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Goal
Do multiscale analysis intrinsically on manifolds, varifolds, “datasets”.

Motivations
Analyze large amount of data, and functions on this data, intrinsically 
rather low-dimensional, embedded in high dimensions.
Paradigm: we  have a large number of documents  (e.g.: web pages, 
gene array data, (hyper)spectral data, molecular dynamics data etc...) 
and a way of measuring similarity between pairs. Model: a graph

(G,E,W)
In important practical cases: vertices are points in high-dimensional 
Euclidean space, weights are a function of Euclidean distance.

Difficulties
Data sets in high-dimensions are complicated, as are classes of 
interesting functions on them. 
We want to do approximation and “learning” of such functions. 
Parametrize low dimensional data sets embedded in high-dimension. 
“Fast” algorithms



• Documents, web searching

• Customer databases

• Financial data

• Satellite imagery

• Transaction logs

• Social networks

• Gene arrays, proteomics data

• Art transactions data

• Traffic (automobilistic, network) statistics

•

•

•

High dimensional data: examples



Laplacian, diffusion geometries
[RR Coifman, S. Lafon]

References: Belkin, Nyogi; Stephane's web page: www.math.yale.edu/~sl349
Part of the material in the next few slides is courtesy of Stephane Lafon.

From local to global: diffusion distances
Motto: Diffusion distance measures and averages connections of all lengths, is more 

stable, uses a “preponderance of evidence”



A local “similarity” operator on the set
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 kernel defined on the data and being
 symmetric 
 positivity-preserving: 

 positive semi-definite: 

k XThe kernel  describes the geometry of  by defining the relationship
between the data points.



Examples:
- If X lies in n-dimensional Euclidean space, k(x,y) could be:

- exponentially weighted distance: exp(-(||x-y||/a)^2
- angle: <x,y>/(||x|| ||y||)
- harmonic potential: 1/(a+||x-y||), or powers of it

      - “feature distances”: any of the above applied in the ragne f(X), f nonlinear, 
possibly mapping X to higher dimension

- If X is an abstract graph: we need to be given some weights on edges, 
measuring similarity.
This could wildly vary: from the graph obtained by discretizing a PDE, to ways 
of measuring similarity between two protein chains...

Examples of similarity kernels



Diffusion Distances

y

x

Diffusion embedding mapping X with diffusion distance into Euclidean 
space with Euclidean distance:
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Link with other kernel methods

Recent kernel methods:   LLE (Roweis, Saul 2000),
                                       Laplacian Eigenmaps (Belkin, Niyogi 2002),
                                       Hessian Eigenmaps (Donoho, G

( )
( ) ( )

( )

rimes 2003),
                                       LTSA (Zhang, Zha 2002) ...
all based on the following paradigm: minimize  where
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So far so good...
We see that:
- it seems useful to consider a framework in which, for a given data set, similarities are 
given only between very similar points
- it is possible to organize  these local information by diffusion into global 
parametrizations, 
- these parametrizations can be found by looking at the eigenvectors  of a diffusion 
operator, 
- these eigenvectors in turn yield a nonlinear embedding into low-dimensional Euclidean 
space,
- the eigenvectors can be used for global Fourier analysis on the set/manifold

PROBLEM:
Either very local information or very global information: NO MULTISCALE SO FAR!

Solution 1: proceed top bottom: cut greedily according to global information, and repeat 
procedure on the pieces
Solution 2: proceed bottom up: repeatedly cluster together in a multi-scale fashion, in a 
way that is “faithful” to the operator: diffusion wavelets.
Solution 3: do both!



From global Diffusion Geometries...
Recall: we are given a graph X with weights W. There is a natural random 
walk P on X induced by these weights. P maps probability distributions on 
X  to probability distributions on X. We let T  be P  renormalized to have 
largest eigenvalue 1. The spectra of T and its powers look like:
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... to Multiresolution Diffusion

The decay in the spectrum of T  says powers 
of T are low-rank, hence compressible.

Random walk for one step, collect together 
random walkers into representatives, let the 
representatives random walk twice, collect 
them into representatives, and so on....
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[Coifman,MM]



We have frequencies: the eigenvalues of the diffusion T.
What about dilations , translations , downsampling?
We may have minimal information about the geometry, and only locally. Let's 
think in terms of functions on the set X.

