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Tλ(f1, · · · , fn) =
∫
Rd

eiλP (y)
n∏

j=1

fj ◦ `j(y) η(y) dy

where

• P is a real-valued polynomial,

• λ ∈ R is a large parameter,

• η is a smooth compactly supported cutoff

function,

• `j : Rd 7→ Rdj are surjective linear transforma-

tions.

Question. Is

|Tλ({fj})| ≤ C|λ|−δ
∏
j

‖fj‖L∞

uniformly for all functions fj as |λ| → ∞?
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This part of talk is joint with Li, Tao, Thiele .

We started with question posed by Lacey: Does

bilinear Hilbert transform with oscillatory fac-

tor ∫
R

eitkf1(x + t)f2(x− t) t−1dt

have same Lp mapping properties as the bi-

linear Hilbert transform without the oscillatory

factor? We showed that it does, and the main

step was to prove that∣∣∣ ∫∫
eiλtkf1(x + t)f2(x− t)f3(x) η(x, t) dt dx

∣∣∣
. |λ|−δ

∏
i

‖fi‖L2.

We then realized that the nonsingular problem

was the real issue.
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Most fundamental example

∣∣∣ ∫∫
Rd×Rd

e−iλx·yf(x)g(y)η(x, y) dx dy
∣∣∣

≤ C|λ|−d/2‖f‖2‖g‖2.

This inequality, after rescaling, implies the L2

boundedness of the Fourier transform.

Note that here every point x ∈ Rd interacts

with every point y ∈ Rd. Our work is concerned

with generalizations where the integral is not

over
∏

j Rdj, but rather over a d-dimensional

linear subspace of
∏

j Rdj. Thus most n-tuples

of points (x1, · · · , xn) ∈
∏

j Rdj do not interact.
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In the linear/bilinear case n = 2 this problem

has been studied intensively, in particular by

Stein and by Phong-Stein but also by many

others. For∫∫
Rd+d

eiλP (x,y)f(x)g(y)η(x, y) dx dy

a power decay bound holds if and only if there

exist α 6= 0 and β 6= 0 for which

∂α
x ∂β

y P (x, y) does not vanish identically;

that is, if and only if P is not of the form

p(x) + q(y).
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• In the truly multilinear case quite little is
known. The focus here is on the basic question
of whether there is any decay at all.

• From linear experience we expect the case
of polynomial phase P to be fundamental, and
then if there is any decay at all it seems rea-
sonable to hope for power decay.

• We’re putting the strongest norm on the
functions fj, and aren’t trying to quantify δ.
If there’s any decay for L∞, then there is also
for any (p1, · · · , pn) for which the integral con-
verges absolutely, except for endpoints.

• If some smoothness condition is imposed on
the fj it’s a completely different problem.

• It is equivalent to ask whether∫
e
iλ(P−

∑
j hj◦`j)η dy = O(|λ|−δ)

uniformly for all measurable real-valued func-
tions hj.
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Obvious necessary condition. If

P =
∑
j

hj ◦ `j

for some functions hj then there’s no decay

(take fj = e−iλhj) to cancel out all the appar-

ent oscillation.

Definition. P is nondegenerate relative to {`j}
if P can not be represented as

∑
j qj ◦ `j for any

functions qj.

Question. Does power decay always hold for

nondegenerate polynomial phase functions P?

This remains open, even for quadratic polyno-

mials in three variables.
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Suppose P homogeneous, to simplify state-

ments.

Lemma. The following are equivalent:

• P 6=
∑

j qj ◦ `j for polynomials qj of degrees

≤ degree(P ).

• P 6=
∑

j hj ◦ `j for any distributions hj.

• There exists a constant-coefficient homoge-

neous linear partial differential operator L sat-

isfying

L(fj ◦ `j) ≡ 0 for all functions fj, for all j,

L(P ) 6= 0.

Warning. Nondegeneracy of P relative to {`j :

1 ≤ j ≤ n} imposes no bound whatsoever on n

in terms of the degree of P and the ambient

dimension d.
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Two formally stronger notions of nondegener-

acy emerge:

Definition. P is simply nondegenerate if there

exists L of the form

L =
∏
j

(vj · ∇)

which kills all functions fj ◦ `j, yet L(P ) does

not vanish identically.

Definition. P is discretely nondegenerate if

there exist a finite set S and coefficients cs

such that∑
s∈S

csfj ◦ `j(s) = 0 for all functions fj∑
s∈S

csP (s) 6= 0.

