336225375 0.04266977230181523 0.5959901705863791
96 0.4328277236540677 4.113414259206836 0.07988404513340022 0.5262079910925557 7.436994191324823 0.07641699196144898 0.4316282085515486 9.59671807016201 0.07198966517052108 0.4563024970288369
97 0.853043516035702 3.229317247568396 0.04664288308967379 0.4916641780174803 9.19533615142581 0.0944216012526871 0.5792638413577232 6.980966479991427 0.07647312161060935 0.5407763967437385
98 �3.516191871248886 9.20769534239692 0.07214599607965883 0.4111312070946356 7.568725646832963 0.0806902033322297 0.4952042950743076 8.94919747461644 0.04263443777290076 0.5735261960865083
99 19.67243760549639 2.270663590855083 0.0971170179967765 0.4613017967987272 8.22480560472966 0.0536024772561282 0.4745303011865644 3.970009703387312 0.0982032349257953 0.5029128207513967
100 1.544060514744405 4.017102041449901 0.04437090645089548 0.5073655615301741 3.724036679477685 0.07622772645899346 0.4368882837991222 5.350822342112657 0.07659119397629786 0.4056243763991382

TABLE III. All the necessary information to construct our

MLA, trained from 100 densities with N = 1 on a grid of

500 points, with � = 12 ⇥ 10

14
and � = 43. For purposes

of saving space, we do not list these densities. They may be

reconstructed from these potentials via Numerov’s method.
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Density!func,onal!theory!(DFT)!is!the!most!popular!electronic!
structure!calcula,on!method!in!the!world.!In!principle,!the!
mapping!of!the!electron!density!to!energy!is!exact,!but!in!prac,ce,!
both!the!kine,c!energy!and!the!energy!of!the!interac,on!between!
electrons!must!be!approximated.!
In!the!past!few!decades,!development!of!both!empirical!and!nonB
empirical!func,onals!requires!great!intui,on!built!on!years!of!
experience,!as!well!as!painstaking!trial!and!error.!Recently,!some!of!
us!have!approached!this!problem!by!a!completely!new!dataBdriven!
method!called!machine!learning!approxima,on!(MLA).!Comparing!
to!tradi,onal!approxima,on,!MLA!has!(i)!lower!computa,onal!cost!
and!(ii)!significantly!higher!accuracy.!
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FIG. 3. The alphabet soup of approximate functionals available in a code
near you. Figure used with permission from Peter Elliott.

IX. CHALLENGE: DIGGING DEEPER

As we have seen, the practice of modern DFT suffers a
lack of detailed understanding of how to approximate func-
tionals. We begin from local approximations, and then create
more accurate, sophisticated versions. Based on insight and
intuition, combining either exact conditions from quantum
mechanics, or fitting specific systems, we make progress, but
only very slowly, and rarely without ambiguity. A formally
exact theory exists (Sec. IV), but provides only limited guid-
ance about approximations.

I believe that a fundamental principle underlies the suc-
cess of DFT, which is that local approximations are a pecu-
liar type of semiclassical approximation to the many-electron
problem. For the last 6 years, with both my group and many
collaborators, I have been trying to uncover this connection,
and make use of it. The underlying math is very challenging,
and some must be invented.

Basic quantum textbooks have separate chapters on per-
turbation theory and semiclassical approximations, but never
relate the two.112 All modern many-body methods have their
roots in treating the interaction as a perturbation, since we find
solving non-interacting problems relatively easy. But such
treatments ignore the fact, proven by Lieb more than a quar-
ter of a century ago,113 that TF theory (see Sec. II) becomes
relatively exact for neutral atoms as Z → ∞. As detailed
by Schwinger,114 this is the semiclassical limit115 mentioned
above. Dramatic confirmation of this fact is that TF also ap-
pears to yield the exact ionization potential of atoms (aver-
aged across a row) in this limit, and that LDA-X recovers the
HF result, including the oscillations across a row.116 Most of
our results so far have been confined to 1D systems,117 but
this insight lead to the restoration of the gradient expansion in
PBEsol, which cures many of the PBE problems with lattice
parameters,118 and a derivation of the parameter in the B88
functional.107

X. PROGRESS: WEAK INTERACTIONS

The ability to treat van der Waals interactions is a re-
cent (and ongoing) success story for DFT. In the 1990s, it
was well-known that the standard functionals could not yield

correct long-range dispersion forces,76 i.e., their binding en-
ergy curves decay exponentially (with density overlap) in-
stead of −C6/R6, where R is the separation and C6 is the
van der Waals coefficient, determined from the frequency-
dependent polarizabilities of the fragments.119 Because this
excluded such a huge number of important systems and prop-
erties (such as DNA, physisorption on surfaces, most bio-
chemistry, etc.), there were always ad hoc methods for adding
back in dispersion, simply using pair potentials between
atoms.120

Over about 20 years of research and many papers, the late
David Langreth with Bengt Lundqvist121 and many other col-
laborators, developed an approximate non-local ground-state
density functional, call it LL, that has the right decay behavior
and reasonably accurately captures these effects.122 LL is en-
tirely non-empirical, using results from the uniform gas and
interactions between slabs of that gas to find such a form from
first principles. While the initial implementation of this func-
tional was computationally expensive, a recent algorithm of
Soler et al.123 made it much faster, so much so that its cost
is negligible beyond about 100 atoms. This led to immediate
implementation in many codes worldwide, and there is now a
plethora of calculations with LL.124

Simultaneous with this development, in quantum chem-
istry, Grimme125 developed his DFT-D methodology that pro-
vides an empirical correction to DFT results in a highly sys-
tematic and accurate fashion. The results for small molecules
in the S22 data set126 are extremely good. DFT-D is much
more accurate for these systems than LL, but LL can be ap-
plied to all matter (except possibly metals), including situa-
tions where pair-potentials cannot work. A less empirical al-
ternative to Grimme has been proposed by Tkatchenko and
Scheffler,127 which produces a scheme for calculating an ad-
ditive correction for any functional and has only slight em-
piricism. This has recently been extended to include even
metals.128 Over the next five years, one (or possibly two) of
these schemes is likely to become the standard method for
including weak interactions in DFT calculations.

