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Goal
Do multiscale analysis intrinsically on manifolds, varifolds, “datasets”.

Motivations
Analyze large amount of data, and functions on this data, intrinsically 
rather low-dimensional, embedded in high dimensions.
Paradigm: we  have a large number of documents  (e.g.: web pages, 
gene array data, (hyper)spectral data, molecular dynamics data etc...) 
and a way of measuring similarity between pairs. Model: a graph

(G,E,W)
In important practical cases: vertices are points in high-dimensional 
Euclidean space, weights are a function of Euclidean distance.

Difficulties
Data sets in high-dimensions are complicated, as are classes of 
interesting functions on them. 
We want to do approximation and “learning” of such functions. 
Parametrize low dimensional data sets embedded in high-dimension. 
“Fast” algorithms



• Documents, web searching

• Customer databases

• Financial data

• Satellite imagery

• Transaction logs

• Social networks

• Gene arrays, proteomics data

• Art transactions data

• Traffic (automobilistic, network) statistics

•

•

•

High dimensional data: examples



Laplacian, diffusion geometries
[RR Coifman, S. Lafon]

References: Belkin, Nyogi; Stephane's web page: www.math.yale.edu/~sl349
Part of the material in the next few slides is courtesy of Stephane Lafon.

From local to global: diffusion distances
Motto: Diffusion distance measures and averages connections of all lengths, is more 

stable, uses a “preponderance of evidence”



A local “similarity” operator on the set

 1 2, ,..., NX x x x  data set.
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 kernel defined on the data and being
 symmetric 
 positivity-preserving: 

 positive semi-definite: 

k XThe kernel  describes the geometry of  by defining the relationship
between the data points.



Examples:
- If X lies in n-dimensional Euclidean space, k(x,y) could be:

- exponentially weighted distance: exp(-(||x-y||/a)^2
- angle: <x,y>/(||x|| ||y||)
- harmonic potential: 1/(a+||x-y||), or powers of it

      - “feature distances”: any of the above applied in the ragne f(X), f nonlinear, 
possibly mapping X to higher dimension

- If X is an abstract graph: we need to be given some weights on edges, 
measuring similarity.
This could wildly vary: from the graph obtained by discretizing a PDE, to ways 
of measuring similarity between two protein chains...

Examples of similarity kernels



Diffusion Distances

y

x

Diffusion embedding mapping X with diffusion distance into Euclidean 
space with Euclidean distance:
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Original points                           Embeddings





Link with other kernel methods

Recent kernel methods:   LLE (Roweis, Saul 2000),
                                       Laplacian Eigenmaps (Belkin, Niyogi 2002),
                                       Hessian Eigenmaps (Donoho, G
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rimes 2003),
                                       LTSA (Zhang, Zha 2002) ...
all based on the following paradigm: minimize  where
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So far so good...
We see that:
- it seems useful to consider a framework in which, for a given data set, similarities are 
given only between very similar points
- it is possible to organize  these local information by diffusion into global 
parametrizations, 
- these parametrizations can be found by looking at the eigenvectors  of a diffusion 
operator, 
- these eigenvectors in turn yield a nonlinear embedding into low-dimensional Euclidean 
space,
- the eigenvectors can be used for global Fourier analysis on the set/manifold

PROBLEM:
Either very local information or very global information: NO MULTISCALE SO FAR!

Solution 1: proceed top bottom: cut greedily according to global information, and repeat 
procedure on the pieces
Solution 2: proceed bottom up: repeatedly cluster together in a multi-scale fashion, in a 
way that is “faithful” to the operator: diffusion wavelets.
Solution 3: do both!



From global Diffusion Geometries...
Recall: we are given a graph X with weights W. There is a natural random 
walk P on X induced by these weights. P maps probability distributions on 
X  to probability distributions on X. We let T  be P  renormalized to have 
largest eigenvalue 1. The spectra of T and its powers look like:
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... to Multiresolution Diffusion

The decay in the spectrum of T  says powers 
of T are low-rank, hence compressible.

Random walk for one step, collect together 
random walkers into representatives, let the 
representatives random walk twice, collect 
them into representatives, and so on....
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[Coifman,MM]



We have frequencies: the eigenvalues of the diffusion T.
What about dilations , translations , downsampling?
We may have minimal information about the geometry, and only locally. Let's 
think in terms of functions on the set X.

Dilations:
Use the diffusion operator T and its dyadic powers as dilations.

Translations and downsampling:
Idea: diffusing a basis of “scaling functions” at a certain scale by a power of T 
should yield a redundant set of coarser “scaling functions” at the next coarser 
scale: reduce this set to a Riesz (i.e. well-conditioned)-basis. This is 
downsampling in the function space, and corresponds to finding a well-
conditioned subset of “translates”.

