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1. Reifenberg’s work

1960 - Plateau problem for m-dimensional
surfaces in R¥.

Question: Is the infimum of the area of
surfaces with a given boundary attained?
(What does surface mean?)

Let T C R* be a given set homeomorphic
to Sm—1

F = {Z CRF:9> =T, is proper
> is not a retraction of I}



Theorem. There exists 2o € F such that

H™ (X)) = inf H™(X).
(£o) = Jnf H"™(E)

Moreover for H™ a.e x € > there exist a
neighborhood of x in > which is a topo-
logical disk.



Key ideas:

1.Define
H™(Z NB(x,r))

W,

0(x,r) =

2. Monotonicity : If > is a minimizer then
for each x, 6(x,r) is an increasing function
of r, and for a.e. z,

O(x) = lim 0(x,r) > 1
r—0

3. Given 0 > 0 there exists ¢ > 0 such that
if 1 <60(xg,2rg) <1+ € then N B(x,r) is
within dr of an m-plane through x whenever
B(x,r) C B(zg,r0).

4. Topological disk property.



1964 - The Epiperimetric inequality vields
a rate of decay of 6(x,r) toward 1, which
implies that for

a.e x € > there exists rg > 0 such that for
r < T0,

> N B(xz,r) is within r1T® of an m-plane
through «

Locally X is a ¢1:@ submanifold, thus real
analytic.

For a minimizer if 6(x,r) is close to the density of
the tangent cone then the set is close to the tangent

cone in Hausdorff distance.



Applications of Reifenberg’s ideas:

1. Hardt - Lin show that the singular set of
an energy minimizing harmonic map from
B% into S? is (locally) a finite set and a
finite union of HOlder continuous curves.

2. Criteria for existence on biLipschitz pa-
rameterizations for subsets of Euclidean space

3. Construction of snowballs.



2. Taylor’s work

1976 - Classification of the tangent cones
in R3 for Almgren (locally) almost-minimal
sets (‘'size minimizers").

E is (locally) («a,d) almost-minimal if

H2(ENWy) < (1 + Cro)YH2(p(E N W),

whenever ¢ : R3 — R3 is a Lipschitz map-
ping such that

diam (Wy U p(Wy)) =t < 6,

where

Wy, = {xER3 co(x) # x}.

E is almost-minimal if § = oo.



Classification of Minimal cones in R3:
(Modulo rotation and translation)

e A 2-plane: P through the origin

e ¥ = Yy X R where Yy is the union of 3
half-lines in a plane, intersecting at the ori-
gin, and making equal angles of 3n/2. The
spine of Y is the line of intersection of the
3 half-planes that compose it.

e ' the cone over the 1-skeleton of the
tetrahedron (spine), i.e a set composed of
6 angular sectors bounded by 4 half lines
that start at the origin and make maximal
equal angles.

Theorem.[Taylor] An (a,d) almost-minimal
set is (locally) a C1P image of either P N
B(0,1), YN B(0,1) or TN B(0,1).



Tools:
1. Monotonicity formula

2. For a.e x € F,

0(z) € {1,3/2,%(:05_1(—1/3)}.

Classification of the possible tangent cones.

3. The Epiperimetric inequality establishes
the rate at which 6(x,r) converges to 6(z).

If 6(x,r) is close to the density of the tangent cone
then the set is close to the tangent cone in Haus-

dorff distance.



3. Our results

For A, B closed sets in R3 intersecting B(z, r)
define

1
Dy r(A,B) = — sup {dist(z,A)}
T ze BNB(z,r)

+l sup  {dist(z,B)}
T zeANB(z,r)

Let E C R3 be a closed set. E is e-minimal
if for each r <2

inf Dz r(E,Z) <€

re/
where the infimum is taken over all sets Z
of type P, Y, and T containing x
i.e. there exists a minimal cone Z(x,r) such

that z € Z(x,r) and satisfying

Dy r(E,Z(x,r)) <€



Theorem. If E is e-minimal there exists
A = A(e) so that for each ©x € E there ex-
ists a map f : B(0,1) — R3 with f(0) =z
satisfying

A7y — 210 < | f(p) = F(2)| < Aly— 21 C¢

B(z,r) C f(B(0,r)) C B(x,2r)

ENnB(x,7) C f(ZNB(0,r)) C EN B(x,2r),

where Z is either P, Y or T'.



4. Preliminaries

Let E be e minimal and e < 104,
a(z,r) =inf{Dgz(E,P),z € P},

b(z,r) =inf{Dz+(E,Y);z in the spine of Y},

and

c(x,r) =inf{Dg;+(E,T);T centered at z}.

Define
Ep={x € FE:a(x,r) <2¢}
Ey ={x € E : b(x,r) < 500¢}

Ep={x € E: c(x,r) < 80¢}



Claim 1:

E=FEpUFEy UET,
E+ is a discrete set and Ey U Er is a closed
set.

Proof:

e Minimal cones of different types are far
away from each other in Hausdorff distance.

o If a(xz,2r) < 104 then EN B(z,r) C Ep
(i.e. Ep is Reifenberg flat).

e For each x € E, Ep N B(x,3/2) contains
at most one point.

o If b(x,2r) < 10e then B(z,r)NEr = () and
Dy r(L,Ey) < 750¢, where L is the spine of
Y = Z(x,2r).

o If x & Ep then x is very close to the spine
of Z(x,r).



Claim 2: FEy is Reifenberg flat of dimen-
sion 1. Moreover near Ep, Ey Is close to
the spine of a tetrahedron.

Assume that O € E. Two distinct cases:

e 7(0,2) =Y. ()

e 7(0,2) =T.



5. Idea of the proof

The parameterization f is constructed by
successive deformations of the set Z(0,2)
near EN Z(0,2).

e Hierarchical construction of f: FEy, Ep,
B(0,2).

e Technical ingredient: good choice of ap-
propriate partitions of unity.



Step 1:

1. Cover Ey N B(0,3/2) by balls of radius
2—n—20 \ijth centers in Ey at distance
at least 277720 from each other. Let
Vy- be the union of these balls.

2. Cover Epn B(0,3/2)\Vy by balls of ra-
dius 27730 with centers in Ep at dis-
tance at least 2730 from each other.
Let Vp be the union of these balls. (Note
that Ey is far from Vp.)

3. Build partitions of unity associated to
these coverings.



Step 2:

Let L be the spineof Y = Z(0,2). Since Ey
IS Reifenberg flat closed set of dimension 1,
Reifenberg’s work yields a parameterization

f*: T =LnB(0,3/2) — Ey.
f* is the limit of mappings f;} defined on I'".
For f;;_l_l = gpo fp With f5 =1id, where g;, is
defined near f*(I") =TI, as a weighed sum

of suitable deformations which push points
closer to Ey.

To show that f* is biHdlder note that

(1-Ce)|ly—=z| < lgn(y)—gn(2)] < (14Ce)|y—2z|
for y,z €elp and |y — z| <27,



Step 3:

Build f as a limit of f,'s defined on Y N
B(0,1) by fhn41 = gno fn with fo = id,
where gp is defined near fr,(Y N B(0,1))
as a weighed sum of suitable deformations
which push points closer E. Moreover g, =
gy on [p.

To show that f* is biHOlder we show that

(1-Ce)|ly—=z| < |gn(y)—gn(2)| < (14+C¢)|y—=|
for y,z € fp(YNB(0,1)) and |y — z| < 27",



