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Outline

• Reminder : Fonctions one the sphere, the
Laplacian, eigenmodes...

• Eigenmodes are harmonic polynomials of IR3

• Multipole and Harmonic decompositions

• Vector multipoles
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The 2-sphere S2

a (2-dimensional Riemanian) manifold.

isometrically embedded in IR3,
as the surface of equation
G(X, X) ≡ X ·X = 1

(with the usual Euclidean metric G).

This provides the spherical coordinates θ, ϕ

X1 = cosθ, (1)

X2 = sinθ cosϕ, (2)

X3 = sinθ sinϕ. (3)

The restriction of G to S2 gives its metric

g = ds2 = dθ2 + cos2θ dϕ2.
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Isometries of S2 = Rotations of IR3=
. = group SO(3)

Simplest representation: on vectors of IR3.
The rotation R(u, α) ∈SO(3) is represented by a real
orthogonal matrix of order 3:

R(u, α) : X 7→ X ′ = RX (4)

M : (XA) 7→ (X ′A ≡ RA
B XB). (5)

Thus, SO(3) = group of orthogonal matrices
(R RT = II3),
with the matrix multiplication (isomorphism).
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Functions

C(S2) = set of smooth functions on S2.

Any function on S2 ⊂ IR3 may be seen as the
restriction of a function on IR3.

Smooth functions on IR3 can be approximated by
infinite Polynomials of IR3 (the set of polynomials is
dense).

Pol = set of Polynoms in IR3

Pol is a vector space.
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Rotation of functions

A rotation R : X 7→ RX of has a natural action TR

on a function:
TR : f 7→ TRf :

TRf(X) ≡ f(R−1X).

Since C(S2) is a vector space,
R 7→ TR is a representation of SO(3).

There are some invariant subspaces: this
representation is reductible.

The invariant subspaces will allow to construct the
irreductible representations.
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Multipole Decomposition for a function on S2.

C(S2) = H0 ⊕H1 ⊕ ...⊕H` ⊕ ...

(direct sum).

For each function on the sphere,

f =
∑

`

f(`); f(`) ∈ H`.

f 7→ f(`) is the projection of C onto H`.

f(`) ∈ H` is the ` - multipole.
( ≈ f seen at angular scale 2π/`).

f(1)= dipole, f(2)= quadrupole, etc.
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Each H`

• is invariant under SO(3).

• constitutes an IUR of SO(3).

• is an (Hilbert) vector space, of dimenson 2` + 1.

• ( is the space of eigenfunctions of ∆S2 with the
same eigenvalue λ` = ` (` + 1); ` ∈ IN.)

• ... has many other properties
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Multipole decomposition
and

Eigenmodes
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Eigenmodes of S2.

Laplacian on S2

∆S2 :=
1

sinθ

∂

∂θ
(sinθ

∂

∂θ
) +

1
sin2θ

∂2

∂φ2

Helmoltz equation on the Sphere :
∆S2f = −λf, f ∈ C(S2).

Solutions = eigenfunctions of ∆S2 .
≡ eigenmodes of S2.

Theorem : Solutions of Helmoltz equation (=
eigenfunctions) exist for the eigenvalues

λ = λ` ≡ ` (` + 1); ` ∈ IN.

Theorem :
The vector space of `- eigenmodes of S2 is H`.
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Eigenspaces

All eigenmodes of S2 with the same eigenvalue λ`

(≡ ` - eigenmodes) form the vector space
H` ⊂ C(S2).

H` is the eigen[vector]space corresponding to the
eigenvalue λ`,
of dimension 2` + 1.

As seen above, H` is stable under the rotations TR:

∀f ∈ H` ⇒ TRf ∈ H`, ∀R ∈ SO(3).

H` is stable under SO(3) : the representation TR,`

limited to H` is irreductible.
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Multipole Decomposition

C(S2) = H0 ⊕H1 ⊕ ... ⊕H` ⊕ ... (6)

f = f(0) + f(1) + ... +f(`) + ... (7)

f(`) ∈ H` is the multipole.

For instance, f(1) is the dipole,
f(2) is the quadrupole, etc. This is an eigenmode:

∆S2 f(`) = −λ`f(`).
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A basis for H`

H` is of dimension 2` + 1.

All functions of H` are eigenvalues of ∆S2 with the
same eigenvalue λ`.

To find a basis, we will use the kinetic momentum
operator.
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Kinetic momentum operator

Ji ≡ εijk xj
∂

∂xk = components of the kinetic
momentum operator applied to the functions
(i.e., the generators of the rotations).
(i.e., the generator of the Lie algebra).

We have ∆S2 = J i Ji = J2. (Casimir operator)

Thus, H` is an eigenspace of J2.
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Kinetic momentum operator

Are there some eigenfunctions of the component J3

in H` ?

