Diffusion Wavelets
and Applications

J.C. Bremer, R.R. Coifman, P.W. Jones, S. Lafon,
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Demos, web pages and preprints available at:

S.Lafon: www.math.yale.edu/~sl349 (eigenfunctions of Laplacian)
MM: www.math.yale.edu/~mmm&2 (diffusion wavelets)



Goal

Do multiscale analysis intrinsically on manifolds, varifolds, “datasets”.

Motivations

Analyze large amount of data, and functions on this data, intrinsically

rather low-dimensional, embedded in high dimensions.

Paradigm: we have a large number of documents (e.g.: web pages,

gene array data, (hyper)spectral data, molecular dynamics data etc...)

and a way of measuring similarity between pairs. Model: a graph
(G.E,W)

In 1mportant practical cases: vertices are points in high-dimensional

Euclidean space, weights are a function of Euclidean distance.

Difticulties

Data sets 1n high-dimensions are complicated, as are classes of
interesting functions on them.
We want to do approximation and “learning” of such functions.

Parametrize low dimensional data sets embedded in high-dimension.
“Fast” algorithms




High dimensional data: examples

» Documents, web searching
 Customer databases
 Financial data

o Satellite 1imagery
 Transaction logs

 Social networks

« Gene arrays, proteomics data
« Art transactions data

« Traffic (automobilistic, network) statistics



Laplacian, diffusion geometries

[RR Coifman, S. Lafon]
References: Belkin, Nyogi; Stephane's web page: www.math.yale.edu/~s1349
Part of the material in the next few slides is courtesy of Stephane Lafon.

From local to global: diffusion distances
Motto: Diffusion distance measures and averages connections of all lengths, 1s more
stable, uses a “preponderance of evidence”
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A local “‘similarity” operator on the set

X ={x,,x,,...,x, } data set.

k(x,y) kernel defined on the data and being

symmetric k(x, y) = k(x, y)
positivity-preserving: k(x,y) > 0

positive semi-definite: Z Z o(x)(Y)k(x,y) =0

xeX ye X

The kernel k& describes the geometry of X' by defining the relationship

between the data points.



Examples of similarity kernels

Examples:
- If X lies 1in n-dimensional Euclidean space, k(x,y) could be:
- exponentially weighted distance: exp(-(||x-y|/a)”"2
- angle: <x,y>/([[x|| [[yl])
- harmonic potential: 1/(a+|x-y||), or powers of it
- “feature distances”: any of the above applied in the ragne {(X), f nonlinear,
possibly mapping X to higher dimension

- If X 1s an abstract graph: we need to be given some weights on edges,
measuring similarity.

This could wildly vary: from the graph obtained by discretizing a PDE, to ways
of measuring similarity between two protein chains...



Diffusion Distances
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Diffusion embedding mapping X with diffusion distance into Euclidean
space with Euclidean distance:
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Link with other kernel methods

Recent kernel methods: LLE (Roweis, Saul 2000),
Laplacian Eigenmaps (Belkin, Niyogi 2002)
Hessian Eigenmaps (Donoho, Grimes 2003),
LTSA (Zhang, Zha 2002) ...

all based on the following paradigm: minimize Q( f) where

0= 0.(/)

xe X

Q. (f) : quadratic form measuring local variation off n a neighborhood of x

Solution: compute eigenfunctions {¢, } of O and map data points via
X (9 (%), 9, (%), ..., @, (X))
In our case we minimize Z k(x, V)(f(x)— ()’

xeX



So far so good...

We see that:

- 1t seems useful to consider a framework in which, for a given data set, similarities are
given only between very similar points

- 1t 1s possible to organize these local information by diffusion into global
parametrizations,

- these parametrizations can be found by looking at the eigemvectors of a diffusion
operator,

- these eigenvectors in turn yield a nonlinear embedding into low-dimensional Euclidean
space,

- the eigenvectors can be used for global Fourier analysis on the set/manifold

PROBLEM:
Either very local information or very global information: NO MULTISCALE SO FAR!

Solution 1: proceed top bottom: cut greedily according to global information, and repeat
procedure on the pieces

Solution 2: proceed bottom up: repeatedly cluster together in a multi-scale fashion, in a
way that 1s “faithful” to the operator: diffusion wavelets.