Dilations, translations, downsampling



Multiscale Random Walkers

“=”





Potential Theory, Green's function









Diffusion on nonhomogenous circle

100200300400500
0

0.5

1

V
1

100200300400500
-0.2

0
0.2
0.4
0.6
0.8

V2

100200300400500
-0.4
-0.2

0
0.2
0.4
0.6
0.8

V
3

100200300400500
-0.5

0

0.5

V
4

100200300400500
-0.4
-0.2

0
0.2
0.4
0.6
0.8

V5

100200300400500
-0.5

0

0.5

V6

100200300400500

-0.2

0

0.2

0.4

V7

100200300400500

-0.1
0

0.1
0.2
0.3

V8

100200300400500

-0.2

0

0.2

V9

100200300400500
-0.2

0

0.2

V10

100200300400500

100
200
300
400
500

200 400

100

200

300

400

100200300

100

200

300

100 200 300

100

200

300

50100150200250

50
100
150
200
250

50 100150200

50

100

150

200
50 100 150

50

100

150
204060 80100

20
40
60
80

100

20 40 60

20

40

60

10 2030 40 50

10
20
30
40
50





Diffusion Wavelets on the sphere
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Diffusion Wavelets on a dumbbell



Connections...
Wavelets:
- Lifting (Sweldens, Daubechies, ...)
- Continuous wavelets from group actions

Classical Harmonic Analysis:
- Littlewood-Paley on semigroups (Stein), Markov diffusion semigroups
- Martingales associated to the above, Brownian motion
- Generalized Heisenberg principles (Nahmod)
- Harmonic Analysis of eigenfunctions of the Laplacian on domains/manifolds
- Atomic decompositions

Numerics:
- Algebraic Multigrid (Brandt, ...)
- Kind of “inverse” FMM (Rohklin, Belkyin-Coifman-Rohklin, ...)
- Multiscale matrix compression techniques (Gu-Eisenstat, Gimbutas-
Martinsson-Rohklin,...)
- FFTs!
- Randomizable



Diffusion Wavelet Packets
[JC Bremer, RR Coifman, MM, AD Szlam]

We can split the wavelet subspaces further, in a hierarchical dyadic fashion, 
very much like in the classical case. The splittings are generated by “numerical 
kernel” and “numerical range” operations.



Wavelet packets, best basis & compression





Compression example II



Denoising
[a la Coifman-Wickerhauser & Donoho-Johnstone]



Compression on nonuniformly anisotropic function spaces
Consider circle with non-uniform impedance as 
before. The measure of smoothness, if defined 
according to these wavelets, is non-uniform on the 
circle.



Local Discriminant Bases 
[Saito-Coifman]



Brownian Motion

[PW Jones, MM, M Mohlenkamp, R Schul]

Diffusion wavelets allow for a natural generalization of the wavelet expansion 
of Brownian motion, for the efficient computation of long Brownian paths, 
evaluated at few points.



Analysis of a document corpora
Given 1,000 documents, each of which is associated with 10,000 words, with a 
value indicating the relevance of each word in that document.
View this as a set of 1,000 in 10,000 dimensions, construct a graph with 1,000 
vertices, each of which with few selected edges to very close-by documents.
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Astronomy, 
planets

Physics

Paleontology

Climate

Comets, 
asteroids



Classes get quickly garbled up in the 
eigenfunction coordinates 
(left:eigenmap with eigenfunctions 
4,5,6)...

...but can stay separated with 
diffusion scaling functions (right: 
the scaling function embedding at 
scale 3).



Comments, Applications, etc...
● This is a wavelet analysis on manifolds (and more, e.g. fractals), graphs, markov chains, 
while Laplacian eigenfunctions do Fourier Analysis on manifolds (and fractals, etc...).
● We are “compressing” powers of the operator, functions of the operators, subspaces of 
the function subspaces on which its powers act (Heisenberg principle...), and the space 
itself (sampling theorems, quadrature formulas...)
● We are constructing a biorthogonal version of the transform (better adapted to studying 
Markov chains) and wavelet packets: this will allow efficient denoising, compression, 
discrimination on all the spaces mentioned above.
● Does not require the diffusion to be self-adjoint, nor eigenvectors.
● The multiscale spaces are a natural scale of complexity spaces for learning empirical 
functions on the data set.
● Diffusion wavelets extend outside the set, in a natural multiscale fashion.
● To be tied with measure-geometric considerations used to embed metric spaces in 
Euclidean spaces with small distortion.
● Study and compression of dynamical systems.



Current & Future Work

- Multiscale embeddings for graphs, measure-geometric implications
- Martingale aspects and Brownian motion
- Applications to learning and regression on manifolds
- Robustness, perturbations, extensions
- Compression of data sets
- Going nonlinear

This talk, papers, Matlab code available at:
www.math.yale.edu/~mmm82

Thank you!