Yes:

the possible eigenvalues are
m = −`...` (in number 2` + 1).
The 2` + 1 corresponding eigenfunctions are called
the spherical harmonics Y`m.
They form a basis of H`.
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Decomposition in spherical harmonics

I recall the multipole decomposition :

C(S2) = H0 ⊕H1 ⊕ ...H` ⊕ ...

f = f(0) + f(1) + ..f(`) + ...

From the basis of H`,

f(`) =
∑̀

m=−`

f`m Y`m,

usual decomposition in spherical harmonics

f =
∑
`=0

∑̀
m=−`

f`m Y`m.

The function f is characterized by all its coefficients
f`m = a`m.

Why harmonic ?
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Approximation

Approximation of f , at the resolution L:

f(<L) =
L∑

`=0

∑̀
m=−`

f`m Y`m.

This is at the basis of the present analyses of the
CMB (and of data on a sphere in general).

Why harmonic ?
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Eigenmodes
and

Harmonic polynomials
(We associate functions on S2 to polynomials in IR3)
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Laplacian operators

Laplacian in IR3:

∆IR3 ≡ ∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
.

= ∆IR3 =
1
r2

∂r (r2 ∂r) +
1
r2

∆S2

(in spherical coordinates).

Laplacian on S2

∆S2 :=
1

sinθ

∂

∂θ
(sinθ

∂

∂θ
) +

1
sin2θ

∂2

∂φ2
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Harmonic functions in IR3

Definition: ∆IR3F = 0.

((Any function f(θ, ϕ) on S2 is the reduction of a
function on IR3 ))
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Homogeneous Polynomials of degree `

(in IR3)

P (X) =
∑

α+β+γ=`

Pα,β,γ xα yβ zγ .

Hereafter ` - Homogeneous Polynomials .

Their set ≡ HOM(`).

And we call HARM(`) ⊂ HOM(`) the vector space of
these polynomials which are harmonic.
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Eigenfunctions are harmonic Polynomials

Theorem:
If f is an ` - eigenmode of S2, r` f(θ, ϕ) is an
harmonic polynomial, homogeneous of degree `.

In other words, H` ≈ HARM(`).
` - Harmonic Polynomials ≈ `-Eigenmodes.

r` f(θ, ϕ) = P (X) =
∑

α+β+γ=`

Pα,β,γ xα yβ zγ ,

with P harmonic.
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Harmonic projection

H` ≈ HARM(`).

By definition, HARM(`) ⊂ HOM(`).

There is a projection map:

HOM(`) 7→ HARM(`) (8)

P 7→ ΠP (harmonic), (9)

the harmonic projection.

To each `− homogeneous polynomial is associated its
unique harmonic projection.
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Direct sums

HARM(`) ⊂ HOM(`).

Theorem

HOM(`) = HARM(`) +r2 HOM(`− 2)

P = ΠP +r2 Q. (10)

P = any `− homogeneous polynomial,
ΠP is `− harmonic homogeneous (harmonic
projection),
Q is (`− 2)− homogeneous :

Note, one may write

HOM(`) = HARM(`) + r2 [HARM(`− 2) (11)

+ r2[HARM(`− 4) + r2...]
]
. (12)
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Tensorial form
The general `−homogeneous polynomial ,

P (X) =
∑

α+β+γ=`

Pα,β,γ xα yβ xγ ∈ HOM(`),

can be written in the tensorial form:

P (X) =
∑

a1,a2,...a`

P(a1,a2,...a`) Xa1 Xa2 ...Xa` .

The parenthesis means symmetry in all the indices.

Thus, HOM(`) = {symmetric tensors of order `}

If P is harmonic, then the tensor P(a1,a2,...a`) is
traceless (exercise !).

HARM(`) =
{symmetric traceless tensors of order `}

Harmonic projection Π : P 7→ ΠP :
[ΠP ](a1,a2,...a`) = the traceless part of P(a1,a2,...a`) .
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DATA ON THE SPHERE
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Analysis of functions (on the sphere)

The temperature TCMB is a function on the sphere.

Multipole expansion:

f = f(0) + f(1) + ..f(`) + ...

f(`) represents the temperature fluctuation at
angular scale ≈ 2π/`.

f(`) =
∑̀

m=−`

f`m Y`m.

f =
∑
`=0

∑̀
m=−`

f`m Y`m.

Finite resolution: one works with the approximation
of f at some (angular) scale

f≤L =
L∑

`=0

∑̀
m=−`

f`m Y`m.

UCLA 2004 27



Density modes

Fluctuations of T are caused by fluctuations in the
density, velocities, gravitational potential at the
period of recombination (when the CMB was
emitted).

Posterior (secondary) fluctuations are neglected here.

