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1. Introduction

In this talk we describe recent work of the author and Chris Sogge concerning bounds
on the Lp norm of approximate eigenfunctions on two dimensional compact Riemannian
manifolds with boundary, where we will assume that eigenfunctions satisfy Dirichlet
conditions on the boundary.

We more generally consider a second order self-adjoint differential operator on a two
dimensional compact manifold M with boundary, which in local coordinates takes the
form:

(1.1)
(
Pf

)
(x) = ρ(x)−1

n∑
i,j=1

∂i

(
ρ(x) gij(x) ∂jf(x)

)
.

We assume that the function ρ(x) and matrix function gij are real and uniformly positive
on M . Then P is self-adjoint with respect to the measure ρ(x) dx, and has negative
spectrum, thus we can enumerate the eigenvalues in decreasing order {−λ2

j}, where λj →
∞. We will call λj the frequency of the associated eigenfunction φj.

A spectral cluster of frequency λ is a function f belonging to the span of φj with
λj ∈ [λ, λ+1]. Alternately, if we let Πλ be the orthogonal projection onto eigenfunctions
in this range, then the spectral clusters of frequency λ are the image of Πλ.

The question of interest is comparing the Lp norm of a spectral cluster f of frequency
λ to its L2 norm. Specifically, we seek the best possible exponent δ(p) for p ≥ 2 so that,
for general f ,

‖Πλf‖Lp(M) ≤ C λδ(p) ‖f‖L2(M) .

In the case that M does not have a boundary, and the coefficients of P are C∞

functions, the sharp estimates were established by Sogge [8], who showed that in general
dimension n

(1.2)
∥∥Πλf

∥∥
Lp(M)

≤ C λ
n−1

2 ( 1
2− 1

p ) ‖f‖L2(M) , 2 ≤ p ≤ pn = 2(n+1)
n−1 .
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(1.3)
∥∥Πλf

∥∥
Lp(M)

≤ C λn( 1
2− 1

p )− 1
2 ‖f‖L2(M) , pn ≤ p ≤ ∞ ,

Thus, there are two regimes to the estimates. The bounds for 2 ≤ p ≤ pn can be
considered as placing a lower bound on the volume of a region in which a spectral cluster
can be concentrated. Precisely, if a function f is concentrated in a region of volume V ,
then by Holder’s inequality

‖f‖Lp(M)

‖f‖L2(M)
≥ V

1
p− 1

2 .

Consequently, the first estimate (1.2) above shows that a spectral cluster must occupy a
volume of at least λ−n−1

2 .

The second estimate (1.3) is related to the Sobolev embedding theorem, and loosely
says that the eigenfunctions in the range [λ, 2λ] are evenly distributed over the λ disjoint
subintervals of length 1.

Recently, the first author in [4] has extended Sogge’s estimates to the case of metrics
which are only twice differentiable, which is the lowest level of regularity (in the Holder
classes, at least) under which they can be proven, according to the counterexamples of
Smith-Sogge [6]. This fact plays a key role in the estimates for manifolds with boundary.

It is worth considering the case of M = R
n to see the nature of the examples that

show the above estimates are best possible. On R
n, a spectral cluster is simply a function

whose Fourier transform f̂(ξ) is supported in the set λ ≤ |ξ| ≤ λ + 1 .

The example which shows that (1.2) is sharp is the simplest. Consider a Schwartz
function φ(x) which has Fourier transform supported in the ball |ξ| ≤ 1

2 , intersected with
the region ξ1 ≥ 0. Let

fλ = ei λ x1φ(x1, λ
1
2 x′) ,

where x′ = (x2, . . . , xn). Then the Fourier transform f̂λ(ξ) is contained in the set λ ≤
ξ1 ≤ λ + 1

2 and |ξ′| ≤ 1
2λ

1
2 . This region is in turn contained in the set λ ≤ |ξ| ≤ λ + 1.

On the other hand
‖fλ‖Lp = λ−n−1

2p ‖φ‖Lp ,

and comparing p = p to p = 2 yields the sharpness of (1.2).

The example to consider for estimate (1.3) is a function fλ where f̂λ(ξ) = 1 on the set
λ ≤ |ξ| ≤ λ + 1, and 0 elsewhere. Then

‖fλ‖L2 ≈ λ
n−1

2 .

On the other hand, it is easy to see that |f(x)| � λn−1 for |x| ≤ λ−1, hence

‖fλ‖Lp ≥ λn−1−n
p .

Taking the ratio shows that (1.3) cannot be improved.

Similar examples can be patched onto any Riemannian manifold using a Fourier inte-
gral operator representation of the wave group.

