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where

e P is a real-valued polynomial,

e A\ € R is a large parameter,

e 1 iS a smooth compactly supported cutoff
function,

) Ej - R — R% are surjective linear transforma-
tions.

Question. Is
TSP < CINTO T e
J

uniformly for all functions f; as |A| — o7



T his part of talk is|joint with Li, Tao, Thiele|.

We started with question posed by Lacey: Does
bilinear Hilbert transform with oscillatory fac-
tor

/R e f1(z + ) folz — t) t Lt

have same LP mapping properties as the bi-
linear Hilbert transform without the oscillatory
factor? We showed that it does, and the main
step was to prove that

| / / N f1(@+ ) fa(x — 1) f3(2) n(a, 1) dt da
SN TTIS 2

We then realized that the nonsingular problem
was the real issue.



Most fundamental example

‘ //Rded e Y f(2)g(y)n(z,y) do dy‘
< CIN~Y2?| fll2llgll2.

This inequality, after rescaling, implies the L2
boundedness of the Fourier transform.

Note that here every point z € R? interacts
with every point y € RZ. Our work is concerned
with generalizations where the integral is not
over Hdej, but rather over a d-dimensional
linear subspace of []; R% . Thus most n-tuples
of points (z1,---,zn) €I, R% do not interact.



In the linear/bilinear case n = 2 this problem
has been studied intensively, in particular by
Stein and by Phong-Stein but also by many
others. For

//]Rd-l—d eiAP(x’y)f(fv)g(y)n(ib, y) dz dy

a power decay bound holds if and only if there
exist « = 0 and @ # 0 for which

353513(%,3/) does not vanish identically;

that is, if and only if P is not of the form
p(x) + q(y).



e In the truly multilinear case quite little is
known. The focus here is on the basic question
of whether there is any decay at all.

e From linear experience we expect the case
of polynomial phase P to be fundamental, and
then if there is any decay at all it seems rea-
sonable to hope for power decay.

e We're putting the strongest norm on the
functions f;, and aren’t trying to quantify o.
If there’'s any decay for L°°, then there is also
for any (p1,---,pn) fOor which the integral con-
verges absolutely, except for endpoints.

e If some smoothness condition is imposed on
the fj it's a completely different problem.

e It is equivalent to ask whether

| AP ity dy = O(IAI79)

uniformly for all measurable real-valued func-
tions h;.



ODbvious necessary condition. If

J

for some functions hj then there's no decay
(take f; = e ") to cancel out all the appar-
ent oscillation.

Definition. P is nondegenerate relative to {/;}
if P can not be represented as Zj qj oéj for any
functions g;.

Question. Does power decay always hold for
nondegenerate polynomial phase functions P?

This remains open, even for quadratic polyno-
mials in three variables.



Suppose P homogeneous, to simplify state-
ments.

Lemma. The following are equivalent:

e P# 3 iqjof; for | polynomials| ¢g; of degrees
< degree(P).

o P £ Zj hj oej for any distributions hj.

e [ here exists a constant-coefficient homoge-
neous linear partial differential operator L sat-
isfying

£(fj oej) = 0 for all functions f;, for all j,
L(P) #£ 0.

Warning. Nondegeneracy of P relative to {ej ;
1 <j<n} imposes no bound whatsoever on n
in terms of the degree of P and the ambient
dimension d.



Two formally stronger notions of nondegener-
acy emerge:

Definition. P is simply nondegenerate if there
exists £ of the form

L= H(U]V)
J

which Kills all functions f; o ¢;, yet L(P) does
not vanish identically.

Definition. P is discretely nondegenerate if
there exist a finite set S and coefficients cg
such that

Y esfjoli(s) =0 for all functions f;
seS

Z csP(s) # O.

seS

Obviously both simple nondegeneracy and dis-
crete nondegeneracy imply nondegeneracy.
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Example: Simple nondegeneracy is a strictly
stronger notion than nondegeneracy.

e Start with any homogeneous constant-coefficient
linear PDO L such that the zero variety of its

symbol o is not a finite union of subspaces.

e Choose any homogeneous P of the same de-
gree so that £L(P) # 0.

e Choose any finite set of distinct vectors v
such that o(v;) = 0.

e Define ¢;(y) = (y, v;), mapping R¢ to RL.

e If enough v; are chosen then P won't be
simply nondegenerate.
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Theorem. If P is simply nondegenerate then
it satisfies a power decay bound.

Recall notation: £; : R — R%.
Proposition. When each dj = d— 1, simple
nondegeneracy is equivalent to nondegeneracy.

Corollary. Nondegeneracy is equivalent to the
power decay property in the codimension one
case dj =d-—1.

Theorem. If each dj = 1 and if the number of
functions n satisfies

n < 2d

then any nondegenerate polynomial P satisfies
a power decay bound (under an auxiliary gen-
eral position hypothesis on {/;}).
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The proof for simply nondegenerate P is based on a T1T™*-
type argument, related to Weyl's analysis of equidistri-
bution for sequences (n?y)mod1, and to more recent work
of Carbery, Christ, and Wright on higher-dimensional
analogues of van der Corput’s lemma.

