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. she rocks herself to sleep on wavelets
of sensation rippling out from the secret
grotto at the center of her body.

David Lodge, Souls and Bodies, Chap. 1.

Abstract: Let £ be a Banach (or quasi-Banach) space which is shift and scaling
invariant (typically a homogeneous Besov or Sobolev space). We introduce a general
definition of pointwise regularity associated with E, and denoted by Cg(xg). We show
how properties of £ are transferred into properties of C'¢(xo). Applications are given in
multifractal analysis.

1 Introduction

How can be formalized the idea that a function (deterministic or stochastic) satisfies
some scaling property in the neighbourhood of a given point z¢? This problem quickly
splits in several directions depending whether the setting is deterministic or stochastic
(in the later case, the scaling is required to hold in law rather than sample path by sample
path), whether the scaling is exact or approximate (i.e. up to higher order correction
terms) and, finally, one might not require precise scalings, but only expect bounds which
are scaling invariant. Let us mention a few definitions and examples in order to be more
specific.

In the stochastic case, the Fractional Brownian Motion of order H (0 < H < 1)
satisfies the following exact scaling relation which holds in law at z¢ = 0:

YA >0, Bp(At) £ X By(1).

A stochastic process is Locally Asymptotically Selfsimilar of order H € (0,1) at ¢ if
M H(X (tg+ M) — X (ty)) converges in law towards a non-degenerate process when A — 0
(see [4, 5]).
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In the deterministic case, a simple example of scaling invariant function is supplied
by the devil’s staircase; in order to define it, we start by recalling the triadic Cantor set:
Let z € [0,1]; x can be written (in base 3) as @ = Y72, ;377 with a; € {0,1,2}. The
triadic Cantor set K is the set of & such that a; € {0,2} for all j. The devil’s staircase is
defined as follows: If @ ¢ K, at least one of the a; is equal to 1. Let [ =inf{j: a; =1};

then
-1

a; aj
D(l‘) = Z 2j+1 ‘|‘ ?

J=1

The function D(x) is thus defined almost everywhere on [0, 1]. It is then extended by
continuity on [0, 1]. An easy computation show that it satisfies the exact scaling relation
D(£) = iD(x). Finally, a function f is approximately selfsimilar of order [ at xo if
there exists a A < 1 such that

flao+1) = flxo) = X (f(xo + M) — f(wo)) + of[t)h",

see [18] where a wavelet characterization of this property is given. A partial relationship
between the deterministic setting and the stochastic one is given for Gaussian processes
through their spectral density: If the spectral density is approximately selfsimilar, then
the process is Locally Asymptotically Selfsimilar (see [12] for precise statements).

If the function is only required to satisfy upper bounds estimates which are scaling
invariant in the neighbourhood of x, then the corresponding property is rather reffered
to as a pointwise regularity property. We will investigate such properties in this paper.
The one most widely used is the Holder regularity, which is defined as follows.

Definition 1 Let f : RY — IR, be a locally bounded function, xo € R and a > 0;
f € C%ao) if there exist R > 0, C' > 0, and a polynomial P of degree less than o such
that

if |@—aol <R, then |f(z)— Plx —x0)| < Cla — x]”. (1)

There are two ways to interpret this definition. The classical one, which is induced
by the notation C'*(x¢) itself, consists in interpreting this condition as the usual uniform
homogeneous Holder condition which would just hold at one point rather than uniformly;

indeed, recall that, if 0 < s < 1 then f € C"a(]Rd) if
3C >0 such that Yo,y € RY,  |f(z) — f(y)] < Clz —y|*.

However, though it is very natural, this point of view has two drawbacks; it does not
extend to other settings (for instance, how could one define the Sobolev regularity at
one point directly from either the double integral definition or the Fourier definition of
Sobolev spaces?) and it does not allow to understand why some stability properties of
the global space C"a(]Rd) no more hold in the pointwise setting. This second drawback
will be explained and developped in Section 2.

The other interpretation consists in noticing that (1) can actually be rewritten as
follows. Let B(xg,r) denote the open ball centered at xy and of radius r; then (1) is



clearly equivalent to the following condition: There exists a polynomial P and constants
C', R > 0 such that
Vr<R | (f=P)lle=Baom= O (2)

In other words, the C(x¢) condition describes how the L> norm of f (properly “renor-
malized” by substracting a polynomial) behaves in small neighbourhoods of . This
point of view has two advantages: We will see that it explains why the C'*(z¢) does not
have the stability properties of the space C"a(]Rd) (it will just be a consequence of the
fact that L> does not possess these properties); furthermore, (2) can be immediately
generalized by replacing the local L* norm by another norm. For instance, using the
L? norm (for 1 < p < 00) one obtains the following definition introduced by Calderén
and Zygmund in 1961, see [9].

Definition 2 Let p € [1,400); a function f : IRT — IR in LY belongs to T?(xo) if
dR,C > 0 and a polynomial P of degree less than o such that

1 1/p .
vk (= [1@) = Pl —wo)Pds) <O, (3)
Note that this condition is of the same kind as (2) since it can be rewritten
Vr <R || (f = P) |lr(Baory< Croti/e. (4)

The notion of pointwise regularity can be extended further: It is natural to replace
in (2) the space L* by an arbitrary function space E; in the following we will work in
the setting of Banach or quasi-Banach spaces. Recall that a quasi-norm satisfies the
requirements of a norm except for the triangular inequality which is replaced by the
weaker condition

IC>0, Ve,ye B, lety < C(le |+ 1yl

A quasi-Banach space is a complete topological vector space endowed with a quasi-norm.
The examples we have in mind are the real Hardy spaces H?, and the Besov spaces B;?
with 0 < p < 1; in these cases ||  — y ||” defines a distance on E. In the following, if
E is a quasi-Banach space, then we will always assume that there exists a p > 0 such
that this property holds; we will call a space with this property a quasi-Banach space
of order p. The space E we will work with will be a space of distributions (perhaps
defined modulo Py, the vector space of polynomials of degree at most N) satisfying
So = E — 8] (Sp denotes the Schwartz class of C'™ functions f such that f and all its
partial derivatives have fast decay, and all the moments of f vanish).