Obviously both simple nondegeneracy and dis-

crete nondegeneracy imply nondegeneracy.
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Example: Simple nondegeneracy is a strictly

stronger notion than nondegeneracy.

• Start with any homogeneous constant-coefficient

linear PDO L such that the zero variety of its

symbol σ is not a finite union of subspaces.

• Choose any homogeneous P of the same de-

gree so that L(P ) 6= 0.

• Choose any finite set of distinct vectors vj

such that σ(vj) = 0.

• Define `j(y) = 〈y, vj〉, mapping Rd to R1.

• If enough vj are chosen then P won’t be

simply nondegenerate.
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Theorem. If P is simply nondegenerate then

it satisfies a power decay bound.

Recall notation: `j : Rd 7→ Rdj.

Proposition. When each dj = d − 1, simple

nondegeneracy is equivalent to nondegeneracy.

Corollary. Nondegeneracy is equivalent to the

power decay property in the codimension one

case dj = d− 1.

Theorem. If each dj = 1 and if the number of

functions n satisfies

n < 2d

then any nondegenerate polynomial P satisfies

a power decay bound (under an auxiliary gen-

eral position hypothesis on {`j}).
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The proof for simply nondegenerate P is based on a TT ∗-
type argument, related to Weyl’s analysis of equidistri-
bution for sequences (n2γ)mod1, and to more recent work
of Carbery, Christ, and Wright on higher-dimensional
analogues of van der Corput’s lemma.

The proof of the theorem for n < 2d is in part an L2

Fourier-based analysis, relying on the simply nondegen-
erate case. A key idea is related to the work of Roth
and Gowers on Szemerédi’s theorem: one distinguishes
the case where there exist a polynomial q and coefficient
c such that

‖fn − ceiq‖L2 ≤ (1− |λ|−ρ)‖fn‖L2

for a suitably chosen exponent ρ.

Tλ(f1, · · · , fn−1, ceiq) is handled by induction on n, while
the contribution of fn−ceiq is OK because the norm has
decreased.

The case where none of the fj can be approximated

in even this very weak sense by pure exponentials is

(roughly) split into a simply nondegenerate case and

a case where P is nearly zero; the latter becomes very

simple when rewritten terms of Fourier transforms when

all fj are badly approximable.
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Sublevel set bounds. Fix a bounded region

B. Define Eε = Eε(P, f1, · · · , fn) by

Eε = |{x ∈ B : |P (x)−
∑
j

fj(`j(x))| < ε}.

If a power decay bound holds for the multilinear

oscillatory integral operator with phase P then

|Eε| . εδ

uniformly for all measurable functions fj.

Question(s). If we can’t establish power decay

for oscillatory integrals, can we at least prove

the consequence |Eε| = O(εδ) uniformly?

If not, can we at least prove that |Eε| → 0 as

ε → 0, uniformly for all fj?
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Observations.

(1) If {`j} are rationally commensurate, and if

|Eε| ≤ Θ(ε) where Θ → 0 as ε → 0 then P must

be discretely nondegenerate.

(2) If P is discretely nondegenerate then

|Eε(P, f1, · · · , fn)| ≤ Θ(ε)

where Θ → 0 as ε → 0.

(3) If {`j} are rationally commensurate, if all

dj = 1, and if a polynomial P is nondegenerate,

then P is discretely nondegenerate.

Combining (2) and (3): If all dj = 1 and {`j}
are rationally commensurate then for any non-

degenerate polynomial phase P , a weak sub-

level bound |Eε| ≤ Θ(ε) holds. (But no effec-

tive bound on rate at which Θ → 0.)
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Ideas of proofs for sublevel set observations.

(2) (Assume that P homogeneous, and any

lower degree polynomial is degenerate, for sim-

plicity.) Set Q = P −
∑

j fj ◦ `j. Then∑
s∈S

csQ(x + rs) ≡ crD

for all x, r, where c 6= 0 and D = degree(P ).

Unless rD . ε this yields a contradiction when-

ever x + rs ∈ Eε for each s ∈ S. Thus certain

translations and dilations of S cannot lie in Eε.

By a generalization of Szemerédi’s theorem

due to Furstenberg and Katznelson, this forces

|Eε| ≤ Θ(ε).
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(3) Consider a large finite “sublattice” L of

Zd. If P is not discretely nondegenerate then

P =
∑

j fj ◦ `j on L.

