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Time-Frequency Analysis: Origin

Gabor Ville Wigner

Connected with the development of Quantum Mechanics (Weyl-Heisenberg,
Von Neumann)
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Time-Frequency Analysis: Philosophy

Problem of developing a mixed representation of a signal in terms of a double
sequence of elementary signals, each of which occupies a certain domain in
the time-frequency plane

“One is interested, in communication theory, in representing an
oscillating signal as a superposition of elementary wavelets, each of
which has a rather well defined frequency and position in time. Indeed,
useful information is often conveyed by both the emitted frequencies
and the signal’s temporal structure (music is a typical example). The
representation of a signal as a function of time provides a poor
indication of the spectrum of frequencies in play, while, on the other
hand, its Fourier analysis masks the point of emission and the duration
of each signal’s elements. An appropriate representation ought to
combine the advantages of these two complementary descriptions; at
the same time, it should be discrete so that it is better adapted to
communication theory.” (Roger Balian)
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Time-Frequency Plane

• Many time-frequency representations

• Short-time Fourier transform: window w

S(τ, ω) =
∫

f(t)w(t − τ )e−iωt dt

• Unfold the signal in the time-frequency plane (τ, ω) which leads to a mixed
representation in time-frequency atoms (Ville)

• Synthesis with time-frequency atoms of the form (Gabor)

w(t) = h−1/2eiωtg

(
t − τ

h

)
h fixed
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Development

• Theory

• Tools

• General applications

Very active fields over the last 20 years

• Journals

• Conferences
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Tools

• Linear and quadratic time-frequency representations, which provide
time-frequency phase portraits of a signal, e.g.

– Short-time Fourier transform (STFT)

– Wigner Ville Distribution (WVD)

• New orthonormal bases and frames which can efficiently represent certain
kinds of time-frequency phenomena, e.g.

– Wilson Bases

– Cosine Packets

– Gabor Frames
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Applications

• Compression of audio signals

• Restoration of old audio recordings, e.g. Caruso (R. Coifman)

• Synthesis of a purely numerical (superhuman) voice (X. Rodet)
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Chirps

f(t) = A(t) cos(Nϕ(t))

• Amplitude A (smooth)

• Phase ϕ (smooth)

• Oscillation degree λ is large
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Chirps arise in a number of important scientific disciplines

• Echolocation in bats and other mammals

• Gravitational waves

• Doppler effect, etc.
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Gravitational Waves I

• GWs are predicted by the theory of relativity

• GWs have never been observed experimentally

• Current scientific projects of a very large scale aim at detecting GWs

– LIGO

– VIRGO
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Gravitational Waves II

• A promising source of gravitational waves: coalescing binaries

• First order of approximation

f(t) = A(t0 − t)−1/4
+ cos(B(t0 − t)5/8)

• Instantaneous frequency ω(t) ∼ t−3/8 increases with time like a
power-law

• Signal is expected to be burried in a “sea” of noise
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The Problem of Chirps

Challenging problems

• Efficient representations of chirps

• Recovery of chirps from noisy data

• Detection of chirps from noisy data
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The Detection Problem

yt = α St + zt, t = 0, 1, . . . , N − 1

• y: data

• S: unknown chirping signal.

• α > 0 is the “signal strength”

• z is white noise, zt i.i.d. N(0, 1)

To test

H0 : α = 0 vs H1 : α 6= 0
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Models for Chirping Signals

f(t) = A(t) cos(Nϕ(t)), 0 ≤ t ≤ 1

Smoothness assumption on phase and amplitude (+ identifiability condition on
the phase ϕ):

CHIRP(s; R) = {f, ‖A‖Cs ≤ R, ‖ϕ‖Cs ≤ R}

Hölder class Cs: m = bsc

|Dmϕ(t) − Dmϕ(t′)| ≤ C · |t − t′|s−m
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III. Detection Strategies: Background
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Matched Filters

• Assume unknown signal S belongs to a parametric family Sθ, θ ∈ Θ

• Test Statistic

Z∗ = max
θ

Z[θ]

where

Z[θ] =
〈y, Sθ〉
‖Sθ‖2

• Compare with threshold

Notations: 〈x, y〉 = 1
N

∑N−1
t=0 xtyt
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Criticism

• Grid-size must be very fine

• Computational complexity is very high

• Not robust (often practically unrealistic)

• Not flexible
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Ridge Detection, I

• Instantaneous frequency

f(t) = A(t) eiλϕ(t)

Locally,

ϕ(t) = ϕ(t0) + ϕ′(t0)(t − t0) + O(t − t0)2

Instantaneous frequency: λϕ′(t)

• Short-time Fourier transform

F (τ, ω) =
∫

f(t)w(t − τ )e−iωt dt.
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Ridge Detection, II

φ'(t)Instantaneous frequency

time

frequency

time-frequency portrait picks near a ridge

Idea: detect this ridge from noisy data
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Criticism

Problem: Short-time Fourier transform is highly oscillatory
Proposal: find curve such that∫

|F (t, γ(t))| dt is maximum

• Not constructive

• How to choose the windowing? Resolution problem (Heisenberg)

• Ignore the thickness: loss of efficiency

• Noise does not cancel!
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Our Goals

• Identify the optimal detection threshold, i.e. the signal strength below
which no method of detection can be successful for large dataset size N .