If B is a ball of IR?, let

= inf ) 5
I/ lss= _inf gl (5)



Definition 3 Let E be a space of distributions which is either a Banach space or a quasi-
Banach space defined modulo Py and satisfying So — E — Sj. The two-microlocal space
of order a associated with F is the space Cg(xo) defined by

AP polynomial, AR, C >0, Vr < R | f =P llgB@en< Cre. (6)

Remarks:

The two-microlocal space associated with L> is precisely C%(xy); if E = LP, then
we obtain the space T§+d/p(:1;0); in these examples a maximal degree can be imposed on
P which implies its uniqueness. We will see that it is also possible to impose a maximal
degree on P if E satisfies homogeneity requirements (see Definition 11 where they are
listed and Theorem 2 for the corresponding result).

The way we introduce pointwise regularity in a general context differs from Y. Meyer’s
(Definition 1.1 of [31]). The arbitrary space F introduced in [31] corresponds to our
space Ci(xg). Our motivation here is to emphasize the duality between the “global”
space F (which will be assumed to be shift invariant, such as L? for instance) and the
corresponding pointwise regularity space C%(xq), in order to show how properties of the
second can be derived from properties of the first.

Pointwise regularity differs from the notion of localregularity at xg which, for Holder
spaces is defined as follows: f belongs to Cf, (o) if there exists  in D(IR?) such that
@(xo) = 1 and f¢ € C*(IRY). This notion can be extended to scales of spaces other than
(. For instance, the case of the spaces B>" is considered in [33, 36].

In order to explain where the terminology of two-microlocalization comes from, we
first need to recall the definition of the homogeneous Holder spaces C*(IRY).
If0 < s <1then f & C*(IRY) if

3C >0 such that Va,y € RY,  |f(z) — f(y)| < Clz -y
Ifs=1, C’S(I[{d) is the Zygmund class of continuous functions satisfying
3C >0 such that Yo,y € RY,  |f(z +y)+ flz —y) — 2f(z)| < Cly|.

If s > 1, then f € C’S(I[{d) if Yo such that |a] = [s], 0°f € C'S_[S](]f{d). Finally, if s < 0
then the spaces C*(IR?) are defined by recursion on [s] by

fe CS(IRd) iff=ofi+---+0sfs with f; € C"S‘H(IRd)‘

The two-microlocal spaces C;gf/ had been introduced by J.-M. Bony in order to study
the propagation of singularities of the solutions of nonlinear evolution equations, see [6].
Yves Meyer showed that these spaces are exactly of the form defined above: If s > 0
then a distribution f belongs to C;E)_S/ if and only if

AR, C >0, Vr<R I f oo agm< O

see [25, 30], and also [24, 32] where two-microlocal conditions are associated with Besov
spaces. In the limit case s’ = s, then the two-microlocal space associated with the space
B2 is the space C'**(xq), see [16].



In Section 2, we will explore the different stability requirements which can naturally
be imposed on a function space, and see which are the implications between them.
In Section 3, we will investigate the properties of function spaces which satisfy these
stability requirements, especially in terms of wavelet characterizations. In Section 4, we
will draw the bridge between the properties of I/ and those of C'5. Finally, in Section 5,
we will investigate implications of these results in multifractal analysis.

2  Stability conditions

The motivation of Calderén and Zygmund for introducing the T?(xq) spaces was to
understand how pointwise regularity conditions are transformed in the resolution of
elliptic PDEs; the standard way to prove such results is to write differential operators as
the product of a fractional differentiation and a singular integral transform. Therefore,
one has to use pointwise regularity criteria which are preserved under such singular
integrals. Calderén and Zygmund introduced the T?(x) spaces because the standard
pseudodifferential operators of order 0 are not continuous on C'“(x¢), whereas they are
continuous on T2(x) if 1 < p < oo, see Theorem 6 of [9].

Let us recall how this defficiency of the C“(x) condition can be shown. Consider
the simplest possible singular integral operator namely, in dimension 1, the Hilbert
transform; it is the convolution with the principal value of 1/z, i.e. it is defined by

Hf(x) = lim /Ia(w) ) dy,

e—=0 r—y

where [.(z) = IR — [t — &, 2 + ¢]. An immediate computation shows that

(7)

Let now z, be a strictly decreasing sequence such that lim, . x, = 0. We can pick
a positive, strictly decreasing sequence a, such that f = > a1, e, is arbitrarily
smooth at xo. Nonetheless, (7) implies that

T — x, i
—— | = ay log |x — x| + Z(an — app1)log o — @],

n=1

Hf(x) = Z_:anlog

T — Tpp

which is not locally bounded near the origin, and therefore cannot have any Holder
regularity there. Note that what we really used here is the fact that the Hilbert transform
is not continuous on L*; the “bad behavior” of the pointwise regularity criterium based
on L follows from the corresponding “bad behavior” of L*. On the opposite side,
we will see that the continuity of the Hilbert transform on L? implies its continuity on
the TP(x) spaces, as a consequence of Theorem 3. This feature also explains why it is
better to interpret the C'*(xg) condition as a local L> condition rather than as a local
C2(IR%) condition. The fact that properties of the “global space” L (resp. LP) are
transferred to the “pointwise space” C%(xg) (resp. T?(x¢)) is an important theme that



we will develop (see Theorem 2 which shows that one can perform such transfers in a
general setting).

Besides the study of PDEs, another motivation appeared recently in completely
different areas and led to similar concerns. Many signals or images are now stored,
denoised or transmitted via their wavelet coefficients, see [27]. Therefore, if one wants
to obtain information on the pointwise regularity of signals, one needs to be able to
characterize it in a robust way by conditions bearing on their wavelet coefficients. Recall
that, in dimension 1, a wavelet basis is of the form 2//%(2/2 — k), j k € Z, where
1 has fast decay and belongs to C” (one speaks of r-smooth wavelets), for an r picked
large enough; the wavelet coefficients are

Cik = Zj/f(x);/)(Zj:z; — k)dx.

What can be meant by a characterization “in a robust way”? It is natural to suppose
that the criterium used is not too much perturbed if the size of each wavelet coefficient
is slightly altered. The following definition encapsulates these features.

Definition 4 A norm (or a quasi-norm) on sequences (¢;)nen is robust if it depends
only on the moduli |c,| and if it is an increasing function in each variable |c,|.

Note that this definition implies the following (more classical) notion: A sequence of
vectors (2, )nen is said to be monotone if

p<q — <

Y

p
E Cnln
n=0

q
E Cnlp
n=0

see [3]; clearly, if a sequence norm is robust, then the canonical basis is monotone.

Another natural requirement is that the smoothness criterium used does not depend
on the particular (smooth enough) wavelet basis which is picked. This implies that the
infinite matrices which map a wavelet basis on another one should act in a continuous
way on the spaces of sequences thus defined. Since these infinite matrices are matrices
of operators which are very closely related to the pseudo-differential operators of order 0
considered by Calderén and Zygmund, see Chapter 7 of [29], we are essentially led back
to our previous requirement.