Solution 3: do both!



From global Diffusion Geometries...

Recall: we are given a graph X with weights W. There 1s a natural random
walk P on X induced by these weights. P maps probability distributions on
X to probability distributions on X. We let T be P renormalized to have
largest eigenvalue 1. The spectra of T and its powers look like:
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... to Multiresolution Diffusion
[Coifman,MM]

The decay in the spectrum of T says powers
of T are low-rank, hence compressible.

Random walk for one step, collect together ...
random walkers into representatives, let the o
representatives random walk twice, collect

them 1nto representatives, and so on....
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Dilations, translations, downsampling

We have frequencies: the eigenvalues of the diffusion T.

What about dilations , translations , downsampling?

We may have minimal information about the geometry, and only locally. Let's
think 1n terms of functions on the set X.

Dilations:
Use the diffusion operator T and its dyadic powers as dilations.

Translations and downsampling:

Idea: diffusing a basis of “scaling functions™ at a certain scale by a power of T
should yield a redundant set of coarser “scaling functions” at the next coarser
scale: reduce this set to a Riesz (i.e. well-conditioned)-basis. This 1is
downsampling in the function space, and corresponds to finding a well-
conditioned subset of “translates”.







All orthogonal, in Euclidean
space of dimension equal to
cardinality of &,

Orthonormalize to get a new
"downsampled" basis for the

range.
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on the set, and is driven by T and its (dyadic)
powers. The set seem almost an "excuse” to
do analysis. However the interaction
between T and geometric properties of set
are crucial and interesting.

Tf' maps the sphereina
highly anisotropic ellipse
(axes lengths are the
spectrum of this power of
T!). Discard all the small
axes yields downsampling.



Potential Theory, Green's function
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The semigroup generator acts by

e~ f = Z e~ Mt < ¢y, f > ¢

1 / T i
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[small catch: L has a kernel, one has to work in the complement. |

Averaging over all times:
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Fig. 3. Multiresolution Analysis on the circle. We consider 256 points on the unit
circle, start with o, = 0y, and with the standard diffusion. We plot several scaling
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Fig. 4. Multiresolution Analysis on the circle: on the left we plot the compressed
matrices representing powers of the diffusion operator, on the right we plot the
entries of the same matrices which are above working precision.
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Fiourie 4. Mualtiresolution Analvsis on the circle. In the same

]

setting as for Figure 3, we compute the multiscale transform of

a periodic signal on the circle, contaiminated by two d-impulses
(top) and of windowed chirp (bottom). In the first column we
plot the projections onto coarses and coarses scaling spaces, in the
second column we plot the projection on the corresponding wavelet
subspaces. Computations here were done to 5 digits of precision.
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Diffusion on nonhomogenous circle
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Ficurie 6. Example of scaling functions at coarse level associated
with a Beltrami diffusion on randomly distributed points on the
unit square. For graphical reasons, we are plotting a smooth exten-
sion of these scaling tunctions on a uniform grid by cubic interpo-
lation.



Diffusion Wavelets on the sphere
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Diffusion Wavelets on a dumbbell

M, H.
HiHl;
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Fig. 8. Some diffusion scaling functions and wavelets at different scales on a dumb-
bell-shaped manifold sampled at 1400 points.




Connections...

Wavelets:
- Lifting (Sweldens, Daubechies, ...)

- Continuous wavelets from group actions

Classical Harmonic Analysis:

- Littlewood-Paley on semigroups (Stein), Markov diffusion semigroups

- Martingales associated to the above, Brownian motion

- Generalized Heisenberg principles (Nahmod)

- Harmonic Analysis of eigenfunctions of the Laplacian on domains/manifolds
- Atomic decompositions

Numerics:

- Algebraic Multigrid (Brandt, ...)

- Kind of “inverse” FMM (Rohklin, Belkyin-Coifman-Rohklin, ...)

- Multiscale matrix compression techniques (Gu-Eisenstat, Gimbutas-
Martinsson-Rohklin,...)

- FFTs!