XI. CHALLENGE: TIME FOR A PARADIGM SHIFT?

The KS equations, combined with the local density ap-
proximation, were a reformulation of the electronic structure
problem relative to TF theory. By producing a more demand-
ing computational algorithm while lessening the fraction of
the total energy that needs approximating, a great leap for-
ward in accuracy and reliability was achieved. But that was
back in 1965. Perhaps we are at the end of that road in terms
of useful approximations, and what is needed now is a new
paradigm which uses a different starting point from which ap-
proximations are to be found.

A. Optimized effective potential (OEP)

At some point, exact exchange (loosely, evaluating an
orbital-dependent functional in the KS scheme) seemed like
a strong candidate, because it allowed exchange to be eval-
uated exactly, instead of being approximated.129, 130 This
cures a multitude of problems with local and semilocal
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{nj ,T [nj ]}, j = 1,2,...,NT
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x, y 2 �. We define the kernel k such that

k(x, y) = h�(x), �(y)i. (14)

The kernel can generally be thought of as a measure of
similarity between data, but must satisfy positive defi-
niteness:

For all xi 2 �, ci 2 R :
X

i,j

cicjk(xi, xj) � 0 (15)

Positive definiteness guarantees the existence of a fea-
ture space F [48], which is a reproducing kernel Hilbert
space [49]. Since the linear algorithm in F may be ex-
pressed in terms of the kernel in Eq. (14), � need never
be explicitly computed. This procedure is known as the
kernel trick, and enables easy nonlinearization of all lin-
ear scalar product-based methods that can be expressed
via an inner product [50].

E. Kernel ridge regression

Kernel ridge regression is a nonlinear version of regres-
sion with a regularization term to prevent overfitting [51].
Our MLA for the KE has the form

TML[n] =
NTX

j=1

↵jk[n, nj ], (16)

where NT is the number of training densities, ↵j are
weights to be determined, nj are training densities and
k[n, nj ] is the kernel. The weights are found by minimiz-
ing the quadratic cost plus regularization

C(↵) =
MX

j=1

(TML[nj ] � T [nj ])
2 + �↵>K↵, (17)

where ↵ = (↵
1

, . . . , ↵NT ), K is the kernel matrix, Kij =
k[ni, nj ], and � is called the regularization strength. The
second term penalizes weights with large magnitudes in
order to prevent overfitting.2 By setting the gradient of
Eq.17 to zero, minimizing C(↵) gives

↵ = (K + �I)�1T , (18)

where I is the identity matrix and
T = (T [n

1

], . . . , T [nNT ]). The hyperparameters,

2

The regularization term accounts for the possibility of noisy

data (e.g. experimental data), and imposes certain smoothness

conditions on the model (see [52]). Although our reference data

are deterministic and thus noise-free in this sense, we still have

non-zero noise for 3 reasons: (a) the precision of our calcula-

tions is limited, so we may consider the numerical uncertainty

to be noise. (b) non-zero � will give more numerical stability

while evaluating Eq. (18). (c) non-zero � allows the model to

not exactly fit the training data, which can be beneficial to the

generalizability.

FIG. 3. (a) Normalized distribution of the Euclidean distance
between all distinct pairs of densities in the dataset (2000
densities). The maximum distance between any pair is 0.9.
(b) Histogram of the KE in the dataset. The vertical dashed
line at 3093 kcal/mol is the ground-state energy of one fermion
in a flat box of length 1.

FIG. 4. (a) An example 1d noisy data set. (b) Transformation
to feature space �(x). (c) Centering of data in feature space.

which include the regularization strength � and the
parameters of the kernel such as the length scale �, are
found via cross validation (see [37] and Sect. III).

The choice of the kernel will depend on the given data.
Some kernels are designed to be generally robust and
applicable (e.g., the Gaussian kernel), while others are
designed for a specific type of data (see e.g. [31, 53, 54]).
A good choice of kernel can reflect the characteristics of
the data (see [55]). In Ref. [29], we chose the Gaussian
kernel

k[ni, nj ] = exp
�
�kni � njk2/2�2

�
, (19)

where � is the length scale. Since the density is repre-
sented on a uniform grid, the L2-norm can be approxi-

4

for real systems, functional derivatives of traditional ap-
proximations can have singularities at the nuclei, making
all-electron calculations very di�cult, if not impossible,
to converge [12]. Many of these problems can be avoided
through use of pseudopotentials [12, 28], but in general
the solution for Eq. (9) is nontrivial.

As mentioned above, the simplest density functional
approximation to TS is the local approximation [4], which
for spin-polarized densities in 1d is

T loc[n] =
⇡2

6

Z
dx n3(x). (10)

For N = 1, the exact KE has the von Weizsäcker [17]
form:

TW[n] =

Z
dx

n0(x)2

8n(x)
. (11)

As was shown in Ref. [29], the local approximation does
poorly. The mean absolute error (MAE) on the test set
is 217 kcal/mol, and self-consistent results are even worse
at 1903 kcal/mol. A standard extension of the local ap-
proximation to a semi-local form is to add a fraction of
TW[n] to T loc[n], forming a modified gradient expansion
approximation. It was shown in Ref. [29] that this did
little to improve upon the local approximation.

C. Data topology and representation

Typically in ML, the data has a finite representation.
For example, in Ref. [36], molecular structures are rep-
resented by a Coulomb matrix and the model predicts
atomization energies. In contrast, the electronic density
n(x) is a continuous function restricted to the domain [43]

JN ⌘
⇢

n
���n(x) � 0, n1/2(x) 2 H1(R),

Z
n(x) dx = N

�
,

(12)
where H1(R) is a Sobolev space1. Although JN is infinite
dimensional, in practice n(x) is expanded in a finite basis
(with NG basis functions). In this work, we use a real
space grid to represent the density, since our reference
calculations are done using the same grid. We use the L2

inner product and norm between densities ni(x), nj(x)

hni, nji =

Z 1

�1
dx ni(x)nj(x), knk =

p
hn, ni. (13)

(In actual calculations, all densities are represented on a
finite basis, and thus will have have a finite L2-norm).