• Focus on the computational complexity of a near-optimal detector, i.e. the
complexity required to detect signals slightly exceeding the detection
threshold.

• Design adaptive strategies, which do not require information about the
smoothness of the phase and amplitude.

Higher goal: connect statistical theory and time-frequency analysis.
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Connections

• Nonparametric detection: Ingster, Spokoiny.

• Beamlet analysis and detection of line segments: Arias-Castro, Donoho,
Huo.



26

IV. Chirplets
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Recursive Dyadic Partitions (RDP)

Definition. An RDP is any partition obeying

• I = [0, 1] is an RDP

• If P = {I1, . . . , Ii, . . . , Im} is an RDP,
then the partition obtained by splitting any
interval Ii ⊂ P is also an RDP.

Examples:

• [0, 1/4), [1/4, 1/2), [1/2, 1) is an RDP

• [0, 1/4), [1/4, 3/4), [3/4, 1) is not an
RDP

B 0,0

1,0 1,1

2,0 2,1

B B

B B B B

B B B B

2,2 2,3

3,2 3,3 3,6 3,7
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Chirplet Dictionary

• I dyadic interval I = [k2−j, (k + 1)2−j)

• On each interval, discrete set of offsets and slopes: aI,µ, bI,µ

• Chirplets at scale 2−j and location tI = k2−j

fI,µ(t) = |I|−1/2 ei(aI,µt2/2+bI,µt)1I(t), ‖fI,µ‖L2 = 1

• Instantaneous frequency is linear: aI,µt + bI,µ

• Discretization of instantaneous frequency is scale-dependent
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Figure 1: Schematic representation of two chirplets
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Chirplet Graph

Chirplet graph

• Vertices: chirplets

• Edges: connectivities

Connectivities

• ’Live’ on a pair of adjacent intervals

• ’Continuity’ of the instantaneous frequency

Many vertices and few connectivities/vertex, i.e. O(log N), N sample size.
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Example of a path in the chirplet graph
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Multiscale Chirplet Detection
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Multiscale Detection Strategy

T ∗ = sup
all paths

∑
v∈V |〈y, fv〉|2

`(V )

If exceeds threshold A∗, reject H0.

• C(V ) = −
∑

v∈V |〈y, fv〉|2: cost of a path

• `(V ) : length of a path
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Where Does This Come From?

Behavior of T ∗ under H0; y = z, z white noise.

z∗(`) = max
(#V )=`

∑
I

|〈y, fv〉|2.

1. Size of y∗(`): E[y∗(`)] = γ · `(1 + o(1)), γ > 1.

2. Tools

• Large deviations for chi-squares (upper bound)

• Talagrand’s majorizing measures (lower bound)

3. Fluctuations are negligible compared to the size of the expectation,
SD[y∗(`)] = O(`1/2).
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Tools I: Talagrand’s Majorizing Measures

• Zf zero-mean Gaussian process, e.g.

Zf = 〈z, f〉

• Distance

d(f, g) =
[
E(Zf − Zg)2

]1/2
= n · ‖f − g‖2

• Entropy

H(δ, F) = log2 N(δ, F), N(δ, F) = min
i

d(f, fi) ≤ δ

Then Z∗ = supf∈F Zf obeys

K1 sup
δ

[δ
√

H(δ, F)] ≤ EZ∗ ≤ K2

∫ ∞

0

√
H(δ, F) dδ.



37

Tools II: Moderate deviations for χ2’s

P (Yd − d ≥ λσd) ≤ λ−1 · e−λ2/2, Yd ∼ χ2
d.
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Statistical Theory: Detectability Threshold

yt = α S(t/N) + zt, S(t) = A(t) cos(Nϕ(t))

S ∈ CHIRP(s; R); S unknown but s and R known.

Assume signal strength α ≤ t0(s, R) · N−1/2+1/2s, then for all tests

PH0(reject H0) + sup
H1

PH1(accept H0) → 1, N → ∞;

i.e. α∗
N ∼ N−1/2+1/2s is the level of detectability.



39

Statistical Theory: Near-Optimal Detection

H1: composite alternative. S ∈ CHIRP(s; R)

• regularity s is unknown

• modulus of smoothness is unknown

Reject when T ∗ = max
∑

v∈V |〈y, fv〉|2/`(V ) ≥ A∗.

Suppose that S ∈ CHIRP(s; R) and α > t1(s, R) · N−1/2+1/2s. For this test

PH1(reject H0) → 1, n → ∞,

and

PH0(accept H0) → 1 n → ∞.

Near-optimality and adaptivity



40

Important Message

• On each dyadic interval, signal is not detectable; |〈y, fv〉|2 is statiscally
nonsignificant.