Let us now be more specific about these different stability requirements. We keep
the discussion in dimension 1 for the sake of simplicity. We have met three different
continuity requirements

e under the action of the Hilbert transform,
e under changes of wavelet bases,
e under the action of pseudodifferential operators of order 0.

How can such conditions be checked, and what is their hierarchy? It is clear that the
first criterium is weaker than the third one. It is also weaker that the second one for the



following reason: If the 27/2)(2/x — k), j,k € Z form an orthonormal basis of L?(IR),
and if ;/N) denotes the Hilbert transform of «, then the 2]‘/2@[}(2]‘1, —k), j,k € Z also form
an orthonormal basis of L*(IR), simply because the Hilbert transform is an isometry on
L*(IR), and it commutes with translations and dilations (all these properties follow from
the fact that, in the Fourier domain, the Hilbert transform is simply a multiplication by
£/1€|, which is of modulus one and is homogeneous of degree 0). The second and the
third conditions do not really compare, but are both implied by a fourth requirement
(as a consequence of Theorem 1 below), which is simpler to check in practice, and which
we now describe.

For precise definitions, we come back to the d-dimensional setting. Let r € IN; an
r-smooth wavelet basis of IR? is composed of 2¢ — 1 wavelets () which belong to C”
and satisfy the following properties:

o Vi, Va such that |a| <r, 999 has fast decay,

o The set of functions 29/20(2e — k), j € Z, k € Z*, i € {1,...,2¢ — 1} is an
orthonormal basis of L*(IR)%.

Thus any function f in L?(IR?) can be written

F=3c0p02ie — k) (8)

where

c% = Zdj/f(x);/)(i)(ij — k)dz.

(Note that, in (8), wavelets are not normalized for the L? norm but for the L* norm,
which will simplify some notations.)

Wavelets will be indexed by dyadic cubes as follows: We can consider that i takes
values among all dyadic subcubes A; of [0,1)* of width 1/2 except for [0,1/2)¢; thus,
the set of indices (7,j,k) can be relabelled using dyadic cubes: A denotes the cube
{z: 22—k € N}; we note ¢ (x) = (272 — k) (an L™ normalization is used), and
ey = 29 [\ (x)f(x)dz. We will use the notations c% or ¢, indifferently for wavelet
coefficients. Note that the index A indicates where the wavelet is localized; for instance,
if the wavelets ¢)() are compactly supported then 3C : supp(ipy) C CA where C'\ denotes
the cube of same center as A and (' times larger; thus the indexation by the dyadic cubes
is more than a simple notation: The wavelet ¥y is “essentially” localized around the cube
A.

The following classes of infinite matrices acting on sequences indexed by A were
introduced by Y. Meyer.

Definition 5 Let~y > 0. An infinite matriz M (X, X') indexed by the dyadic cubes belongs
to MY if
09— (2+)li=7'|

MO =7 T o dision, vy

The following result was proved by Y. Meyer, see Chapter 8 of [29].
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Theorem 1 If v > 0, then M"Y is an algebra. Furthermore, if (1) and (;/N)A) are two
r-smooth wavelet bases, then the matriz M(A, X') = ({x]on) belongs to M” as soon as
y<r.

We denote by Op(M?) the space of operators whose matrix on a r-smooth wavelet
basis (for any r > «) belongs to M". This definition makes sense precisely because
Theorem 1 implies that this notion does not depend on the (smooth enough) wavelet
basis which is used. Pseudodifferential operators of order 0, such as the Hilbert transform
in dimension 1, or the Riesz transforms in higher dimensions, belong to the algebras
Op(M7) for any =, see Chap. 7 of [29]. In practice, in order to check that a criterium
based on wavelet coefficients does not depend on the particular wavelet basis which is
chosen, one checks the stronger requirement that it is invariant under the action of M~
for a v large enough.

Definition 6 Let E be a Banach space (or a quasi-Banach space); E is y-stable if the
operators of Op(M?) are continuous on E.

3 The space £

The first problem we will consider is to find natural conditions on the space E, which
are not too restrictive, and imply that the pointwise regularity condition supplied by
Definition 3 can be characterized by a robust condition on the wavelet coefficients (in
the sense of Definition 4). We start with a few simple considerations concerning the
relationships between a robust characterization and the existence of bases. Let us recall
the two standard definitions of bases, depending whether F is separable or not.

Definition 7 Let E be a Banach, or a quasi-Banach space. A sequence e, is a basis of £
if the following condition holds: For any element f in FE, there exists a unique sequence
¢n, such that the partial sums Y, cn cn€, converge to f in E. It is an unconditional basis
if furthermore -

1C >0, Ve, such that|e,| <1, Ve, | chsnen le< C chen e - (9)

Remark: The definition of a basis is usually given in the context of Banach spaces,
see [3, 35, 38]. However it extends to the non-locally convex case of quasi-Banach spaces,
which will be useful in the following.

If the space E is not separable then, of course, it cannot have a basis in the previous
sense. In this case, the following weaker notion often applies.

Definition 8 Assume that I is the dual of a separable space I'; then a sequence e, is
a weak™ basis of F if, Vf € E, there exists a unique sequence ¢, such that the partial
SUMS 3, < Cn€n converge to [ in the weak™ lopology. It is unconditional if furthermore

(9) holds.



In all cases, we will always assume in the following that,

if f=> cuen, then ¢, =(flg.) with g, € F, (10)

where [ is either the dual of E (in the basis setting of Definition 7) or a predual of
E (in the weak* basis setting). The g, are called the biorthogonal system of the e,.
Note that if £ is a Banach space, if ' = E* and if the e, form a basis according to
Definition 7, then (10) is automatically verified, see [3, 35]; it is also verified if the e,
are a wavelet basis, in which case g, = e, for L? orthonomal wavelet bases, (or g, is
another wavelet basis in the wavelet biorthogonal case). Note that, for wavelets, the L?
biorthogonal system is also the biorthogonal system for the (£, F') duality; indeed, by
uniqueness if Sy is dense in either F or F', then the (Sy, S)) duality, the (L?, L?) duality
and the (£, F') duality coincide for finite linear combinations of wavelets; therefore (10)
holds for all functions of E by density, and the duality product (f|g,) in (10) can be
understood in any of the three settings.

Examples of non-separable spaces for which wavelets are weak* bases include the
Holder spaces C’S(]I{d), and, more generally, the Besov spaces B;’q with p = 400 or
g = +00.