Ex.: Sachs-Wolfe effect: scalar fluctuations in the
potential (itself generated by density fluctuations): it
results that T is proportional to the density ρ.
(or its relative fluctuation δ ≡ δρ/ < ρ >)

The density ρ is a function in space. When space is
flat (= IR3), ρ is decomposed in Fourier modes:

δ(X) =
∫

d3k δk (eik·X), k ∈ IR3

( 3-dimensional Fourier transform).
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When space is non flat, similar decomposition but
the (eik·X) are replaced by more complicated (but
well known ) modes. Here I consider the flat case for
illustration.
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Theorem

eik·X =
∑

`

(2` + 1) i` j`(K) j`(| X |) P`(k̂ · X̂),

where the hat means unit vector: k̂ ≡ k/K, K ≡| k |,
j` is a Bessel function,
and P` a Legendre Polynomial.

In non flat space, we have similar decomposition of
the modes (no more exponentials) with different
functions than Bessel functions.
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The restriction of the previous formula to the sphere
gives the decomposition of an unique Fourier mode
in spherical harmonics :

For X ∈ S2 (X̂ = X),

eiK·X =
∑

`

(2` + 1) i` j`(| K |) P`(K̂ ·X) =

= 4π
∑

`

i` j`(| K |)
∑
m

Y ∗
`m(K̂) Y`m(X),

where the star means complex conjugation.

This is for one mode.
The density = a distribution of modes.
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Distribution of modes

Prejudice for the mode distribution :
gaussianity and isotropy :
δ(X) =

∫
d3K δK eiK·X has a Gaussian distribution.

This implies that
δK is a random variable with

< δK >= 0,
< δK δK′ >= δDirac

KK′ P(| K |),
where P is the Power Spectrum .

(Fourier transform of correlation function).

(Gaussianity and isotropy have to be tested).
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gaussianity and isotropy imply that the a`m are also
random variable with Gaussian distribution:
< a`m >= 0,

< a`m a`′m′ >= δDirac
``′ δDirac

mm′
2`+1 C2

` .

Thus the C2
` are the expression of the power

spectrum.
One goal is to measure them (WMAP).

The next goal is to check gaussianity and isotropy.
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Anisotropy and non gaussianity would appear as

• non random distribution of the a`m for given `

• correlations between the a`m for different `,m

One example of non isotropy is given by
multi-connected models (non trivial topology).

Non gaussianity is predicted by non standard
physics.
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Example : multi-connected models

Non trivial topology has mainly two effects:
-1 Large scales do not exist physically
⇒ loss of power at small ` in the Power spectrum .
This is exactly what sees WMAP !
(but this can be noise, or intrinsic shape of spectrum
... )

-2 Loss of isotropy at large scale.
maybe qualitatively apparent in CMB data.
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Checking with spherical harmonics implies to
measure non diagonal terms in the correlation
matrix, and compare to predictions.
This requires to know the eigenmodes of M/Γ.
This has just been done for spherical spaces : ( ??

work in progress ??) .

Spherical harmonic decomposition is not well
adapatated to check gaussianity and isotropy .
Other methods ?

1. wavelets ?

2. Multipole vectors (...)
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Multipole vector

decomposition:

An alternative to

spherical harmonics ?
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Notations

HOMR(`) is the set of homogeneous polynomials of
degree ` (` - homogeneous) with real coefficients.
HOM(`) is the set of ` - homogeneous polynomials
with real or complex coefficients.
HARMR(`) is the set of ` - homogeneous and
harmonic polynomials with real coefficients.
HARM(`) is the set of ` - homogeneous and harmonic
polynomials with real or complex coefficients.
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The real case
CHS : To any real harmonic polynomial
H ∈ HARMR(`)
corresponds the unique polynomial vecH such that

vecH(X) = A (X · V1)...(X · V`), (13)

where the Vi are unit (real) vectors of IR3

= points on the sphere.

(They explicit the correspondence in the tensorial
notation):

H(X) =
∑

i1,i2,...,i`

(Fi1,i2,...,i`
)0 xi1xi2 ...xi` ,

where ()0 means traceless part.
(quite complicated procedure)
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This implies
H(X) = vecH(X) + X2 Q,
with Q ∈ HOMR(`− 2)
an (`− 2)-homogeneous polynomial.

This reminds the harmonic projection.

HOM(`) = HARM(`) ⊕r2 HOM(`− 2) :

P =
∏

P +r2 Q.

where
Q is (`− 2)-homogenous∏

P `-homogenous and harmonic (harmonic
projection)∏

P is effectively a projection operator ( not
inversible).
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CHS result as Harmonic Projection

MLR :
H =

∏
(vecH)

(H is an harmonic polynomial)

Unicity of the correspondence allows to invert the
operator

∏
in Harm(`)
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Deprojection

I define VECR(`) ⊂ HOMR(`) the set of
` -homogeneous polynomials of the form
Cte (X · V1)...(X · V`) (real coefficients).