Dilations:
Use the diffusion operator T and its dyadic powers as dilations.

Translations and downsampling:
Idea: diffusing a basis of “scaling functions” at a certain scale by a power of T 
should yield a redundant set of coarser “scaling functions” at the next coarser 
scale: reduce this set to a Riesz (i.e. well-conditioned)-basis. This is 
downsampling in the function space, and corresponds to finding a well-
conditioned subset of “translates”.

Dilations, translations, downsampling



Multiscale Random Walkers

“=”





Potential Theory, Green's function









Diffusion on nonhomogenous circle
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Diffusion Wavelets on the sphere
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Diffusion Wavelets on a dumbbell



Connections...
Wavelets:
- Lifting (Sweldens, Daubechies, ...)
- Continuous wavelets from group actions

Classical Harmonic Analysis:
- Littlewood-Paley on semigroups (Stein), Markov diffusion semigroups
- Martingales associated to the above, Brownian motion
- Generalized Heisenberg principles (Nahmod)
- Harmonic Analysis of eigenfunctions of the Laplacian on domains/manifolds
- Atomic decompositions

Numerics:
- Algebraic Multigrid (Brandt, ...)
- Kind of “inverse” FMM (Rohklin, Belkyin-Coifman-Rohklin, ...)
- Multiscale matrix compression techniques (Gu-Eisenstat, Gimbutas-
Martinsson-Rohklin,...)
- FFTs!
- Randomizable



Diffusion Wavelet Packets
[JC Bremer, RR Coifman, MM, AD Szlam]

We can split the wavelet subspaces further, in a hierarchical dyadic fashion, 
very much like in the classical case. The splittings are generated by “numerical 
kernel” and “numerical range” operations.



Wavelet packets, best basis & compression





Compression example II



Denoising
[a la Coifman-Wickerhauser & Donoho-Johnstone]



Compression on nonuniformly anisotropic function spaces
Consider circle with non-uniform impedance as 
before. The measure of smoothness, if defined 
according to these wavelets, is non-uniform on the 
circle.



Local Discriminant Bases 
[Saito-Coifman]



Brownian Motion

[PW Jones, MM, M Mohlenkamp, R Schul]

Diffusion wavelets allow for a natural generalization of the wavelet expansion 
of Brownian motion, for the efficient computation of long Brownian paths, 
evaluated at few points.



Analysis of a document corpora
Given 1,000 documents, each of which is associated with 10,000 words, with a 
value indicating the relevance of each word in that document.
View this as a set of 1,000 in 10,000 dimensions, construct a graph with 1,000 
vertices, each of which with few selected edges to very close-by documents.
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Astronomy, 
planets

Physics

Paleontology

Climate

Comets, 
asteroids



Classes get quickly garbled up in the 
eigenfunction coordinates 
(left:eigenmap with eigenfunctions 
4,5,6)...

...but can stay separated with 
diffusion scaling functions (right: 
the scaling function embedding at 
scale 3).



Comments, Applications, etc...
● This is a wavelet analysis on manifolds (and more, e.g. fractals), graphs, markov chains, 
while Laplacian eigenfunctions do Fourier Analysis on manifolds (and fractals, etc...).
● We are “compressing” powers of the operator, functions of the operators, subspaces of 
the function subspaces on which its powers act (Heisenberg principle...), and the space 
itself (sampling theorems, quadrature formulas...)
● We are constructing a biorthogonal version of the transform (better adapted to studying 
Markov chains) and wavelet packets: this will allow efficient denoising, compression, 
discrimination on all the spaces mentioned above.
● Does not require the diffusion to be self-adjoint, nor eigenvectors.
● The multiscale spaces are a natural scale of complexity spaces for learning empirical 
functions on the data set.
● Diffusion wavelets extend outside the set, in a natural multiscale fashion.
● To be tied with measure-geometric considerations used to embed metric spaces in 
Euclidean spaces with small distortion.
● Study and compression of dynamical systems.



Current & Future Work

- Multiscale embeddings for graphs, measure-geometric implications
- Martingale aspects and Brownian motion
- Applications to learning and regression on manifolds
- Robustness, perturbations, extensions
- Compression of data sets
- Going nonlinear

This talk, papers, Matlab code available at:
www.math.yale.edu/~mmm82

Thank you!