1

A Sobolev space Wk,p
(R) is a vector space of functions with

a norm that is a combination of Lp
-norms of the function itself

and its derivatives up to a given order k. It is conventional to

write W 1,2
(R) as H1

(R). f 2 H1

(R) means that f and its first

order derivative are in L2

.

FIG. 2. Example of the non-linear transformation of data
to feature space. (a) The data are non-linear (a circle) in
Cartesian coordinates. The green dashed line is a linear fit
to the data points (blue crosses). (b) When the data are
transformed to feature space by x ! ⇢ cos ✓, y ! ⇢ sin ✓, the
linear structure in the data are revealed (red solid line). (c)
The model can be transformed back to the original space to
give a non-linear fit of the data.

Since the ML algorithm is expressed in terms of this in-
ner product, the results are independent of the specific
representation used as long as the basis is converged.

Even with a truncated basis, JN is still high-
dimensional and applying ML to learn the KE of all den-
sities in JN would not be feasible. Fortunately, we are
only interested in a subspace of JN related to a specific
class of potentials (e.g. Gaussian dips), which greatly
reduces the variety of possible densities. In general, let
the potential v(x) be parametrized by the parameters
{p

1

, . . . , pd}. We define the density manifold MN ⇢ JN

as the set of all densities that come from these poten-
tials with a given particle number N . In general, MN is
a d-dimensional manifold. The training densities, nj(x)
for j = 1, . . . , NT , are sampled from MN . In the present
work, the external potential has 9 parameters, and thus
d is at most 9.

D. The kernel trick and feature space

In finding the structure of low-dimensional data, it
is often su�cient to optimize parametrized non-linear
forms (e.g., using a polynomial to fit a sinusoid). For
high-dimensional, nonlinear data this becomes increas-
ingly di�cult. In kernel-based machine learning, the ap-
proach is to transform the data itself non-linearly to a
high-dimensional space known as feature space, such that
the data become linear [31, 44–47].

Fig. 2 illustrates data points that lie on a circle in the
Cartesian plane. As shown, the data become linear on
transformation to polar coordinates, and linear regression
can subsequently be used to fit the data. Transforming
back to Cartesian coordinates recovers the non-linearity.
Let the data points belong to a vector space �, also called
input space, and let � : � ! F be the map to feature
space F . Assuming we wish to apply a linear method
such as regression in feature space F , we note that re-
gression can be expressed solely in terms of the inner
product between feature vectors �(x) and �(y), where

CAUTION OVERFITTING�
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x, y 2 �. We define the kernel k such that

k(x, y) = h�(x), �(y)i. (14)

The kernel can generally be thought of as a measure of
similarity between data, but must satisfy positive defi-
niteness:

For all xi 2 �, ci 2 R :
X

i,j

cicjk(xi, xj) � 0 (15)

Positive definiteness guarantees the existence of a fea-
ture space F [48], which is a reproducing kernel Hilbert
space [49]. Since the linear algorithm in F may be ex-
pressed in terms of the kernel in Eq. (14), � need never
be explicitly computed. This procedure is known as the
kernel trick, and enables easy nonlinearization of all lin-
ear scalar product-based methods that can be expressed
via an inner product [50].

E. Kernel ridge regression

Kernel ridge regression is a nonlinear version of regres-
sion with a regularization term to prevent overfitting [51].
Our MLA for the KE has the form

TML[n] =
NTX

j=1

↵jk[n, nj ], (16)

where NT is the number of training densities, ↵j are
weights to be determined, nj are training densities and
k[n, nj ] is the kernel. The weights are found by minimiz-
ing the quadratic cost plus regularization

C(↵) =
MX

j=1

(TML[nj ] � T [nj ])
2 + �↵>K↵, (17)

where ↵ = (↵
1

, . . . , ↵NT ), K is the kernel matrix, Kij =
k[ni, nj ], and � is called the regularization strength. The
second term penalizes weights with large magnitudes in
order to prevent overfitting.2 By setting the gradient of
Eq.17 to zero, minimizing C(↵) gives

↵ = (K + �I)�1T , (18)

where I is the identity matrix and
T = (T [n

1

], . . . , T [nNT ]). The hyperparameters,

2

The regularization term accounts for the possibility of noisy

data (e.g. experimental data), and imposes certain smoothness

conditions on the model (see [52]). Although our reference data

are deterministic and thus noise-free in this sense, we still have

non-zero noise for 3 reasons: (a) the precision of our calcula-

tions is limited, so we may consider the numerical uncertainty

to be noise. (b) non-zero � will give more numerical stability

while evaluating Eq. (18). (c) non-zero � allows the model to

not exactly fit the training data, which can be beneficial to the

generalizability.

FIG. 3. (a) Normalized distribution of the Euclidean distance
between all distinct pairs of densities in the dataset (2000
densities). The maximum distance between any pair is 0.9.
(b) Histogram of the KE in the dataset. The vertical dashed
line at 3093 kcal/mol is the ground-state energy of one fermion
in a flat box of length 1.

FIG. 4. (a) An example 1d noisy data set. (b) Transformation
to feature space �(x). (c) Centering of data in feature space.

which include the regularization strength � and the
parameters of the kernel such as the length scale �, are
found via cross validation (see [37] and Sect. III).