In the case of a manifold with boundary, however, it is known by an example of
Grieser [1] that for a range of p the estimates (1.2)-(1.3) can fail. The example concerns
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the standard Laplace operator on the unit disc |x| ≤ 1 in R
2. The eigenfunctions with

Dirichlet condition can be written in the form

φλ = einθ J(c |x|) ,

where J is a certain Bessel function, depending on n, and J(c) = 0. If one takes c to be
the first 0 of J , then λ ≈ n, and the asymptotics of Bessel functions show that J(c|x|) is
concentrated if the set 1 − |x| � n− 2

3 . Thus, φλ is concentrated in a set of volume λ− 2
3 ,

which yields that for p ≥ 2

‖φλ‖Lp � λ
2
3 ( 1

2− 1
p ) ‖φλ‖L2 .

This contradicts (1.2) and also (1.3) for p < 8.

The recent work of the author and Sogge is to show that this example is in fact the
worst possible on manifolds with boundary, in two dimensions.

Theorem 1.1. Let M be a two dimensional manifold with boundary, and P a differential
operator of the form (1.1). Let Πλ be the orthogonal projection onto the span of Dirichlet
eigenfunctions with frequencies in the range [λ, λ + 1]. Then

(1.4)
∥∥Πλf

∥∥
Lp(M)

≤ C λ
2
3 ( 1

2− 1
p ) ‖f‖L2(M) , 2 ≤ p ≤ 8, .

(1.5)
∥∥Πλf

∥∥
Lp(M)

≤ C λ2(1
2− 1

p )− 1
2 ‖f‖L2(M) , 8 ≤ p ≤ ∞ .

In the next section we outline the main ideas in the proof. It should be noted that
the counterexample of Grieser is intimately connected to the convexity of the boundary.
Indeed, near any point of strict convexity of a two dimensional Riemannian manifold, one
can construct an approximate spectral cluster establishing the lower bound (1.4), using
the Melrose and Taylor Airy function solutions of the wave equations near glancing rays.
On the other hand, if the boundary of M is everywhere strictly geodesically concave,
then the results of Smith-Sogge [6] show that the sharper bounds (1.2) and (1.3) hold.

2. Sketch of the Proof

Since (1.4) follows by interpolation of (1.3) with the trivial p = 2 endpoint, we restrict
attention to estimate (1.3).

Estimate (1.3) is established as a consequence of certain squarefunction estimates for
solutions to the wave equation ∂2

t u = Pu on R × M . Precisely, let

‖u‖Lq
xL2

t ([−1,1]×M) =
( ∫ ( ∫ 1

−1

|u(t, x)|2 dt
) q

2
dx

)1
q

.

Then the estimate that will yield (1.3) is

(2.1) ‖u‖Lq
xL2

t ([−1,1]×M) ≤ C ‖f‖Hδ(q)(M) , 8 ≤ p ≤ ∞ ,

where
δ(q) = 2

(1
2
− 1

q

)
− 1

2
,

Hδ is the Sobolev space of order δ, and

u(t, x) =
(
exp

(
it
√−P

)
f
)
(x) .
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If f is a spectral cluster, then ‖f‖Hδ ≈ λδ‖f‖L2 , and u is essentially periodic in t.
Multiplying u(t, x) by exp(−itλ) and integrating over [−1, 1] essentially recovers f , and
(1.5) follows easily from (2.1). For details, we refer to [4].

The advantage of working with the estimate (2.1) is that it can be localized by a
partition of unity to a coordinate patch, since by finite propagation velocity u(t, x) is
localized if f is. Consequently, we may assume that we are working in a small coordinate
neighborhood near ∂M (away from ∂M the estimate (2.1) holds for 6 ≤ p ≤ ∞ by results
of Mockenhaupt-Seeger-Sogge [2].)

We work in geodesic normal coordinates along ∂M , where M is then defined by x2 ≥ 0,
and the metric takes the form

g11(x1, x2) dx2
1 + dx2

2 .

We next extend the metric function g11 by reflecting in an even manner across x2 = 0,
and similarly extend the solution u(t, x) in an odd manner, so that

g11(x1, x2) = g11(x1, |x2|) , u(x1, x2) = sgn(x2) u(x1, |x2|) .

Then g is defined on an open subset of R
2, and by extension we may assume it is defined

on all of R
2, and equals 1 outside the unit ball. (We similarly extend ρ(x) in an even

manner, but for the purpose of these notes we may as well assume it equals 1 everywhere.)
The new metric, however, has a Lipschitz singularity at x2 = 0.

It is easily verified that the extended function u satisfies the wave equation ∂2
t u = Pu,

with P extended as above and initial data f extended in an odd manner, and since f is
compactly supported we may treat u as a solution on all of R

2. Thus, we see that the
boundary problem can be treated as a special case of proving estimates of type (1.5) on
boundary-free manifolds, but where the metric is only assumed to be Lipschitz.

Strichartz estimates for metrics of low regularity were extablished in the case of C2

(in fact C1,1) metrics by Smith [3] in dimensions 2 and 3, and subsequently by Tataru [9]
in all dimensions. The C2 result, together with a frequency dependent scaling argument,
can be used to establish similar estimates for metrics of Lipschitz regularity, but with a
loss in the regularity exponent δ required of the initial data, as shown by Tataru in [9].