Properties of weak* bases have been studied by I. Singer and J. R. Retherford, see
[35] and references therein. In both settings, if €, is unconditional, then the norm (resp.
quasi-norm) on E induces a norm (resp. quasi-norm) on a sequence space S(F), which
can be defined as follows.

Definition 9 Let £ be a Banach space (resp. a quasi-Banach space) and let (e,,)nen be
an unconditional basis or an unconditional weak™ basis of E. Then the sequence space
S(E) is the Banach space (resp. quasi-Banach space) of sequences endowed with the
norm (resp. quasi-norm)

H (Cn)ne]N HS(E): sup Hzgncnen
len|<1

. (11)

where the supremum is taken on all sequences (g,) satisfying |e,| < 1.

The sequence norm thus defined clearly is a robust norm and satisfies

EIC117612 >0: \V/(Cn)nE]Nv Cl H (Cn)nE]N HS(E)S HZ Cntyp

< o || (€n)nen ||smy - (12)

Note that the sequence space norm associated with a basis e, is usually defined by

N
Z Cr€En

n=1

I (en)nen [|= sup
NeN

’
E

in the unconditional case, the norm we defined is clearly equivalent to this one; we prefer
it because it satisfies obviously the robustness property given by Definition 4.

Consider the particular case of a wavelet basis; then the family of matrices indexed
by A, which are diagonals of e, with |e,] < 1, are obviously elements of M”. Thus, if £



is v-stable, each of these matrices is bounded on F. The Banach-Steinhaus theorem im-
plies that they form an equi-continuous family of bounded operators, which is precisely
what (9) means. The fact that, for wavelet bases, y-stability implies the uncondition-
ality property (9) has a direct practical consequence in the definition of new function
spaces through wavelet conditions. Initially, the fact that Sobolev spaces have a robust
characterization played an important role in PDEs (see [11, 17] for instance). It was later
the case for Besov spaces in statistics, see [13]. But afterwards, there came situations
where traditional spaces which had been introduced before wavelet bases appeared (i.e.
before the mid 80s) did not supply the right framework. New spaces, defined directly
through their wavelet characterization, had to be introduced. Let us mention the weak
Besov spaces, which come up naturally in sharp embeddings problems, see [10], or the
oscillation spaces, which allow to determine the upper box dimension of the graph of a
function, see [19, 20], give the correct “function-space formulation ” of the multifractal
formalism, see [21] and Section 5, and also found a recent use in statistics, see [2] (we
will consider extensions of these spaces in Section 5); other examples will probably pop
up in the short future. Of course, if one wants the definition of such a space to be
consistent, it should not depend on the particular wavelet basis which is chosen. As we
saw before, in practice, the only way to ensure this property is to check that the space
is y-stable, which implies (9); therefore one falls in one of the two situations described
in Proposition 1 below. (This does not mean that wavelets are never conditional bases,
as shown by L'(IR) if one uses the functions ¢(x —k) and the wavelets for 7 > 0 as basis.)

Since wavelets have vanishing moments, it is natural to assume that the space F
satisfies
So = E— & (13)
These embeddings also are the right requirement attached to the homogeneity hypothesis
stated in Definition 10. The following proposition yields a simple criterium in order to
check that a family of vectors is a basis.

Proposition 1 Let E be a Banach or a quasi-Banach space satisfying (13), and let e,
be a sequence in Sy satisfying (9) and such that Span{(e,)nen} s dense in Sp.

o [fSy is dense in E, then (e,) is an unconditional basis of F.

o [fSy is dense in F, and F* = E, then (e,) is an unconditional weak* basis of F.

Note that, in the case of a wavelet basis in the Schwartz class, the density require-
ment in S is satisfied and the hypothesis (9) can be replaced by the stronger requirement
that F is y-stable. The first part of the proposition is standard, see Chap. 2 of [3] for
instance, and we prove it only for the sake of completeness.

i inf(
Proof: If f =Y ane,, let Po(f) = Y

1

I,N)
ane,. Then, using (12) and the robustness

n=1 n

of the norm in S(F),

C
PN () = Coll (an)ningany llsa s Ol (an)nst s =< gj 171
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thus Py extends into a linear continuous operator of norm less than C5/C}.
K

If Span{(e;)nen} is dense in Sp, hence in E, then Ve, 3g = Y aye, such that
n=1

| f—gl||<e. If N > K then Py(g) = ¢ so that

C
| Pxf = SIS Puf = Pag I+ Prg =g+ g = £ 1= (1+ 52
for N large enough; hence the first point of Proposition 1.
In order to prove the second point, we have to check that

Yge F, (g|Pnf) — (g]f).

Since the Py are uniformly bounded, it is enough to check it for g in a dense subspace of
F; but it is obviously true if ¢ is a finite linear combination of the g, (the biorthogonal
system of the e,).

Let 7, denote the shift operator (7,(f))(x) = f(x — a), and o the dilation operator

(o (/))(z) = [(Az).

Definition 10 A Banach (or quasi-Banach) space of distributions (perhaps defined
modulo polynomials up to degree N ) is homogeneous of order H if it satisfies

ACVaeRY, | r(S)ISC FII, (14)

and

3CVAS0, () IS A | F . (15)

Examples of homogeneous spaces are supplied by the spaces L?, where H = —d/p,
the homogeneous Besov spaces Bs’q, and the homogeneous Sobolev spaces LP* where
H=s—d/p.

Requiring the space E to be homogeneous is a very natural requirement; indeed,
the shift invariance implies that the definition of pointwise regularity is the same at
every point, and the dilation invariance is an implicit requirement in the motivation we
gave of pointwise regularity through scaling invariance. Furthermore, in practice, norms
which are not homogeneous usually are the sum of several terms: A main part, which
describes the “high frequency” behavior and is homogeneous, and a “low frequency”
part which usually can be written under several alternative forms, and ensures that the
space is not a quotient space; locally, the norm on E is equivalent to the homogeneous
high frequency part, so that using the non-homogeneous norm would lead to the same
definition of pointwise regularity. A typical example is supplied by the Sobolev spaces
H*® for s > 0, whose norm is the sum of the “low frequency” L? norm and the “high
frequency” part supplied by the homogeneous H* semi-norm. We will come back to the
problems which may appear when F is a quotient space at the end of this section.

The several requirements that were derived are now collected into the following def-
inition.