The choice of the kernel will depend on the given data.
Some kernels are designed to be generally robust and
applicable (e.g., the Gaussian kernel), while others are
designed for a specific type of data (see e.g. [31, 53, 54]).
A good choice of kernel can reflect the characteristics of
the data (see [55]). In Ref. [29], we chose the Gaussian
kernel

k[ni, nj ] = exp
�
�kni � njk2/2�2

�
, (19)

where � is the length scale. Since the density is repre-
sented on a uniform grid, the L2-norm can be approxi-

in!model!op,miza,on�

Consider!N!nonBinterac,ng!sameBspin!fermions!subject!to!a!
smooth!external!poten,al!in!one!dimension,!!
!
!
!
with!hard!wall!on!both!side.!We!are!going!to!approximate!the!
kine,c!energy!func,on!T[n].!!
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study to a simple class of potentials, namely a sum of 3
Gaussian dips with varying heights, widths and centers:

v(x) =
3X

j=1

aj exp(�(x � bj)
2/(2c2

j )), (1)

for x 2 [0, 1], and v(x) = 1 elsewhere. The Hamil-
tonian for this system is simply Ĥ = T̂ + V̂ , where
T̂ = �@2/2@x2 and V̂ = v(x). We solve the Schrödinger
equation

✓
�1

2

@2

@x2

+ v(x)

◆
�(x) = ✏�(x), (2)

for the eigenvalues ✏j and orbitals �j(x). As our fermions
are same-spin, each orbital �j(x) is singly-occupied.
Thus, the electron density is given by

n(x) =
NX

j=1

|�j(x)|2, (3)

and the kinetic energy is

T =
1

2

NX

j=1

Z
1

0

dx|�0
j(x)|2. (4)

A dataset is created by randomly sampling aj 2
[1, 10], bj 2 [0.4, 0.6], cj 2 [0.03, 0.1], to generate 2000
di↵erent potentials. For each potential, the system is
occupied with up to 4 fermions, and the exact densi-
ties and kinetic energies are computed. Numerically, the
Schrödinger equation is solved by discretizing the density
on a grid:

xj = (j � 1)/(NG � 1), j = 1, . . . , NG (5)

where �x = 1/(NG � 1) is the grid spacing. Numerov’s
method [41] together with a shooting method is used to
solve for the eigenvalues and eigenfunctions of Eq. (2).
For NG = 500, the error in our reference kinetic energies
is less than 10�7. Fig. 1 gives a few sample densities and
their corresponding potentials.

The data used here is identical to that of Ref. [29].
The exact values of the parameters used in each sample
are given in the supplementary information of Ref. [29].
Of the 2000 samples generated, the first half is reserved
for training while the second half is reserved for testing
(which we refer to as the test set).

B. Orbital-free DFT

In orbital-free DFT, TS is approximated as a functional
of n(x). For our model system with non-interacting
fermions, the total energy is given as

Ev = min
n

{T [n] + V [n]} , (6)

FIG. 1. A few sample densities and their corresponding po-
tentials, for N = 1.

for a given potential v(x). The potential is known exactly
as a functional of n(x):

V [n] =

Z
1

0

dx n(x)v(x). (7)

Via the variational principle, the ground-state density is
found by the Euler-Lagrange constrained search

�

⇢
Ev[n] � µ

✓Z
n(x) dx � N

◆�
= 0, (8)

where the chemical potential µ is adjusted to produce the
required particle number N . This becomes simply

�T [n]

�n(x)
= µ � v(x). (9)

The density that satisfies this equation, minimizing Ev[n]
with the normalization constraint, is found self consis-
tently.

Given the exact functional T [n], solving Eq. (9) will
yield the exact ground-state density of the system. But
in practice, T must be approximated. Let T̃ be such an
approximation, n(x) be the exact density, and ñ(x) be
the self-consistent density found with T̃ . There are two
measures of the error of such an approximate T̃ [42]. The
first is to compute the functional-driven error �TF =
T̃ [n] � T [n], which is simply the error in the KE evalu-
ated on the exact density. The second (and much more
di�cult) test is to insert T̃ into Eq. (9), solve for the
approximate density ñ, and compute its error relative to
the KE of the exact density �E = Ẽv[ñ] � Ev[n]. Then
the density-driven error is defined as �ED = �E ��TF

[42]. This is the additional error incurred by the ap-
proximate density. In practice, a functional which only
satisfies the first test is not much use, as the ground-state
density itself must also be obtained from this approxima-
tion. In orbital-free DFT, self-consistent results can be
much worse than energies of KS densities, as inaccuracies
in the functional derivative can cause large errors in the
corresponding density. In the case of the KE functional

Thus!far,!we!have!focused!on!the!discussion!of!the!performance!of!the!
MLA!evaluated!on!exact!densi,es.!However,!in!order!for!a!func,onal!
to!be!useful,!it!must!also!predict!the!groundBstate!density.!An!accurate!
func,onal!deriva,ve!is!necessary!in!order!to!solve!Euler!equa,on!and!
yield!an!accurate!density.!!
!
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! raw functional derivative� projected functional derivative�
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*energy!unit:!kcal/mol!

 
N�

 
NT�

 
�x1014�

 
�� mean� max� mean� max�

1� 40� 50� 4.2� 1.9� 30� 15� 120�
1� 60� 10� 1.8� 0.62� 11� 3.0� 19�
1� 80� 54� 1.5� 0.23� 3.1� 1.1� 11�
1� 100� 4.5� 1.6� 0.13� 3.5� 1.4� 16�
2� 100� 1.0� 2.2� 0.14� 1.7� 1.25� 5.0�
3� 100� 1.9� 2.5� 0.13� 1.7� 1.11� 8.3�
4� 100� 1.4� 2.7� 0.08� 2.6� 1.12� 9.8�
1B4� 400� 1.7� 2.2� 0.12� 3.0� 1.28� 12.6�

|T ML[n]−T [n] |  |T
ML[ !n]−T [n] |

We!used!a!simple!model!as!a!proof!of!principle,!to!inves,gate!how!
standard!methods!from!ML!can!be!applied!to!DFT.!!
!
This!novel!method!works!to!produce!highly!accurate!approximate!
func,onals.!The!performance!of!MLA!increases!with!larger!training!set.!
!
With!a!modified!orbitalBfree!DFT,!we!can!also!obtain!highly!accurate!
selfBconsistent!densi,es!and!energies.!!
!
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•  Performed many 1d 
KS calculations of 
diatomics as function 
of bond length, using 
LDA with soft-
Coulomb repulsion, 
including several with 
more than 2 
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FIG. 1. KS kinetic energies (in Hartrees) for 1d soft-Coulomb
models of H

2

, He
2

, Li
2

, Be
2

and LiH, for nuclear separations
between 0 and 10.