By working with finite difference operators, in

same spirit as differential operators were used

to discuss nondegeneracy, show that each fj

must agree on Z1 with a polynomial whose de-

gree is bounded by a quantity independent of

the size of L.

If L is sufficiently large then P −
∑

j fj ◦ `j van-

ishes on too large a set, relative to its degree.
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Even more elementary questions.

For what exponents pj ∈ [1,∞] does the inte-
gral ∫

Rd

n∏
j=1

fj ◦ `j(y) η(y) dy

converge absolutely for all fj ∈ Lpj(Rdj)? And
what about the global version∫

Rd

n∏
j=1

fj ◦ `j(y) dy?

This enters into discussion of the multilinear oscillatory

integral operators in three distinct ways:

(A) If power decay holds at all, then it holds for all ex-

ponents for which the integral is guaranteed to converge

absolutely, except endpoints.

(B) It’s reasonable to guess that bounds in terms of∏
j ‖fj‖L2 might play a fundamental role in the theory,

but such a bound is conceivable only if absolute conver-

gence holds for all fj ∈ L2.

(C) is to be explained later in the talk.
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Example. Let dj = d − 1 for 1 ≤ j ≤ n = d.

Identity the j-th target space Rdj with

{(x1, x2, · · · , xd) : xj = 0} and let πj be the

orthogonal projection of Rd onto this subspace.

Loomis and Whitney proved

∣∣∣ ∫
Rd

d∏
j=1

fj ◦ πj

∣∣∣ ≤ C
∏
j

‖fj‖L
pj(Rd−1)

when all pj = d− 1.

There is no such inequality for any other d-

tuple of exponents (p1, · · · , pd).
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For the global version, Bennett, Carbery, and
Tao proved

Theorem. Let `j : Rd 7→ Rdj be surjective lin-
ear transformations. Then∫

Rd

∏
j

fj ◦ `j dy ≤ C
∏
j

‖fj‖L
pj

if and only if ∑
j

p−1
j dj = d

and ∑
j

p−1
j dim(`j(V )) ≥ dim(V )

for every subspace V ⊂ Rd.

Warning. Rearrangement does not work for
this type of inequality, unless each dj = 1.

Those authors have a clever, and to me surprising, proof

(please see Carbery’s lecture on Wednesday). There is

an alternative proof which also establishes the following

closely related variants:
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Theorem. A necessary and sufficient condition
for the inequality∫

|y|≤1

∏
j

fj ◦ `j(y) dy ≤ C
∏
j

‖f‖L
pj

is that for every subspace V of Rd,

d− dim(V ) ≥
∑
j

p−1
j (dj − dim(`j(V ))).

Next theorem unifies these local and global ver-
sions:
Theorem.∫

Rd∩{y:|`0(y)|≤1}

n∏
j=1

fj ◦ `j(y) dy ≤ C
n∏

j=1

‖fj‖L
pj

for all nonnegative measurable fj if and only if
every subspace V ⊂ Rd satisfies

d− dim(V ) ≥
∑
j

p−1
j

(
dj − dim(`j(V ))

)
and furthermore∑

j

p−1
j dim(`j(V )) ≥ dim(V ) if V ⊂ kernel(`0)
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Theorem. Let G and {Gj : j ≤ i ≤ N} be

finitely generated Abelian groups. Let ϕj : G 7→
Gj be homomorphisms whose ranges are sub-

groups of finite indices. Then

∑
y∈G

N∏
j=1

fj ◦ ϕj(y) ≤ C
∏
j

‖fj‖`
pj(Gj)

for all nonnegative fj if and only if∑
j

p−1
j rank(ϕj(H)) ≥ rank(H)

for every subgroup H of G.

There’s also a version for amalgamated spaces

`p(L∞)(Rdj), with functions that are locally

bounded and globally in Lp.
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Idea of proofs:
(1) If all indices pj are 1 or ∞ then result is
straightforward. Try to reduce to this by in-
terpolation; perturb exponents.

Get stuck if equality holds in the hypothesized
inequalities for some nonzero proper subspace
W ⊂ Rd.

(2) Then
∫
W

∏
j fj ◦ `j is a lower-dimensional

instance of the same problem. The hypotheses
are inherited by W and `j|W (mapping W to
`j(W ), not to Rdj).

(2a) Foliate Rd by translates of W . Apply in-
duction hypothesis on each copy of W .