In [4], Smith established the estimates (1.3) for metrics of regularity C1,1, and used
scaling arguments to establish results for Lipschitz metrics with loss in δ(p) in [5].

Our proof of (1.5) (that is, no loss for p ≥ 8) depends on a three-step multiscale
decomposition of the solution u, which exploits the special nature of the Lipschitz singu-
larity in g, together with the fact that the estimate (1.3) can be improved for p > 6 if the
solution u is localized in frequency to a cone of small angle. Precisely, suppose that g is
a C1,1 metric, that u solves ∂2

t u = Pu with initial data f , and that û(t, ξ) is supported
where |ξ| ≈ λ, and where ξ belongs to some cone Γ of angle θ, with θ ≥ λ− 1

2 . Then
modifying the arguments of [4] yields

(2.2) ‖u‖Lp
xL2

t ([−1,1]×R2) ≤ C λδ(p)θ
1
2− 3

p ‖f‖L2(R2) .

The first decomposition we make of u is a Littlewood-Paley decomposition, after which
we may assume that û(t, ξ) is supported where λ ≤ |ξ| ≤ 2λ, for some real λ ≥ 1.
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We next make a dyadic decomposition with regards to the angle from the ξ1 axis.
By considering the piece where |ξ2| ≥ |ξ1| separately, we may accomplish this angular
decomposition by taking a dyadic decomposition in the ξ2 variable. Precisely, for j ≥ 1
we take

supp
(
ûj

) ⊆ {
(ξ1, ξ2) : |ξ1| ≈ λ , |ξ2| ≈ 2jλ

2
3
}

,

and take
supp

(
û0

) ⊆ {
(ξ1, ξ2) : |ξ1| ≈ λ , |ξ2| � λ

2
3
}

.

Thus, ûj is localized to a cone of angle θj = 2jλ− 1
3 , where θj ranges dyadically between

λ− 1
3 and 1.

Finally, for each j we decompose the x1 axis into disjoint intervals of length θj , and
taking the corresponding spatially disjoint decomposition of uj write

u =
∑

j

θ−1
j∑

k=1

uj,k

(we supress the λ since it can be assumed fixed.)

The key estimate is that for each term uj,k we can prove the analog of estimate (2.2)

(2.3) ‖uj,k‖Lp
xL2

t
� λδ(p)θ

1
2− 3

p

j ‖f‖L2 .

Since the pieces uj,k are spatially disjoint in x1, and since there are θ−1
j pieces, adding

over k yields

‖uj‖Lp
xL2

t
� λδ(p)θ

1
2− 4

p

j ‖f‖L2 .

For p > 8, the exponent of θj is positive, and the dyadic sum over j thus converges,
yielding

‖u‖L
p
xL2

t
� λδ(p)‖f‖L2 .

For p = 8, a more delicate summation argument yields the result.

The key to proving (2.3) is that after rescaling space by a factor of θj the metric g
behaves like a C1,1 metric on the microlocal support of uj,k, and thus the techniques used
to prove (2.2) can be applied. Since the squarefunction estimates are scale invariant (in
that both sides scale by the same factor under dilation) this will imply (2.3).

The statement that g(θjx) “behaves like a C1,1 metric” is best understood in terms of
Tataru’s work [9]. Tataru showed that, for wave equations with time dependent metrics
g(t, x), one can prove Strichartz estimates provided that∫

‖D2g(t, · )‖L∞
x

dt ≤ C .

This condition is sufficient, for example, to prove well posedness of the geodesic flow, and
boundedness of the various remainder terms that arise in the paradifferential techniques
of the papers [3] and [9].

In our setting we have a weaker version of this condition, which is that the second
derivatives of g(θjx) are integrable along each bicharacteristic passing through the mi-
crolocal support of uj,k. Presicely, bicharacteristics γ corresponding to cotangent vectors
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in the support of uj,k satisfy dγ2
dt ≈ θj on the spatial support of uj,k, and thus∫

γ

|D2g(θj · )| dt ≈ θ2
j

∫
γ

δ(θjγ2(t)) dt � 1 .

Here we use the special nature of the Lipschitz singularity of g in noting that D2g ≈ δ(x2) .

3. Future directions

This result is the first success in a program of proving dispersive type estimates for
boundary value problems by treating the situation as a special case of a Lipschitz metric.
In this case, our estimates are sharp in the worst case (corresponding to a convex domain)
but not in the case of a concave boundary.

Obtaining improved results in the case of concave boundaries will require estimates on
the amount of time that the energy of the solution u can remain in regions near tangent
to the boundary. For strictly convex obstacles, tangent geodesics increase in angle as
they move away from the boundary, and thus energy does not remain trapped at small
angles. This should lead to an improvement when summing over the variable k in the x1

decomposition of uj.

Making rigorous these ideas would free the proof of [6] for dispersive estimates outside
convex obstacles from the explicit parametrix construction of Melrose and Taylor, and
hopefully permit the extension of these estimates to the setting of (not necessarily strictly)
convex obstacles.
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