For a more thorough discussion of DVR, see Ref. 37.
To find the KS energies and orbitals, we diagonalize the
Hamiltonian of the KS system in the DVR basis

HDVR = UTU† + V DVR

S , (12)

where V DVR

S,↵�

= vS[n](x
↵

)�
↵�

, and the matrix elements of

the kinetic energy operator, T
ij

=
D
⇠
i

���� 1

2

@

2

@x

2

��� ⇠
j

E
, are

computed analytically. The electron density is given by

n(x) =
X

↵

p
w

↵

n(x
↵

)✓
↵

(x). (13)

Note that only the value of the densities at the quadra-
ture points x

↵

need be computed and stored:

n(x
↵

) = 2

N/2X

j=1

|�
j

(x
↵

)|2. (14)

We compute reference KS LDA energies and densities
for 1d H

2

, He
2

, Li
2

, Be
2

and LiH, for nuclear separation
R between 0 and 10. The range of kinetic energies for
all systems are shown in Fig. 1. With N

G

= 100, the
errors in all reference energies are less than 10�7. Fig. 2
shows the densities and potentials for the united atom,
equilibrium bond length, and stretched diatomic for H

2

and LiH. Fig. 9 shows the LDA binding curve of H
2

and
LiH. Additionally, we extract equilibrium bond lengths
R

e

, vibrational frequencies !
e

, and dissociation energies
D

0

(which we calculate as the di↵erence in molecular
energies between R = 10 and R = R

e

, minus the zero-
point vibrational energy), listed in Table I.

C. Orbital-free DFT

In orbital-free DFT, TS is approximated directly as a
functional of n. The ground-state density is found by the

(a)

(b)

FIG. 2. The 1d soft-Coulomb model for (a) H
2

(Z↵ = Z� = 1,
N = 2) and (b) LiH (Z↵ = 3, Z� = 1, N = 4). The
KS electronic density n(x) and the corresponding KS poten-
tial vS[n](x) are shown at R = 0 (dashed), equilibrium bond
length R

e

(solid), and nearly dissociated R = 10 (dot dashed).
R

e

values are given in Table I. Values given in atomic units.

constrained minimization

�

⇢
E

v

[n] � µ

✓Z
n(x) dx � N

◆�
= 0, (15)

where the chemical potential µ is adjusted to produce
the required particle number N . For the KS system, this
becomes simply

�TS[n]

�n(x)
= µ � vS[n](x). (16)

At self-consistency, the functional derivative of the KE is
negative the KS potential (up to a constant). This equa-
tion can be solved directly for the ground state density ñ
—no orbitals are required. Depending on the approxima-
tion to TS, the functional derivative may be ill behaved
at the nuclei for real molecular systems, making it di�-
cult or impossible to solve self-consistently. This problem
can be avoided by using pseudopotentials, ameliorating
the 1/r divergence at the nuclei.

Let T̃S be an approximate TS, yielding an approximate
Ẽ

v

[n]. There are two tests of an approximate T̃S. The
weaker test is to evaluate T̃S on the KS density n and
compute the error �EF ⌘ Ẽ

v

[n]�E
v

[n] = T̃S[n]�TS[n] =
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FIG. 5. The functional derivative of our MLA (green) cannot
reproduce the exact derivative vS[n] (blue dot dashed) eval-
uated at the ground-state density, because this information
is not contained in the data. However, both agree when pro-
jected onto the tangent of the data manifold MN at n (black
and red dashed). Shown for H

2

at equilibrium bond length
Re = 1.63, in atomic units.

since we intend to apply our MLA to systems similar to
those trained on.[43] We call the solution of this equa-
tion a constrained optimal density, which is analogous
to the self-consistent solution of Eq. (15), and satisfies
g[ñ] = 0. To see that this constraint can yield an accurate
minimizing density, we project the functional derivative
onto the tangent space of M

N

at n, which is given as
all densities n0 satisfying h�g[n]/�n, n0 � ni = 0. From
this we can construct an orthogonal basis, u

j

[n](x) for
j = 1, . . . , d, for the tangent space at n, and form the
projection operator

P̂ [n] =
dX

j=1

u
j

[n] ⌦ u
j

[n], (26)

where ⌦ is the tensor product defined by (a ⌦ b)c =
ha, cib. For our diatomic model system, d = 1 and the ex-
act projection onto the tangent space is given by P [n] =
u

1

[n]⌦u
1

[n], where u
1

[n] = (@n
R

(x)/@R)/k@n
R

(x)/@Rk
and n

R

(x) is the density that comes from the diatomic
with nuclear separation R. Fig. 5 shows excellent agree-
ment between the projected functional derivatives, eval-
uated at the KS density. This demonstrates that the
MLA captures the correct derivative of KE along M

N

.
Thus a gradient descent constrained to M

N

should give
an accurate constrained optimal density.

However, we are not given g[n]. We must attempt to
reconstruct M

N

from the training densities, approximat-
ing g[n]. In previous work [31], we used a local principal
component analysis (PCA) to approximate g[n]. In the
present work, however, the density manifold exhibits a
higher curvature, yielding inaccurate constrained optimal
densities. Thus, we use a more sophisticated approxima-
tion based on kernel PCA [44], called non-linear gradient

Projection step

Correction stepñ0
t

ñ
t

ñ
t+1 M

N

g[n] = 0

FIG. 6. A schematic of the projected gradient descent. First,
we project the functional derivative onto the tangent space of
the data manifold MN at ñt (dashed line). Next, we take a
step along the projected functional derivative to ñ

0
t to lower

the energy. Finally, we minimize g[n] orthogonal to the tan-
gent space to ensure the minimization stays on MN .

FIG. 7. Di↵erence between the constrained optimal density
ñ(x) and the KS density n(x) for various numbers of training
densities NT . The error decreases uniformly for all x. The
system is H

2

at equilibrium bond length. The inset shows the
KS density.

denoising (NLGD). A brief summary of NLGD is given
in Appendix A. The full derivation is given in Ref. 45.
In the next section, we describe how to solve Eq. 25 for
constrained optimal densities.