- Randomizable



Diffusion Wavelet Packets

[JC Bremer, RR Coifman, MM, AD Szlam]

We can split the wavelet subspaces further, in a hierarchical dyadic fashion,
very much like 1n the classical case. The splittings are generated by “numerical
kernel” and “numerical range” operations.
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Fig. 2. Diagram for wavelet packet construction



Wavelet packets, best basis & compression
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Fig. 11. Left: reconstruction of the function F' with top 50 best basis packets. Right:
reconstruction with top 200 eigenfunctions of the Beltrami Laplacian operator.
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Fig. 10. Left to right: 50 top coefficients of F in its best diffusion wavelet basis,
distribution coefhicientsF in the delta basis. first 200 coefthicients of F in the best

basis and in the basis of eigenfunctions.



Fig. 6. Some diftusion wavelets and wavelet packets on the sphere, sampled randomly
uniformly at 2000 points.



Compression example 11
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Fig. 12. Two different views of the function F' on the sphere,

Fig. 14. Left: reconstruction of the function F' from 200 best basis diffusion wavelet
packet coefficients. Right: reconstruction from top 200 eigenfunctions.
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Fig. 13. Left to right: 50 top coeflicients

distribution coefficientsF in the delta basis, first 200

basis and in the basis of eigenfunctions.

of F'in its best diffusion wavelet basis.
coeflicients of F' in the best



Denoising
[a la Coifman-Wickerhauser & Donoho-Johnstone]
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Fig. 16. Left: G with noise; right: G denoised



Compression on nonuniformly anisotropic function spaces

f _ Consider circle with non-uniform impedance as
/ \ | before. The measure of smoothness, if defined

| according to these wavelets, 1s non-uniform on the
VVVVV circle.

m

Fig, 3. Tpedance of the anisotvopic diffusion operator T lge on one part of the
circle and almost 0 on another,
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Fig. 7. The function F (on the left) and its reflection.
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Fig. 8. Comparison of the magnitude first 50 coefficients of F' and its reflection in
their best wavelet packet bases.



[Local Discriminant Bases
[Saito-Coifman]

Fig. 19. Left to right, a realization of a function from class 1 and 2 respectively.
Note that the third smooth texture patch is on the back side of the sphere, and
can be viewed in semitransparency. The other two smooth patches are decoys in

random non-overlapping positions.



Brownian Motion

Diffusion wavelets allow for a natural generalization of the wavelet expansion
of Brownian motion, for the efficient computation of long Brownian paths,
evaluated at few points.
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[PW Jones, MM, M Mohlenkamp, R Schul]



Analysis of a document corpora

Given 1,000 documents, each of which 1s associated with 10,000 words, with a
value indicating the relevance of each word in that document.

View this as a set of 1,000 in 10,000 dimensions, construct a graph with 1,000
vertices, each of which with few selected edges to very close-by documents.
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" Classes get quickly garbled up in the
~ eigenfunction coordinates
-~ (left:eigenmap with eigenfunctions
. 4.5.0)...

0.14

...but can stay separated with

diffusion scaling functions (right:
the scaling function embeddingat 'y .o o
scale 3). of e a




Comments, Applications, etc...

* This is a wavelet analysis on manifolds (and more, e.g. fractals), graphs, markov chains,
while Laplacian eigenfunctions do Fourier Analysis on manifolds (and fractals, etc...).

* We are “‘compressing” powers of the operator, functions of the operators, subspaces of
the function subspaces on which its powers act (Heisenberg principle...), and the space
itself (sampling theorems, quadrature formulas...)

* We are constructing a biorthogonal version of the transform (better adapted to studying
Markov chains) and wavelet packets: this will allow efficient denoising, compression,
discrimination on all the spaces mentioned above.

* Does not require the diffusion to be self-adjoint, nor eigenvectors.

* The multiscale spaces are a natural scale of complexity spaces for learning empirical
functions on the data set.

* Diffusion wavelets extend outside the set, in a natural multiscale fashion.

* To be tied with measure-geometric considerations used to embed metric spaces in
Euclidean spaces with small distortion.

* Study and compression of dynamical systems.



Current & Future Work

- Multiscale embeddings for graphs, measure-geometric implications
- Martingale aspects and Brownian motion

- Applications to learning and regression on manifolds

- Robustness, perturbations, extensions

- Compression of data sets

- Going nonlinear

This talk, papers, Matlab code available at:
www.math.yale.edu/~mmm§2

Thank youl!