(2b) What’s left turns out to be another in-
stance of same problem of form

∫
W⊥

∏
j Fj ◦Lj,

with function Fj(·) equal to Lpj norm of fj over
a translate of `j(W ). Again the hypothesized
inequalities turn out to be inherited (not ob-
vious!). Apply induction hypothesis again to
conclude.
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Lament: The results I stated earlier on multi-

linear oscillatory integral operators fail to cover

a well-known and understood example, and the

techniques don’t yield optimal decay exponents

δ.

Example: Twisted convolution.∣∣∣ ∫∫
Cn×Cn

eiλ Im(z·w̄)f1(z)f2(w)f3(z − w) dz dw
∣∣∣

. |λ|−n/2 ∏
j

‖fj‖2.

This problem is self-dual in sense that if we

rewrite it as a trilinear expression in the three

Fourier transforms f̂j, we obtain precisely the

same expression except for changes in various

constants.
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This last part of the talk is a preliminary re-

port on joint work with Justin Holmer. We’ve

analyzed the inequality∣∣∣ ∫
Rd

eiλQ(y)
n∏

j=1

fj◦`j(y)η(y) dy
∣∣∣ ≤ C|λ|−δ0

∏
j

‖fj‖L2

where Q is a homogeneous quadratic polyno-

mial, all dj = D, all norms on the right-hand

side are L2 norms, and

δ0 =
d

2
−

nD

4
is the largest exponent for which such an esti-

mate isn’t ruled out by scaling considerations.

Thus we’re trying to characterize the

maximally nondegenerate phase functions.

We’ve established a sufficient condition which

we believe is also necessary. Unfortunately, we

don’t yet have a palatable formulation of our

sufficient condition, so I’ll explain the method

of proof without formulating the result.
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FBI transform. Define

F(f)(x, ξ) = 〈f, ϕ(x,ξ)〉

where

ϕ(x,ξ)(y) = eiy·ξe−|x−y|2/2.

One has

‖f‖L2(Rd) = cd‖F(f)‖L2(T ∗Rd)

and

f(y) = cd

∫
T ∗(Rd)

ϕ(x,ξ)(y)F(f)(x, ξ) dx dξ.

Proving the desired multilinear L2 bound is

equivalent to proving a global inequality with-

out any large parameter:∣∣∣ ∫
Rd

eiQ
∏
j

fj ◦ `j

∣∣∣ ≤ C
∏
j

‖fj‖L2.

Here there is a preferred unit scale. With re-

spect to the FBI transform there is no longer

any self-duality.
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Expressing each fj in terms of F(fj) yields:∫
⊕jT ∗(RD)

a(x, ξ)
∏
j

F(fj)(xj, ξj) dx dξ

where (x, ξ) = (x1, ξ1, · · · , xn, ξn) ∈ (R2D)n and

|a(x, ξ)| . e−cdistance((x,ξ),Σ)2

where the linear subspace Σ equals the set of
all (x, ξ) for which there exists y ∈ Rd, neces-
sarily unique, such that

`j(y) = xj for all j

∇Q(y) +
∑
j

`∗j(ξj) = 0.

Moreover a exhibits no useful cancellation or
decay on Σ. Thus this expression is essentially∫

Σ

∏
j

F(fj)(xj, ξj) dσ

where σ is Lebesgue measure on Σ. This is a
nonoscillatory multilinear integral operator of
precisely the type discussed in the middle por-
tion of this talk.
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Now a crucial observation is that (under cer-

tain hypotheses of general position on {`j}) the

dimension of Σ is always half of the dimen-

sion of the ambient space ⊕jT
∗(Rdj). Thus

scaling considerations are consistent with a bound∣∣∣ ∫
Σ

∏
j

Fj(xj, ξj) dσ
∣∣∣ ≤ C

∏
j

‖Fj‖L2(T ∗(Rdj)
,

and we have Fj = F(fj) ∈ L2 if fj ∈ L2 by the

Plancherel identity for the FBI transform.

Our preliminary theorem says that the original

multilinear oscillatory integral operator satis-

fies the strongest possible L2 decay estimate

provided that Σ (that is, Σ together with the

collection of mappings πj|Σ where πj : ⊕iT
∗(Rdi) 7→

T ∗(Rdj) is the canonical projection) satisfies

the hypothesis of the theorem of Bennett, Car-

bery, and Tao with all exponents pj = 2.

Special cases include the inequality for twisted

convolution, and Plancherel’s inequality itself.
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