C. Projected gradient descent algorithm

A schematic of the projected gradient descent is shown
in Fig. 6. Given an approximate g[n] and an initial
guess for the density ñ

0

2 M
N

(e.g. one of the training
densities), the algorithm is as follows:

1. In a projection step, we first compute the projection
operator P̂ [n] onto the tangent space of M

N

at ñ
t

.
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Types of errors in DFT  

•  ΔEF = Ēxc[n]-Exc[n]	


•  ΔED = Ēxc[ñ]-Ēxc[n] 

•  ΔE = ΔEF+ ΔED	



•  Error analysis of  
energies in kcal/mol 
as a function of R 
with different 
numbers of training 
data, on constrained 
optimal densities 
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(a)

(b)

FIG. 8. The total error of the model and the functional- and
density-driven errors �EF and �ED for H

2

with (a) 10 and
(b) 20 training densities.

Next, a step is taken to lower the energy

ñ0
t

(x) = ñ
t

(x) � ✏P̂ [ñ
t

]

⇥
 

�TML

S [n]

�n(x)

����
n=ñt

+ vS[ñt

](x)

!
, (27)

where ✏ is a small positive constant.

2. In a correction step, we minimize g[n] orthogonal
to the tangent space of the previous step, starting
from ñ0

t

. Let ñ
t+1

be the minimizing density.

We iterate these two steps until convergence is achieved
(the changes in energy and density are smaller than the
desired tolerance). Details are given in the appendix.

D. Errors of constrained optimal densities

To illustrate how well this constrained minimization
(Eq. 25) works, in Fig. 7 we plot the error in the con-
strained optimal densities for several values of N

T

, for
H

2

at equilibrium bond length R
e

. Clearly, we approach
an accurate constrained optimal density rapidly with in-
creasing training data. In Table II, we list mean and max

errors (in both KE and total energy), as well as errors
in dissociation energy D

0

(corrected for zero-point vi-
brational energy), equilibrium bond length R

e

and zero-
point vibrational frequency !

e

, of the MLA evaluated on
constrained optimal densities. To see how these errors
vary over R, in Fig. 8 we plot the error in total energy
for H

2

and LiH, �E = EML[ñ]�E[n], where n is the ex-
act density and ñ is the constrained optimal density. As
we did for T loc

S in Fig. 3, this is split into the functional-
driven error, �E

F

= EML[n] � E[n], and the density-
driven error, �E

D

= EML[ñ] � EML[n] [12]. For smaller
R, �E

F

is largest because TS[n] is changing most rapidly
with R, and we train on data at fixed separations in R.
As R grows, �E

F

becomes much smaller. Once the MLA
has achieved high accuracy, density-driven errors become
negligible. We do not use the model between the last two
training points because the density-driven error becomes
much larger (an order of magnitude), presumably due to
lack of training data beyond R = 10.

Lastly, Fig. 9 shows the molecular binding curves for
H

2

(for various N
T

) and LiH, evaluated on constrained
optimal densities. The binding curve for H

2

rapidly con-
verges to the KS curve. By N

T

= 15, the curves are
indistinguishable to the eye. The same is true for He

2

,
Li

2

and Be
2

(not shown). The Figure also shows molecu-
lar forces, calculated via finite-di↵erence. The forces are
very accurate and should be suitable for, e.g., an ab-initio

molecular dynamics calculation.

IV. CONCLUSIONS

In the present work, we have shown how ML can pro-
duce a kinetic energy functional that allows an orbital-
free calculation of bond breaking for a simple model
system. We have also shown how highly accurate con-
strained optimal densities can be found with such a
model, despite inaccurate functional derivatives. The
more training data is used, the more accurate the re-
sults become. In this toy model of diatomic molecules, 20
training points yielded chemical accuracy, even on con-
strained optimal densities. The systematic improvabil-
ity of this method is sorely lacking in traditional density
functional approximations.

We expect results of a similar quality if several simple
real (3d) diatomics were stretched. But beyond this, i.e.,
for large molecules with many bonds of di↵erent types
and many internal degrees of freedom, one needs to find
a compact representation of the density that is invariant
with respect to symmetry operations, such as translation
and rotation. Two important questions for future work
are: how will the amount of training data required to
achieve chemical accuracy scale with molecular size, and
how can we ensure that the training densities are sam-
pled uniformly over the Born-Oppenheimer surface and
restricted to the region of interest. For example, in an
ab-initio molecular dynamics simulation of a molecule, we
want to build a model that trains on ground-state densi-
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Functional derivatives and densities 

•  How can we get accurate densities from lousy 
derivatives? 

•  Once solution density is within interpolation manifold, 
simply constrain derivative to stay on that manifold 

•  Analogy:   
–  Problem: find global minimum of 2D surface, given exact data 

along a 1D curve in that surface that passes through the 
minimum. 

–  Solution:  Make sure you stay on the path. 
•  PS: Inspired density-corrected DFT, which corrects 

many self-interaction errors! 
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Conceptual relationship 

•  ML works when 
a)  There’s a rule 
b)  Rule is too complicated for humans 
c)  There’s data 

•  HK theorems say 
a)  There is a functional 
b)  It cannot be given explicitly, exactly 
c)  Examples give exact values 

•  More important, practically: 
–  In chemistry and materials, we only care about solutions to an 

absurdly small fraction of possible problems, i.e., Coulomb 
potentials at various positions, so underlying dimensionality of 
solutions is very small, just solving differential equation is hard. 
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Road map back to reality 

Roadmap to 3d land

1d box

1d diatomics

3d atoms, diatomics

3d molecules

large systems, real applications

2

II. TECHNICAL BACKGROUND

Kernel ridge regression (KRR) is a non-linear version
of regression with regularization to prevent overfitting [3].
(introduce as gaussian process regression instead?) For
KRR, our machine learning approximation (MLA) takes the
form

TML(n) =
M!

j=1

!jk(nj ,n), (1)

where !j are weights to be determined, nj are training
densities and k is the kernel, which measures similarity
between densities. We choose a Gaussian kernel, common
in ML:

k(n,n!) = exp(!#n! n
!#2/(2"2)), (2)

where the hyperparameter " is called the length scale. The
weights are found by minimizing the cost function

C(!) =
M!

j=1

#T 2

j + $#!#2, (3)

where #Tj = TML

j ! Tj and ! = (!1, . . . ,!M ). The
second term is a regularizer that penalizes large weights
to prevent overfitting. The hyperparameter $ controls
regularization strength. Minimizing C(!) gives

! = (K + $I)"1
T , (4)

where K is the kernel matrix, with elements Kij =
k(ni,nj), and I is the identity matrix.