The proof of the theorem for n < 2d is in part an L2
Fourier-based analysis, relying on the simply nondegen-
erate case. A key idea is related to the work of Roth
and Gowers on Szemerédi's theorem: one distinguishes
the case where there exist a polynomial ¢ and coefficient
c such that

1 fo = celre < (1 — AT full e
for a suitably chosen exponent p.

T5(f1, , fno1,ce™) is handled by induction on n, while
the contribution of f,, —ce'? is OK because the norm has
decreased.

The case where none of the f; can be approximated
in even this very weak sense by pure exponentials is
(roughly) split into a simply nondegenerate case and
a case where P is nearly zero; the latter becomes very
simple when rewritten terms of Fourier transforms when

all f; are badly approximable.
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Sublevel set bounds. Fix a bounded region

J

If a power decay bound holds for the multilinear
oscillatory integral operator with phase P then

|Ee| < &

uniformly for all measurable functions f;.

Question(s). If we can’t establish power decay
for oscillatory integrals, can we at least prove
the consequence |E:| = O(&?) uniformly?

If not, can we at least prove that |E:| — O as
e — 0, uniformly for all f;?
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ODbservations.

(1) If {£;} are rationally commensurate, and if
|E:| < ©(e) where © — 0 as ¢ — 0 then P must
be discretely nondegenerate.

(2) If P is discretely nondegenerate then

[Ee(P, f1,-++ 5 fn)] < ©(e)

where © — 0 as € — 0.

(3) If {£;} are rationally commensurate, if all
dj — 1, and if a polynomial P is nondegenerate,
then P is discretely nondegenerate.

Combining (2) and (3): If all d; = 1 and {/;}
are rationally commensurate then for any non-
degenerate polynomial phase P, a weak sub-
level bound |E:| < ©(e) holds. (But no effec-
tive bound on rate at which © — 0.)
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Ideas of proofs for sublevel set observations.

(2) (Assume that P homogeneous, and any
lower degree polynomial is degenerate, for sim-
plicity.) Set Q =P — 3 ; fjo4;. Then

> esQ(z +rs) = crl

seS
for all z,r, where ¢ = 0 and D = degree(P).

Unless rP < e this yields a contradiction when-
ever x +rs € E- for each s € S. Thus certain
translations and dilations of S cannot lie in FE-.

By a dgeneralization of Szemerédi's theorem
due to Furstenberg and Katznelson, this forces
|Ee| < O(e).
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(3) Consider a large finite ‘“sublattice” L of
74, If P is not discretely nondegenerate then
Pzzjf]ofj on L

By working with finite difference operators, in
same spirit as differential operators were used
to discuss nondegeneracy, show that each fj
must agree on 71 with a polynomial whose de-
gree is bounded by a quantity independent of
the size of L.

If L is sufficiently large then P —3%_; f;0£; van-
ishes on too large a set, relative to its degree.
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Even more elementary questions.

For what exponents p; € [1,00] does the inte-
gral

/Rd 11 fio¢i(w)n(y) dy
j=1

converge absolutely for all f; € LPi(R%)? And
what about the global version

L2 I1 50450 ay?
j=1

This enters into discussion of the multilinear oscillatory
integral operators in three distinct ways:

(A) If power decay holds at all, then it holds for all ex-
ponents for which the integral is guaranteed to converge
absolutely, except endpoints.

(B) It's reasonable to guess that bounds in terms of
[1;[If;llz= might play a fundamental role in the theory,
but such a bound is conceivable only if absolute conver-
gence holds for all f; € L.

(C) is to be explained later in the talk.
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Example. Let d; =d—1for 1 < j < n =d.
Identity the j-th target space R% with

{(z1,z2,--- ,2g) : z; = 0} and let m; be the
orthogonal projection of R? onto this subspace.

Loomis and Whitnhey proved
d
Lo I 5 om| < CTLIA s g,y
J=1 J
when all p; =d — 1.

There is no such inequality for any other d-
tuple of exponents (p1,- - ,pg)-
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For the global version, Bennett, Carbery, and
Tao proved

Theorem. Let £; : RY — R% be surjective lin-
ear transformations. Then

[T f5 04 dy < TNl
J J

if and only if

> op; tdj=d
J
and

>~ p; tdim(e;(V)) > dim(V)
j

for every subspace V C R9.

Warning. Rearrangement does not work for
this type of inequality, unless each dj = 1.

Those authors have a clever, and to me surprising, proof
(please see Carbery’s lecture on Wednesday). There is
an alternative proof which also establishes the following
closely related variants:
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Theorem. A necessary and sufficient condition
for the inequality

Jyer LA 062 dy < CTLI N 2
IS5 J

is that for every subspace V of Rd,

d—dim(V) > ij—l(dj — dim(¢;(V))).
J

Next theorem unifies these local and global ver-
sions:
Theorem.