The harmonic projector
∏

establishes a one to one
correspondence HARMR 7→ VECR.
This allows to invert the relation:∏

−1 : HARMR 7→ VECR.

A (X · V1)...(X · V`) =
∏

−1H(X)

My intepretation of CHS’s result : some reciprocal of
the harmonic decomposition:

vecH =
∏

−1H.
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Extension to homogeneous polynomials KW
have extended this result to HOMR(`):
any real homogeneous polynomial P ∈ HOMR(`)
can be uniquely decomposed as

P (X) = vecP (X) + X2 Q, (14)

with vecP (X) of the form above (the Vi unit and
real)
and Q ∈ HOMR(`− 2).

The decomposition is unique.
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MLR: The KW result as Harmonic Projection

For P ∈ HOM(`),
A (X · V1)...(X · V`) = Π−1ΠP (X).

MLR interpretation of KW’s result.
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The Polydipole decomposition
( = KW corollary)

The previous decomposition was for one multipole
(one scale `) only (= homogeneous polynomial).

KW have extended to non homogeneous polynomials:
any real polynomial P of degree L

has the unique decomposition

P =
L∑

`=0

PV (`),

with
PV (`) = A` (X · V `

1 ) (X · V `
` ).

(with real unit vectors as above).
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On the other hand, the polynomial P may be
trivially written as a sum of its homogeneous
polynomials :

P = P(0) +P(1) + ...P(L) =
L∑

`=0

P(`), P(`) ∈ HOMR(`).

Note that the PV (`) ’s do not coincide
with the vecP(`) decomposition
above.

This sets the

Stability question.
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The stability question

Approximation of f at scale ≈ 2π/L,

f≤L =
L∑

`=0

f(`).

Each f(`) is a `-homogeneous polynomial.
f≤L is a polynomial of degree L.
Polydipole decomposition:

f≤L =
L∑

`=0

fV (`).

As we said, fV (`) 6= vecf(`).

For a given function f , we can modify the scale L of
approximation.
Stability question (asked by CHS, then by KW):
do the fV (`) change ?

MLR: YES: The polydipole decomposition is
unstable.
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Example : the exponential function

f(x) = exp(k · x) =
∑

n

Kn

n!
(k̂ · x)n. (1)

Approximate the exponential (on the sphere) as

f≤L(x) =
L∑

`=0

f`(x).

Apply the multidipole ecomposition

f≤L(x) =
L∑

`=0

fV `(x).

I calculated the higher order term

fV L(x) = (2L + 1) jL(K)
(2L)!

2L (L!)2
(k̂ · x)L.

The ratio with the term of same order in (1) is

R ≡ jL(K)
KL

(2L + 1)!
2L (L!)

6= 1.

It tends towards 1 when ` goes to infinity, as shown
in Figure
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Figure 1: The ratio R as a function of the multipole
index `, for K = 1
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Maxwell decomposition

Dennis =
M R Dennis 2004,
Canonical representation of spherical functions:
Sylvesters theorem, Maxwells multipoles and
Majoranas sphere,
(math-ph/0408046 v1)

MLR =
M. Lachieze-Rey 2004, Harmonic projection and
multipole Vectors,

UCLA 2004 52



Maxwell decomposition

Sylvester’s theorem : any `-harmonic polynomial
with real coefficients can be uniquely written as

H(X) = r2`+1 ∇u1∇u2 ...∇u`

1
r
,

∀H ∈ HARM(`, IR).

with r2 ≡ X2 = X ·X,
the ui as above
and the directional derivatives ∇ui

≡ ui · ∇.

This is the Maxwell multipole representation

Dennis : it implies the unique decomposition

H = vecH + r2 Q;Q ∈ HOM(`− 2, IR).

This correspondence proves CHS’s result.
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A new stable decomposition of the multipole
expansion of a function f :

MLR :

f≤L(x) =
[
λ0 r + λ1 r3 ∇u1,1 + ...

+λ` r2`+1 ∇u` ,1 ...∇u` ,`
+ ...

... + λL r2L+1 ∇uL ,1 ...∇uL ,L

]
(
1
r
), (15)

This decomposition is stable by construction.
(thanks to Jeff Weeks for this concise
demonstration).

It should be emphasized that this (Maxwell)
decomposition differs form the polydipole
decomposition (one is stable, the other not, in the
sense above).
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Figure 2: CHS : The vector multipoles for the first
multipoles of WMAP
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CHS are led to reject the hypothesis that the vectors
of multipole ` are uncorrelated with the vectors of
multipole `′ up to `, `′ = 8.

They find high correlations and conclude to
inconsistency with the standard assumptions of
statistical isotropy and Gaussianity of the a`m.

For instance,

astonishing alignment between quadrupole
and octopole.

COnfirmed by KW (with different algorithms)
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