The hyperparameters " and $ are determined via leave-
one-out (LOO) cross validation, Define an ensemble of
functionals {TML

i,",#(n)} where the ith training density
is excluded. The hyperparameters are optimized by
minimizing the ensemble mean absolute error (MAE):

%($,") =
1

M

M!

i=1

|TML

i,",#(ni)! Ti| (5)

In recent work [? ], we demonstrated for the first time,
the ability of ML to approximate density functionals, for
a simple 1d model. However, in that work, the fermions
are confined to live inside a box, restraining the variety of
possible densities. In particular, there is no analog of a
binding energy curve, where a density is centered on two
sites whose separation varies continuously from small to
infinite.

In the present work, we consider one-dimensional
diatomic ’molecules’. The one-body potential attraction
of an ’atom’ of nuclear charge Z is chosen to be soft-
Coulombic[? ]

v(x) = ! Z$
1 + x2

, (6)

as this has been used in a variety of contexts. We use the
same form and strength for the internuclear repulsion:

VNN (R) =
Z2

$
1 +R2

(7)

Fig. 2 shows the densities and potentials for the united
atom, equilibrium bond length, and stretched diatomic.
[J, because you have no e-e interaction, your equilibrium
molecules looks very much like the united atom limit, not
like a molecule. We need to adjust the nuc rep to make
this look more like a molecule, or use self-consistent XC
calculations].

To generate a dissociation curve like that of Fig 1, we
consider bond lengths up to R = 15, and so place the entire
system on a 500 point grid from x = !20 to 20. We then
solve the Schrödinger equation numerically using Numerov’s
method [? ]. We doubly-occupy the lowest Z orbitals, so
that N = 2Z, where N is the number of fermions. We
extract various energies and the density as a function of R
for di"erent values of N .

To construct the model, we choose M training densities
at evenly spaced R between 0 and 15. Table I shows the
performance of the MLA.

III. CHALLENGES OF SELF-CONSISTENCY

A KE functional that predicts only the energy is useless
in practice, since the minimization:

&T [n]

&n(x)
= µ! v(x), (8)

where v(x) is the potential and where µ is adjusted to
produce the required particle number, requires an accurate
functional derivative (gradient). Fig. 3 shows the gradient
of our MLA evaluated at the ground-state density is very
di"erent from the exact.

FIG. 2. The electronic density and potential for Z = 1, atR =
0 (solid), equilibrium bond length (dashed), and stretched at
R = 15 (dot-dashed).

The prototype DFT problem we consider is N noninter-
acting spinless fermions confined to a 1D box, 0 ! x ! 1,
with hard walls. For continuous potentials vðxÞ, we solve
the Schrödinger equation numerically with the lowest N
orbitals occupied, finding the KE and the electronic density
nðxÞ, the sum of the squares of the occupied orbitals. Our
aim is to construct a MLA for the KE T½n% that bypasses
the need to solve the Schrödinger equation—a 1D analog
of orbital-free DFT [14]. (In 3D orbital-free DFT, the local
approximation as used in the Thomas-Fermi theory, is
typically accurate to within 10%, and the addition of the
leading gradient correction reduces the error to about 1%
[15]. Even this small an error in the total KE is too large to
give accurate chemical properties.)

First, we specify a class of potentials from which we
generate densities, which are then discretized on a uniform
grid of G points. We use a linear combination of three
Gaussian dips with different depths, widths, and centers,

vðxÞ ¼ '
X3

i¼1

ai exp½'ðx' biÞ2=ð2c2i Þ%: (1)

We generate 2000 such potentials, randomly sampling
1< a< 10, 0:4< b< 0:6, and 0:03< c< 0:1. For each
vjðxÞ, we find for N up to four electrons, the KE Tj;N and
density nj;N in RG on the grid using Numerov’s method
[16]. For G ¼ 500, the error in Tj;N due to discretization is
less than 1:5( 10'7. We take 1000 densities as a test set,
and chooseM others for training. The variation in this data
set for N ¼ 1 is illustrated in Fig. 2.

Kernel ridge regression is a nonlinear version of regres-
sion with regularization to prevent overfitting [17]. For
kernel ridge regression, our MLA takes the form,

TMLðnÞ ¼ !T
XM

j¼1

!jkðnj;nÞ; (2)

where !j are weights to be determined, nj are training
densities, and k is the kernel, which measures similarity
between densities. Here, !T is the mean KE of the training

set, inserted for convenience. We choose a Gaussian kernel,
common in ML,

kðn;n0Þ ¼ exp½'kn' n0k2=ð2"2Þ%; (3)

where the hyperparameter " is called the length scale. The
weights are found by minimizing the cost function,

C ð!Þ ¼
XM

j¼1

"T2
j þ #k!k2; (4)

where "Tj ¼ TML
j ' Tj and ! ¼ ð!1; . . . ;!MÞ. The sec-

ond term is a regularizer that penalizes large weights to
prevent overfitting. The hyperparameter # controls regulari-
zation strength. Minimizing Cð!Þ gives

! ¼ ðKþ #IÞ'1T; (5)

whereK is the kernel matrix with elementsKij ¼ kðni;njÞ,
and I is the identity matrix. Then " and # are determined
through tenfold cross validation: the training set is partitioned
into 10 bins of equal size. For each bin, the functional is
trained on the remaining samples, and" and# are optimized
by minimizing the mean absolute error (MAE) on the bin.
The partitioning is repeated up to 40 times, and the hyper-
parameters are chosen as the median over all bins.
Table I gives the performance of TML [Eq. (2)] trained on

MN-electron densities and evaluated on the corresponding
test set. ThemeanKEof the test set forN ¼ 1 is 5.40 hartree
(3390 kcal=mol). To contrast, the LDA in 1D is Tloc½n% ¼
$2