H f]OE (y)dy <C H ||f]||Lp]

=1
for all nonnegatlve measurable f] if and only if
every subspace V C R satisfies

d—dim(V) > ij— (dj — dim(éj(V)))
J
and furthermore

/Rdﬂ{y [fo(y)[<1} ;=

> p; tdim(¢;(V)) > dim(V) if V C kernel({p)
j
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Theorem. Let G and {G; : j < i < N} be
finitely generated Abelian groups. Let ©; G —
Gj be homomorphisms whose ranges are sub-
groups of finite indices. Then

Z H fj O@](y) < CHHnggPJ(G )

yeiG j=1
for all nonnegative f; if and only if

ij_l rank(yp;(H)) > rank(H)
J
for every subgroup H of G.

There's also a version for amalgamated spaces
EP(LOO)(RdJ’), with functions that are locally
bounded and globally in LP.
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Idea of proofs:

(1) If all indices p; are 1 or oo then result is
straightforward. Try to reduce to this by in-
terpolation; perturb exponents.

Get stuck if equality holds in the hypothesized
inequalities for some nonzero proper subspace
W C R,

(2) Then [y II; fj o ¢; is a lower-dimensional
instance of the same problem. The hypotheses
are inherited by W and ¢; lw (mapping W to
£;(W), not to R ;Y.

(2a) Foliate R? by translates of W. Apply in-
duction hypothesis on each copy of W.

(2b) What's left turns out to be another in-
stance of same problem of form fWL Hj FjoL;,
with function F;(-) equal to LPJ norm of f; over
a translate of Ej(W). Again the hypothesized
inequalities turn out to be inherited (not ob-
vious!). Apply induction hypothesis again to
conclude.
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Lament: The results I stated earlier on multi-
linear oscillatory integral operators fail to cover
a well-known and understood example, and the
techniques don’t yield optimal decay exponents
J.

Example: Twisted convolution.

‘// . eiAIm(z-U_J)fl(z)fQ(w)f?)(Z — w) dz d’w’
< 2T 2
J

This problem is self-dual in sense that if we
rewrite it as a trilinear expression in the three
Fourier transforms E we obtain precisely the
same expression except for changes in various
constants.
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This last part of the talk is a preliminary re-
port on joint work with Justin Holmer. We've
analyzed the inequality

‘/Rd AW TT £04(w)n(y) dy\ < CITOTT I 12
J=1 J

where () is a homogeneous quadratic polyno-
mial, all dj — D, all norms on the right-hand
side are L? norms, and

d nD

5o = — — ——
R S

is the largest exponent for which such an esti-
mate isn’'t ruled out by scaling considerations.
Thus we're trying to characterize the
maximally nondegenerate phase functions.

We've established a sufficient condition which
we believe is also necessary. Unfortunately, we
don’t yet have a palatable formulation of our
sufficient condition, so I'll explain the method
of proof without formulating the result.
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FBI transform. Define

F()(@,8) = (f; P(z,0))

where
P(ae)(y) = eV Eeleu?/2
One has
1 2 (ray = callFCOI 2¢rmray
and
FW) =ca . gy P WF (N, €) do de.

Proving the desired multilinear L2 bound is
equivalent to proving a global inequality with-
out any large parameter:

\/Rde@ﬂfj o 4| < CTLIll 2.
J J

Here there is a preferred unit scale. With re-
spect to the FBI transform there is no longer
any self-duality.
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Expressing each f; in terms of F(f;) yields:

/@jT*(]RD) a(z,§) I;If(fj)(xj, fj) dx d§

where (Cﬁ,f) — (%1,51, e 7xn7£n) S (RQD)n and
a(z, £)| < e—cdistance((az:,g),z)2
where the linear subspace > equals the set of

all (z,&) for which there exists y € R?, neces-
sarily unique, such that

Ej(y) =X, for all 4
VQW) + Y €)= 0.
J

Moreover a exhibits no useful cancellation or
decay on 2. Thus this expression is essentially

J 7D )6 do
J

where o is Lebesgue measure on 2. This is a
nonoscillatory multilinear integral operator of
precisely the type discussed in the middle por-
tion of this talk.
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Now a crucial observation is that (under cer-
tain hypotheses of general position on {Ej}) the
dimension of > is always half| of the dimen-

sion of the ambient space @jT*(RdJ). Thus
scaling considerations are consistent with a bound

‘/ngj(xj’gj) < Cl} Wl 2ty

and we have F; = F(f;) € L? if f; € L? by the
Plancherel identity for the FBI transform.

Our preliminary theorem says that the original
multilinear oscillatory integral operator satis-
fies the strongest possible L2 decay estimate
provided that X (that is, > together with the
collection of mappings ;|s where 7; : ®; T*(R%) —
T*(R%) is the canonical projection) satisfies
the hypothesis of the theorem of Bennett, Car-
bery, and Tao with all exponents p; = 2.

Special cases include the inequality for twisted
convolution, and Plancherel’'s inequality itself.
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