11



Definition 11 A function space E is a gentle space of order H if
o I is a Banach or quasi-Banach space defined modulo polynomials of degree N,

o So — F— S8,

if £ ts separable, then Sy is dense in F, and if F is the dual of a separable space
F, then Sy is dense in F,

o [ is homogeneous of exponent H,

o v > 0 such that I is y-stable.

It follows from Proposition 1 that, if £ is gentle, then wavelets are either uncondi-
tional bases or unconditional weak” bases of E., depending whether F is separable or
not. Note that, a priori, wavelets are required to belong to Sy, but the v-stability implies
that, once wavelets in Sy have been shown to be bases of E. then any r-smooth wavelet
basis (for » > 7) is also a basis of E. In particular, we can use compactly supported
wavelet bases, which will be useful in the following.

Recall that a function f belongs to the homogeneous Besov space B;’q if

q/p
> X [Pl <
JEZ \\EA,;
where A; denote the set of dyadic cubes of width 277.
Proposition 2 If E is a gentle Banach space of order H, then
BV s (T
If E is a gentle quasi-Banach space of order H and of type p, then
pitiler y gy CH
) :

Proof: Let f = 3" c\thy; in both settings, using the fact that the sequence space
norm (or quasi-norm) is robust (so that it gets smaller if we set to 0 all wavelet coefficients
except one) we get

C :
[ = —02 sup || exton [|= C7sup (2" ea]),
1 A A

which implies that £ — CH.
Conversely, if F is a Banach space, then

13 e I3 el | oa 1< 073 2" ey
X

A

it follows that, if f € B{'t*! then f € E.
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If £ is a quasi-Banach space, then
12 axtn P Y el [ on IP< €7 2287 e,
A A
hence the last statement of Proposition 2 follows.

Remark: If F is a Banach space and H = —d, then we obtain the embedding
BO1 — E which is a consequence of the famous minimality property of the Bloch
space BY! discovered by Y. Meyer (see [28] and Chap. 6 of [29]); this minimality
property states that any Banach space homogeneous of degree H = —d and satisfying
So = E = 8} necessarily contains B{"" (see also Chap. 3 of [15] and, for general con-
siderations on minimal spaces, [14]).

Before studying the pointwise regularity spaces Cp(xo), let us come back to the
requirement that E is homogeneous, which may be felt as a problem since it often
implies that F is a quotient space, modulo polynomials. One possible way to turn
this difficulty is to replace K by another space obtained through a realization of F at
xo. A realization of E is a continuous embedding o: F — & such that Yu € E, the
equivalence class of o(u) in E is u. This means that the “floating” polynomial in the
definition of £ is fixed in a way which is continuous and compatible with the vector
space structure. Of course, one does not want to lose the scaling invariance in this
procedure, so that one also requires that the norm on F restricted to its image by o still
satisfies || (f(A - ) |l= M || (f(X - ) ||. On the other hand, we do not need to keep the
translation invariance. In the Sobolev and Besov cases, if s — d/p € IRt — IN, such a
realization can be obtained by substracting the Taylor expansion of f of degree [s —d/p]
at xg, see [7]. This provides a coherent definition of pointwise smoothness and allows to
obtain the uniqueness of the polynomial of degree less than o + H in (6). It would be
interesting to determine if, in the general setting supplied by gentle spaces of positive
order H, realizations can always be obtained by substracting the Taylor expansion of
| of degree [H] at zq. However, even if it were the case, we wouldn’t follow this path
because wavelets are usually not bases of realizations of homogeneous spaces (simply
because they don’t all vanish at ). Bases of these spaces can be obtained by some
simple modifications of wavelet bases, see [31, 37]; however, such bases depend on the
point xg, which is an inacceptable drawback if one wants to analyze pointwise regularity
simultaneously at several points, such as in Section 5.

Another possibility is to use instead of E another space E which is a non-homogeneous
version of K. Let us be more specific. Recall that there are two possible ways to write
the wavelet expansion of a function of L?, see [29]: Either

=2 > D aul@a—k),
JEL kez? i

or

= ZCkcp(:Jc— —I—ZZZc]k¢ 2]:1;— k); (16)

keZ? J=0kezd
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where @ is the function associated with the multiresolution analysis construction, see

[27, 29] and
Co= [ f@)pla - k)da:

¢ has the same smoothness and localization properties as the . but [¢(x)der = 1.
Following the examples supplied by Sobolev or Besov spaces, we assume that a non-
homogeneous space F is associated with E and is characterized by the condition

(Ck)kezd el?, and Z Z Zcé‘,k@/’(i) )

120 kez?

for a p > 0. One easily checks that the proof of Proposition 2 yields that, if £ is a gentle
Banach space, then .
Bt s e O

and, if I is a gentle quasi-Banach space of order H and of type p, then
pHFre s ey O
) :

Since all results that will be obtained below deal with wavelet coefficients of f for 7 > 0,
it follows that all results proved in the following sections are valid in this setting.

4 The C%(z() spaces
If Ais a subset of A, then, by definition

= C) lf)\EA

=0 else.

d
| {extrea |[sm) denotes || {dr}ren ||s(m)y where { A

If 2y € IRY, then A; (7o) denotes the unique dyadic cube of width 277 which contains z
and
Aj(zo) =[[ {extacar, @o) ls@),

where 3); (o) denotes the cube of same center as Aj(xg) and three times wider.

Note that, if F is y-stable, any wavelet basis which is r-smooth for an r > ~ can be
used to characterize the norm in F, and we can use in particular a compactly supported
wavelet basis.

Theorem 2 Let E be a gentle space of order H, let f € E and a > 0. We assume that
the wavelet basis is r-smooth with r > |H| + 2d + 2a.
If f € Cg(xo), then 3C > 0 such that ¥j > 0,

Aj(xg) < C2799, (17)

Conversely, if (17) holds and if o + H ¢ IN, then f € Cp(xo) and the polynomial in
(6) can be chosen of degree less than o + H.

14



Remarks: Since £ may be a space defined modulo polynomials, we cannot expect
uniqueness of the polynomial P. However the degree [o + H| is optimal in the cases
which have been worked out before (L? or C*).

Y. Meyer proved the characterization supplied by Theorem 2 if £ = C’S(]I{d), see
[25, 30], and if E = L* (personal communication); the cases where F is either L* (for
1 < p < o), the real Hardy spaces H? or BMO are treated in [22].

Theorem 2 will be proved in two steps. Recall that, since E is vy-stable, we can use
compactly supported wavelets as a basis of £. Thus, we will first show that Theorem 2
holds if the wavelets used are compactly supported, and afterwards, we will show that
the elements of M are continuous on the space defined by (17); using Theorem 1, this
will imply that the characterization actually holds for any (smooth enough) wavelet
basis.