R
dx n3ðxÞ=6 and the von Weizsäcker functional is

TW½n% ¼ R
dx n0ðxÞ2=½8nðxÞ%. For N ¼ 1, the MAE of

Tloc on the test set is 217 kcal=mol, and the modified
gradient expansion approximation [19], TMGEA½n% ¼
Tloc½n% ' cTW½n%, has a MAE of 160 kcal=mol, where
c ¼ 0:0543 has been chosen to minimize the error (the
gradient correction is not as beneficial in 1D as in 3D).
For TML, both the mean and maximum absolute errors
improve as N or M increases (the system becomes more
uniform as N ! 1 [3]). At M ¼ 80, we have already

FIG. 2 (color online). The shaded region shows the extent of
variation of nðxÞ within our data set for N ¼ 1. Exact (red, solid)
and a self-consistent (black, dashed) density for potential of Fig. 3.

FIG. 1 (color online). Comparison of a projected (see within)
functional derivative of our MLA with the exact curve.

PRL 108, 253002 (2012) P HY S I CA L R EV I EW LE T T E R S
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bond breaking, self-consistent densities
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scalability, data accumulation

ab-initio MD, active learning

Challenges for DFT

• Orbital-free DFT

residues near the entrance and exit of the pore that favor
or disfavor the passage of ions solely based on their charge
[32].

Acid-sensing ion channels (ASICs) are cation channels
whose gating is controlled by extracellular pH. Equi-
librium MD simulations of ASIC1 at different ionic
solutions and concentrations examining multiple titration
states of various acidic residues have been used to
identify potential proton and cation binding sites and
to study cation/H+-induced protein conformational
changes [33].

Membrane transporters and carriers
In contrast to membrane channels that provide a passive
permeation pathway for their substrates, transport in
membrane transporters is mediated by close interaction
and engagement of the protein and the substrate. This is
necessary owing to the active (energy-dependent) nature
of the transport process during which the energy provided
by various sources, for example, ATP hydrolysis or an
ionic gradient across the membrane, is used to actively
‘pump’ the substrate across the membrane, often against
its electrochemical gradient. Shown in Figure 3, mem-
brane transporters are structurally much more diverse
than membrane channels, as they need to harvest various
sources of energy in the cell and efficiently couple them
to substrate transport. They are also far slower than
channels, since several stepwise protein conformational
changes of various magnitude are usually involved in their
mechanism. Along with the recent availability of struc-
tures for several different membrane transporters, MD
simulations have been employed to investigate dynamical
properties and details of the mechanism of function.
Although the time scale of the entire transport cycle

proves to be usually beyond the reach of transporter
MD simulations, such simulations have proven successful
in describing individual steps and transitions involved in
such cycles.

ABC transporters
ATP-binding cassette (ABC) transporters use ATP to
drive active transport of substrates across the membrane.
ATP binding and hydrolysis in the nucleotide binding
domains (NBDs) drive conformational changes of the
transmembrane domains (TMDs), thus switching sub-
strate accessibility between the cytoplasmic and extra-
cellular sides of the membrane. Elucidating the
conformational changes induced by ATP binding and
hydrolysis in the NBDs and the coupling of NBDs and
TMDs constitute two major themes in simulation studies
of ABC transporters.

The dimeric structures of the NBDs of maltose transpor-
ter (MalK) and an archaeal ABC transporter (MJ0796)
have been extensively used in simulation studies. Earlier
MD simulations of MalK performed on the three crystal
forms of MalK verified the nucleotide dependence of
opening and closing of the NBDs [34]. Simulations on the
order of 20 ns performed on different nucleotide-bound
forms of MJ0796 identified the rotation of the helical
subdomain as the primary response to ATP replacement
by ADP [35], while longer simulations (30–50 ns) were
employed to investigate the mechanism of dimer separ-
ation [36]. Using even longer simulations (! 70 ns) of
MalK, and through simulating the immediate effect of
ATP hydrolysis (conversion to ADP-Pi), it was proposed
that the hydrolysis reaction itself is the initial trigger for
dimer opening [37]. It was also shown that despite the
presence of two nucleotide-binding sites, only one ATP

132 Theory and simulation

Figure 3

Membrane transporters studied recently. Shown in the same format as in Figure 1, each transporter is colored according to domain with substrates
and direction of transport indicated. These transporters are found in a variety of cellular membranes including the cytoplasmic membrane (e.g.
MalEFGK), the bacterial outer membrane (BtuB), and the mitochondrial inner membrane (AAC).

Current Opinion in Structural Biology 2009, 19:128–137 www.sciencedirect.com

Current Opinion in Structural Biology 2009, 19:128–137
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Kevin’s paper: from functions to functionals   

•  Plot error as a 
function of 
hyperparameters 

•  Repeat for fitting 
f(x)= cos x 
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Introduction

Curves have roughly the
same “valley” shape for all
N

T

Bottom of the valley is an
order of magnitude deeper
than the walls

These valleys are nearly
identical in shape for
su�ciently large N

T

, which
indicates that this particular
feature arises in a systematic
manner as N

T

increases

Kevin Vu (UCI) Understanding Kernel Ridge Regression Friday 20

th
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•  All preliminary results  
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DMRG meets DFT meets ML 
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•  Ran H4 with fixed 
separations b using 
DMRG  

•  Use 30 values of b to 
train ML version of 
exact F[n] 

•  Yields accurate exact 
binding energy curve 
self-consistently. 



Summary 

•  ML of functionals works in model cases to produce highly 
accurate approximate functionals 

•  Totally different approach from anything before 
•  ML can even 

–  find accurate densities 
–  say when it will work within tolerance (makes Klaus nervous) 
–   break bonds 
–  Do the full functional 

•  But  
–  only demonstrated in 1d 
–  Need to do arbitrary-sized system (representation question) 

•  Thanks to  
–  Students: Li Li, John Snyder, Kevin Vu, Isabelle Pelaschier 
–  Collaborators: Klaus Mueller, Matthias Rupp, Katia Hansen 
–  Funders: NSF from chem, DMR, math 
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