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From Data to Astronomical Goals

Input data: 
measurements

distributed in some space

Intermediate product:
estimate of 

signal, image, density ...

End goal: estimates of 
values of scientifically 
relevant quantities

sequential data (time series, spectra, ... )
images, photon maps
redshift surveys
higher dimensional data



Exploratory analysis: little prior information – few assumptions

Use simplest possible nonparametric model: piecewise constant
(allows exact calculation of marginalized likelihoods)

Take account of:
observational noise
exposure variations
arbitrary sampling, gaps
point spread functions (1D, 2D+ in progress)

Just say no to:
pretty pictures; smoothing; continuous representations
bins or pixels (unless raw data in this form)
methods tuned for specific structures, e.g. beamlets
resampling
sensitivity to some global structures, e.g. periodic

Astronomical Goals

} intrinsic

}constructs



no
data

Piecewise Constant Model (Partition)

Can simply ignore gaps – model says nothing about signal there. 



Smoothing and Binning

Old views: the best (only) way to reduce noise is to smooth the data
the best (only) way to deal with point data is to use bins

New philosophy:  smoothing and binning should be avoided because they ...
 discard information
 degrade resolution
 introduce dependence on parameters:

 degree of smoothing
 bin size and location

Wavelet Denoising  (Donoho, Johnstone, ... ) multiscale; uses no 
explicit smoothing

Adaptive Kernel Smoothing

Optimal Segmentation  (e.g. Bayesian Blocks) Omni-scale -- uses neither 
explicit smoothing nor pre-defined binning



The data: Data cells: points, event counts, measurements, etc.
Noise: known distribution, not necessarily additive (e.g. Poisson)

Distributed over a data space:
1D: time series, sequential data, ...
2D: images, photon maps, star/galaxy catalogs, ...
3D: galaxy redshift surveys, energy-resolved photon maps
xD: time & energy resolved photon maps; data mining

Goals: Nonparametric representation of the underlying signal or density

Easy analysis of signal structure (e.g. clusters in point density)

Suppression of noise (using prior knowledge of noise statistics)

Objective, automatic analysis of large data sets (data mining)

The Problem: Signal/Density Estimation



Signal Model: Piecewise Constant

Represent signal as constant over elements of a partition of the data space.

Optimize model by maximizing model fitness over all possible partitions.

_ Nonparametric

_ Few prior assumptions about the signal:
_ prior on signal amplitudes
_ prior on number of partition elements

_ No limitation on the resolution in the independent variable.

_ Representation, while discontinuous, is convenient for further analysis

_ Local structure, not global





DATA CELLS: Definition

data space: the set of possible measurements in some experiment

data cell: a data structure representing an individual measurement 

For a segmented model, the cells must contain all information
needed to compute the model cost function.

In a specific application, the data cells may or may not:
_ be in one-to-one correspondence to the measurements
_ partition the entire data space
_ overlap each other
_ leave gaps between cells
_ contain information on adjacency to other cells



DATA CELLS: Event (Point)  Data

Measurements: Point coordinates
Data Space: Space of any dimension
Signal: Point density (deterministic or probabilistic)
Data Cell: Voronoi cells for the data points

Suf. Statistics N = number of points in block
V = volume of block

Max Likelihood: ( N / V ) N e -N

Posterior: N! (V – N)! / (V+1)!

Example: any problem usually approached with histograms (1D)
positions of objects from a sky survey (2D)
positions of objects in a redshift survey (3D)



DATA CELLS: Serial Measurements
Measurements: Values and error distribution of dependent variable at

given values of independent variable, e.g. X(t) ~ N(x,σ)

Data Space: Interval, area, volume, ... 

Signal: Variation of dependent variable

Data Cell: Measurement point

Suf. Statistics xn= xn( tn ),  tn , parameter(s) of error distribution: σn, ...

log posterior:

Example: time series, spectra, images, SOM output ...



DATA CELLS: Distributed Measurements

Measurement: Dependent variable 
averaged over a range of independent variable

Data Space: Space of any dimension

Signal: Physical variable

Data Cell: Measurement and its interval

Suf. Statistics: x, σx , W(t) = window function

Posterior: see Bretthorst, G-S 
orthogonalization

Example: spatial power spectra of CMB



Blocks
Block: a set of data cells

Two cases:
_ Connected (can't break into distinct parts)
_ Not constrained to be connected

Model = set of blocks

Fitness function:

F( Model ) = sum over blocks F( Block )



The Optimizer
best = []; last = [];
for R = 1:num_cells
   [ best(R), last(R) ] = max( [0 best] + ...
          reverse( log_post( cumsum( data_cells(R:-1:1, :) ), prior,  type )  ) );

     if first > 0 & last(R) > first  % Option: trigger on first significant block
          changepoints = last(R); return
     end
end

% Now locate all the changepoints
index = last( num_cells );
changepoints = [];
while index > 1
   changepoints = [ index changepoints ];
    index = last( index - 1 );
end























Distribution of  Galaxies in 3-space (and time)

Nature of the astrophysical process:

 initial density fluctuations = (Gaussian?) random field
 fluctuations grow over time due to gravity
 end product = discrete galaxies

What is the best mathematical model of this process?



Sloan Digital Sky Survey – First Data Release



Distribution of  Galaxies in 3-space (and time)

Structures observed in redshift surveys:

_ Voids (3D underdense cells) -- “voids”

_ Sheets (2D density excesses) -- “Zeldovich pancakes”

_ Nodes (1D density excesses) -- “classical clusters”



Optimum Partitions
in Higher Dimensions

_ Blocks are collections of Voronoi cells (1D,2D,...)
_ Relax condition that blocks be connected
_ Cell location now irrelevant
_ Order cells by volume
 Theorem: Optimum partition consists of blocks 

that are connected in this ordering
_ Now can use the 1D algorithm, O(N2)
_ Postprocessing step identifies connected block 

fragments







Represent data with a piecewise constant Poisson model:
Partition the plane
Represent point density as constant in partition elements

Use posterior probability of Poisson model for each element to
measure goodness-of-fit

Fitness of partition is product of fitnesses of its elements
(independent errors)

What is the best such partition?



















Self-Organizing Map


