If the wavelets are compactly supported, then the direct part of the theorem is
straightforward: Let D be a large enough constant and ¢g be a distribution which coin-
cides with f(z) — P(x — x0) on B(x¢, D277) and is such that the norm in S(F) of its
wavelet coefficients is bounded by (277 (by hypothesis, such a ¢ exists). Since this
norm is robust, its restriction to the indices A satisfying A C 3X;(xp) is also bounded
by C27%/; but, if D is large enough and A\ C 3)\;(x¢), then the corresponding wavelet
coefficients of f and ¢ coincide so that (17) holds.

Let us now prove the converse part, still in the case of compactly supported wavelets.
We can forget the “low frequency component” of f corresponding to j < 0 in its wavelet
decomposition for the following reason: It belongs locally to C"(IR?) (for r-smooth
wavelets); therefore it belongs to Cg(xo) with F' = C"T_a(IRd); but

C""(RY) — B E if r—a> H;

therefore f belongs to Cp(xo) if r —a > H.

Let A;f = Yiea, o0, and let Pj(2 — x0) denote the Taylor polynomial of A;f of
degree [or + H] at x¢. If a+ H < 0, we pick P; = 0 (so that, there are no more Taylor
expansions in the following, in which case the reader should read the proof which follows
using the convention [oo + H] = —1).

Proposition 2 and (17) imply that,

if dist(\,29) < D277, then |ey] < ¢~ (et (18)

Let p > 0 be fixed and let J be defined by 277 < p < 2-277 and L be a constant
which will be fixed later, but depends only on the size of the support of the wavelets.
If j < J+ L, then at most C' of the (1))xea, have a support intersecting B = B(xo, p)
and each of them satisfies (18). It follows from Taylor’s formula that, if + € B and
J < J+ L, then

1A f(x) — Pila — o)| < CplotHi+iillotHl+1-a=H),

?

each function A;f(z) — Pj(x — xo) can be extended outside B and written under the
form 4 ) )
plottiFt gl I t=a=tD ) () = w(p, )iy ()

15



where ;/N)](:L') is a compactly supported “vaguelette” of scale p in the terminology intro-
duced by Y. Meyer, i.e. has all its moments of order less than r 4+ 2 vanishing and is
supported by B(xg,Cp). Therefore

J+L J+L N
> Ajf(x) = Pi(x — o) = |22 wlp, J)w;(x) <> wlp )~
J=0 E,B(zo,p) J=0 E,B(zo,p)

(because the () are vaguelettes of scale p, and E is v-stable). Therefore

J+L

Z Ajf(z) = Pi(x — o)

J+L
< Z p[oz—I—H]—I—l—H2j([oz—|—H]—|—1—oz—H) S Cpoz‘ (19)

E,B(zo,p) 770

It follows also from (18) that,
if |kl <[o+H]+1, then Vj>0, [(A;f)F(xg)] < C.20k=a=Mi, (20)

therefore the series

- o0 ) (2 .
Pa—s0)i=3 Be—r) =3 ¥ SHAG )

‘ !
7=0 |k|<a+H k!

converges; (20) implies that

o0

Rj(x — x9) = 4_;]4 Pi(x — )

is a polynomial of the form

Z wi(J, xo)(x — xo)k where |wi(J, 20)| < Cokl=a=H)j

|k|<a+H

therefore

VB, 0sRi(x — o) < Cpr -l

it follows that R; can be extended outside B(zg, p) as a function of the form p**7 W ;(z)
where W is a vaguelette at scale 277 and supported by B(zo, Dp). Using the same
y-stability argumant as above, it follows that | U ||g< C2717.

Let now gy(x) = 222 ;.1 A f(2); g7 and

i > ey

J=J+L ACB(z0,2p)

coincide on B if L has been picked large enough; furthermore, || g5 ||6< Asrrn(2o),
which, by hypothesis, is bounded by C2-*U+L) < Cp>. Adding up the estimates we
obtained, it follows that || [ — P || B(wg,n < Cp.
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Remark: Assume now that a + H € IN. We can come back to the previous proof
and substract only Taylor’s expansions of degree o + H — 1 (i.e. reproduce exactly the
same proof with the convention [ + H] = a4+ H — 1). Then all points of the proof
run the same except for the derivation of (19); indeed, each term of the sum is now
bounded by a constant. It follows that the bound obtained there is Cp®log(1/p). Thus,
if o + H € IN and if (17) holds then f satisfies

AP polynomial, C >0, Vr <1/2 | [ = P |lg,Bon< Cr®log(1/r).

In order to end the proof of the theorem, we still have to prove the following theorem,
which has its own interest, as will be shown below.

Theorem 3 Let F be a gentle space of order H; if v > |H| + 2d 4+ 2 and o > 0 then
C(xo) is y-stable.

Proof of Theorem 3: We have to prove that, if M is a matrix in M” and if a
sequence C' = (c)) satisfies

V>0, Aj(xe) <C27%, (21)
then MC satisfies the same estimate. If y; denotes the set of indices

pi = 3Xj(x0) = 3Aj41(0),
then, the p; form a partition of A. Let

=0 else, =0 else;

{d§ = oy iFAC3N(z) {e§ —cy if A€y

we denote by capital letters the corresponding vectors
C = (e hen, Dj=(d)er, Ej=(eh)en
Then (21) can be rewritten ||DJ||S(E) < 027,
Lemma 1 Let (c))ren be a vector; then, (21) is equivalent to
Vi2 0, [[Ellg < 027, (22)

Indeed, (22) is weaker than (21) since the sum in (22) bears on less terms. Assume
now that (22) holds; note that D; = 3., I;. If I/ is a Banach space, then

1D 1S3 | Bl 0 )27 <027,

33 33

If F is a quasi-Banach space of type p, then, one applies the same argument to || D; ||?,
which satisfies the triangular inequality.
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Let us come back to the proof of Theorem 3. Let M)  be an infinite matrix in M7,
We note

6/\ = Z M/\7/\/C/\/ ZC/\ Where C/\ = Z M/\ /\/C/\/
MeA 7! /\IGM]
Because of Lemma 1, we only have to estimate the norm of €' = (¢y) restricted to p;;

for that, we will estimate the norm of each C7' = (5&')&“]‘ Let j and j/ be fixed; if
|7 — 4’| <3 then, by assumption,

I (exheny 1< 022,
By continuity of the matrices of M” on S(FE), it follows that
| ¢ < ¢ < 027,
In order to deal with the case |j — j'| > 3, we first prove the following lemma.