• Chain of connected intervals is statistically significant.
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Computational Issues

• Many paths in the chirplet graph: exponential in the sample size N

• Test statistic is designed to be rapidly computable:

T ∗ = min

∑
v C(v)∑

v 1

– Minimum cost-to-time ratio

– Can use dynamic programing

– Complexity of the search is of the order of O(P log P ); P , # of
chirplets (more later).
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Paths in the Chirplet Graph

f0

f1

0 1/2 1

i

j

ci j = −|〈y, fi〉|2

node i node j arbitrary path

optimal path

Time-frequency graph Chirplet graph
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Shortest Path in a Graph

• Goal: find path V ∗ in G which minimizes the cost
∑

v∈V C(v) (over all
paths)

• Topological ordering: nodes labeled i = 1, . . . , P , are said to be in
topological order iff

(i, j) ∈ A ⇔ i < j

• Distance function d(·); d(i) shortest distance from a source node s to
node i.

• Shortest path for acyclic graphs: algorithm

– Initialize: d(s) = 0, and d(i) = ∞ for all nodes (but the source node).

– Loop: Examine nodes in topological order. For i = 1 : P ,

∗ scan the set of arcs going out from node i

∗ For (i, j) ∈ A(i), if d(j) > d(i) + cij , set d(j) = d(i) + cij and
pred(j) = i.

– Terminate: Shortest path is that path such that d(i) is minimum, i

terminal node.
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Decision Rule as a Shortest Path Problem

• Want to compare test statistic T ∗ = min
P

v C(v)P
v 1

with a threshold αc.

• Solve SP with modified costs

S∗ = min

∑
v C(v) − αc∑

v 1

– If S∗ < 0, reject null

– Otherwise, accept.

• Complexity of the search is of the order of O(P log P ); P , # of chirplets.
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Minimum Cost to Time Ratio (MCTTR)

Interested in the value of the test statistic t∗ = min
P

v C(v)P
v 1

(t∗ optimal value

of MCTTR)

Solve a sequence of SP problems:

• Current upper bound: t0

• Solve SP with modified cost `v = cv − t0

1. If SP = 0, we hold the MCTTR

2. IF SP < 0, repeat with better upper-bound α0 = (
∑

V ∗ cv)/
∑

V ∗ 1.

• Number of steps at most equal to the maximum length of a path.
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Clean Chirp
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Noisy Chirp?
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Practical Issues

• In practice, need to estimate cut-off

• Monte-Carlo simulations

• Key observation: under H0, MCTTR achieved for paths of length 1

• Refinement of detection strategy: multiple comparisons
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Multiple Comparisons
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Colored Noise
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Figure 2: LIGO noise power spectrum
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Likelihood Interpretation
• Model

Y = S + z, z ∼ N(0, I)

• Likelihood: chirplet f ∈ F (‖f‖ = 1)

L(y, λf) ∝ e− 1
2‖y−λf‖2

• Maximum likelihood

max
λ,f

L(y, λf) = min
λ,f

‖y − λf‖2 = min
f

‖y − 〈y, f〉f‖2

• Pythagoras
‖y‖2 = ‖y − 〈y, f〉f‖2 + |〈y, f〉|2

• Equivalence

max
f

|〈y, f〉|2 ⇔ max L(y, λf)

• Chirplet path

C(V ∗) = max
V

∑
v∈V

|〈y, fv〉|2 ⇔ min
V

‖y −
∑

v

λvfv‖2.



58

Detection in Colored Noise, I

• Model

Y = S + z, z ∼ N(0, Σ)

• Maximum likelihood

max
λ,f

e− 1
2 (y−λf)T Σ−1(y−λf)

or equivalently

max
f

|yT Σ−1f |2

fT Σ−1f
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Detection in Colored Noise, II

Chirplet test statistic

T ∗ = sup
V

∑
v∈V C(v)∑

v∈V 1
, C(v) =

|yT Σ−1fv|2

fT
v Σ−1fv

Same structure

• Interpretation as a min cost-to-time ratio

• Rapidly computable

• Similar decision theoretic results
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Time-varying amplitude
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Time-varying amplitude

• Chirplets

fv(t) = eiφv(t)/
√

|I|, ‖fv‖ = 1.

• Allow for smoothly varying amplitude

min ‖y − P (t) eiφv(t)‖2

with P (t), polynomial of degree 2, say.

• Equivalence

C(v) =
2∑

i=0

Ci(v), Ci(v) = |〈y, Pi(t)eiφv(t)〉|2

with P0, P1, P2 three orthonormal polynomials of at most 2.
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Chirplet test statistic

T ∗ = sup
V

∑
v∈V C(v)∑

v∈V 1

Same structure

• Interpretation as a min cost-to-time ratio

• Rapidly computable

• Probably Similar decision theoretic results
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Comparison Chirplet Detection vs. Optimal Detection
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Summary

• Structured algorithms

• Methodology allows to detect signals whenever their strength makes them
detectable by any method, no matter how intractable.

• Computational infrastructure: ChirpLab 1.0, ChirpLab 2.0

• Promising early numerical experiments

• Many extensions

– Chirps with (unknown) finite duration and location

– Several chirps—interfering or not.