Lemma 2 Let M, v be an infinite matriz in M". If |7 — 3| > 3, A € pu; and N € u;
then
M/\/\/_Q 4|] ]|N/\/\/

where N € M2, and the norm of N in M is bounded independently of j and j'.

Proof of Lemma 2: Since the estimates required are symmetric, we can assume
that 5 < j/ (and therefore that j < j/ —4). Denote by 27! the width of A and by 2"
the width of X'. Since A € p; and N € pjs it follows that [ > 7 —1 and I’ > 7' — 1.

Assume first that [ =7 — 1 or [ = j; then ' — [ > 5/ — 7 — 2 and therefore

9= (5+Nli=i'l < 9=(5+3)i=i"lo=(3+NI=T'],

Hence Lemma 2 in this case.

If I > 741, since A & 3X41(x0), it follows that dist(A, o)
3)\j43(20), it follows that dist(A, \') > 27772 but inf(l,I) — (j + 2)
separately the cases | < (j+ j')/2 and [ > (j + j')/2). Therefore

> 27771 since X €
> ]— — 2 (consider

2inf(l7l/)di8t()\7 )\/) Z 2—JT_J—2

and Lemma 2 follows in this case.

We come back to the proof of Theorem 3. Let us show that || 7'V ||< €272, Since
| B ||< 272" by continuity of N on S(F), it follows that || N(E;) ||,< €277, But
if ' belongs to pj and A belongs to y;, then Lemma 2 implies that

I MO < o=z li=i'lg—ay’
and therefore, in the Banach case,

I (MC) ey H<ZCQ"'] Fymed
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which is bounded by C27%7 as soon as 7/2 > a. The proof in the quasi-Banach case is
similar: One considers || . Hg(E) to which the triangular inequality applies.

Note that wavelets are not bases of the space Cp(xo) in the sense of Definition 7,
even if K has an inconditional basis. The reason is that the characterization given by
(17) is an [*-type condition in j and therefore Sy is not dense in E; a counterexample is
given by the following function f constructed through its wavelet coefficients (we use a
wavelet basis in Sp): All wavelet coefficients of f vanish except one for each scale j > 0,
the coefficient indexed by Aj(xg), in which case

c/\](xo) — 2—(oz+H)]‘

The function f clearly satisfies (17) because (in the Banach case),

| < S < 2,

i'=3

H{C/\}/\C?)Aj(xo)

Let ¢ = 3" ¢ ) be a finite linear combination of wavelets; if 7 is picked large enough,
then

| < 2% lex, ao

-1

17 = 9lloa oy < 27 |{erhrcan o

because of the robustness of the sequence norm. The proof in the quasi-Banach case is
similar.

It would be interesting to identify a predual of Cg(x¢), in order to determine if
wavelets are weak* bases of Cf(x). This would probably involve the construction of
pointwise regularity spaces associated with a negative «, which, in particular cases, has
been performed by Y. Meyer in [31].

The following result states that local regularity is a stronger requirement that point-
wise regularity.

Corollary 1 Let E be a gentle space and f € FE be such that (—A)*f € FE; then
Vao € RY, f € C8(xo).

Proof: The matrix in a wavelet basis of the operator (—A)® can be written as the
product of a diagonal matrix of 27%/ by a matrix in M, see Chap. 8 of [29]. Therefore,
the condition (—A)*f € F can be rewritten

(2%7¢y\)ren € S(E).
But, since the norm of S(FE) is robust, this implies that
Vi> 0, || (2% e )vesn @ 1< C
so that, since j' > 7 — 1,
¥z 0, | (2Yev)veay e 1< C,
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which means that f € C2(xo).

The following result is more surprising: In contradistinction with Holder regularity,
the fact that f € Cg(xo) uniformly in x¢ does not necessarily imply that (=A)*f € F,
even locally, as shown by the following counterexample: We pick £ = BIII(IR), so that
| flle=3lea|. The function f is defined by its wavelet coefficients:

v =j7%270 ifAC[0,1], and j>0
=0 else.

Clearly,

Z |CA/| S j_12_j
ACA

so that f € CL(zo) uniformly in xq, but Vo > 0, (—A)*f ¢ Blll(IR)

5 Implications in multifractal analysis

Multifractal analysis in concerned with the determination of the dimensions of the sets
of points where a function has a given pointwise regularity. The dimension mostly used
in multifractal analysis is the Hausdorff dimension. Let us recall its definition. Let A
be a subset of IR?. For each ¢ > 0, let

d_ - d
M = 1%fzi: ey,
where R denotes a generic covering of A by balls B; of diameter ¢; < ¢; then
. _ . . d _ . . . d _
dim(A) = sup{d: 11_1;% M: =400} =inf{d: ll_r}ré M: = 0}.

Definition 12 Let [ be a distribution which belongs to E£. The E-exponent of [ at xq
is h%(xo) = sup{a: f € Cg(xo)}.
The E-spectrum of singularities of f is

d?(H) =dim({x : h?(:p) = H}). (23)

If £ = L%, then d?(H) is simply called the spectrum of singularities of f and is
denoted by d¢(H); If E = LP, it is called the p-spectrum of singularities of f and is
denoted by d(H ). Properties of the p-spectrum are investigated in [22, 24].

One cannot expect to compute the spectrum of singularities of an experimental signal
by following the algorithm implicit in Definition 12 step by step. Indeed, the computa-
tion of a regularity exponent leads to numerical instabilities if it jumps from point to
point; the determination of the level sets of a complicated function is also a problem;
finally, computing one Hausdorff dimension involves considering all possible coverings
of the corresponding set, which is not numerically feasible...and in the case of a multi-
fractal function, we expect to deal with an infinite number of such sets! The purpose
of the multifractal formalism is to derive the spectrum of singularities from quantities
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effectively computable on experimental signals. First, we will show that the multifractal
formalism can be heuristically derived using a remarkable idea which G. Parisi and U.
Frisch introduced in the setting of Holder regularity, see [34]; it was later adapted using
wavelets (see [1, 21, 26] and references therein), and we present it in the Cp regularity
setting: We consider global quantities obtained by averaging the quantity

Ap(A) =l {extven llsem) -

In order to keep as much information as possible, one actually computes averages of
Af(A)? for all (positive and negative) values of the parameter p; one obtains the structure

S(p) = 279 3 (A, (V)"

XEA,

functions

The behavior of these quantities when 57 — 400 is described by the scaling function of

f ,
B log(Xh(p))
nf (p) = lim inf Tog(2-7)

Thus Z? is of the order of magnitude of 27 ("I in the limit of small scales. The

fundamental idea of the multifractal formalism is to estimate the contribution to Z? (p)
of the points 2y where the E-exponent takes the value h. Indeed, if the cube A contains
such a point, then Theorem 2 asserts that Af()) is of the order of magnitude of 27/,
Coming back to the definition of the dimension, we need about 2977 guch cubes to
cover the set {zo: h¥ (o) = h} by cubes of size 277; thus the contribution we look for

is, for each value of j,
o—dig=df (Mig=hpj _ 9—(d=df (h)j+hp)j

When 5 — 400, the contribution given by then smallest possible exponent d—d?(h) +hp
becomes preponderent; thus, we expect that

nf(p) = inf(d — df (h) + hp).

If d — d¥(h) is a convex function, then —nf(p) is the Legendre transform of d — d¥(h)
(in the sense of convex functions duality, see Chap. 1.3 of [8]). The inversion formula
allows to recover d¥(h):

A (h) = inf(hp — (k) + d). (24)

When (24) holds, one says that f satisfies the multifractal formalism. The heuristic
argument we described cannot be turned into a mathematical proof; the following result
shows that, however, the right hand side of (24) always yields an upper bound for the
spectrum.

Theorem 4 Let I be a gentle space, let f € E and assume that the wavelet basis which
is used belongs to the Schwartz class; then

di(h) < inf(d =7 (p) + hp). (25)
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When p is positive, the scaling function can be given a functional interpretation. For
that, we introduce the oscillation spaces associated with E which are defined by the
following condition on the wavelet expansion (using the expansion on the ¢ (272 — k)

for 7 > 0 and the p(x — k) as in (16)).

Definition 13 Let s € IR and p > 0; a distribution f belongs to O3 (IR?) if it satisfies

SMGF<C
&
and 4
AC >0 V>0 2627DiNT A (NP < O (26)
&
Remarks:

Particular examples of oscillation spaces were already introduced, for £ = B%> see
[20, 21], for FF = C?, see [20, 23] and for £ = L?, see [22].
It follows immediately from Definition 13 that

n¥(p) = sup{s: fe O,

therefore, when p > 0, the function nf(p) indicates which spaces O3 contain the func-
tion f.
It would be interesting to determine if oscillation spaces are gentle.

Proof of Theorem 4: First, we consider the case where p is positive. We will
estimate the dimensions of the sets (G, which are defined by

Gy ={zo € RY: [ ¢ Cl(xo)}. (27)

Proposition 3 Let p > 0; if f € OFF, then

d
Vh>s——, dim(Gh) <d+ hp— sp. (28)
P

Furthermore, if s — % > 0, then G, =0 for any h < s — %.

Proof: If h < s — % and f € O3 then, for any A of width less than 1,

dy -

Ap(N) < 027675l

so that Vg, h?(:po) > s —d/p.
Let us now prove the first assertion of the proposition. Let

G ={N: |4,V = 277},
and denote by N;;, the cardinality of G, . By hypothesis, f € O3 so that

2000 5D A <
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therefore
2(8p—d)ij7h2—hpj < C,

so that
N]‘ L < CQ(d_Sp-I_hp)j.

Two dyadic cubes Ay and A, are called adjacent if they are at the same scale and if
dist(A1,A2) = 0 Denote by Fj ), the set of cubes X of scale j such that either A € G,
or A is adjacent to a cube of GG ;. Clearly,

Card(F; ) < 3dCard(Gj7h) < 3dold—srrhp)i,

Denote by Fj, = limsup F}, the set of points that belong to an infinite number of F},.
j—too

If 29 ¢ I}, then there exists jo (= jo(2)) such that, for any j > 7o, A;(z0) < 27" thus
we can choose C' ( = C(x)) large enough so that

Vi >0, Aj(xe) <C27M,

Theorem 2 implies that f € C'Z(xq); so that G} C F},.
It remains to bound the dimension of F},. Let ¢ > 0, and

jo =inf{j : Vd277 <&}
We choose for e-covering of Fj, all the cubes A such that 5 > j0 and A € F} ;. Clearly,
= N\ 8 o0 ,
ZDiam(BA)S < Z Card(F;)) (\/82—1) <C Z 2(d—sp+hp—5)]7
J=jo J=do

which is finite if 6 > d + hp — sp; hence the first part of the proposition holds.

Let us now check that the upper bound in Theorem 4 holds for p > 0. If g € K},
then h¢(xo) = h, and Vh' > h, x9 € Gps; so that E, C Gp. Let p > 0; by definition of

E(p)—e
nf(p) we have Ve > 0, [ € ng (¥) )/p’p, so that
VR > h, Ve >0 d¥(h) = dim(Ey) < dim(Gp) < d+h'p—nf(p) + ¢,

and thus
d¥(h) < d+ hp — ¥ (p).
Since this upper bound is valid for all p > 0, (25) follows (with the infimum taken on IRT).
We consider now the case where p is negative. In this case, we will obtain a result

which is stronger than Theorem 4 since it yields a bound for the packing dimension of
the Holder singularities. Let us recall its definition.
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Definition 14 Let A C IR?; if ¢ > 0, let N.(A) be the smallest number of sets of radius
¢ required to cover A. The upper box dimension of A is

dimp(A) = limsup M.
o0 —loge
The packing dimension of A is
dim,(A) = inf {sqp (dimBAi A C U Az)}
¢ =1

(the infimum is taken over all possible partitions of A into a countable collection A;).

The packing dimension of a set is always larger than its Hausdorff dimension. Denote
by By, the set of points xq such that f € Ck(zo).

Proposition 4 Let p < 0; if f satisfies
AC >0 Vji>0 26273 A (NP < O, (29)
k
then the packing dimension of By is bounded by d — sp + hp.

Proof: Let § > 0 and J such that 277 < §. If f € CF(z0), then there exists A > 0
such that 4
Vi, Agd) < A2

so that, since p < 0, 4
(AN = vz, (30)

Denote by Q4 the set of points & where (30) holds for any j > J. Clearly,

BhC U QA,

A>0

where the union can be written as a countable union. Since f satisfies (29), there are at
most C AP2(I=sp+hr+e)i cybes ) satisfying (30), so that the upper box dimension of each
set Q04 is bounded by d — sp + hp. The proposition follows by countable union, and the
upper bound (25) for p < 0 also follows by the same argument as for p > 0. Therefore
Theorem 4 is completely proved.
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