Multiscale transforms: application to CMB, secondary anisotropies and infrared spectra of Mars surface

> Olivier Forni Institut d'Astrophysique Spatiale Université Paris-Sud, Orsay France

The Cosmic Microwave Background

Where do these primary fluctuations come from ?

The Cosmic Microwave Background

The Cosmic Microwave Background

- The power spectrum gives constrains on the geometry and physical state of the Universe.
- It supports the hypothesis of a period of rapid expansion of the early Universe: the Inflation period.

The Primary fluctuations

- Inflation causes random distributed density seeds and Gaussian distributed fluctuations.
- Non-linear coupling between fluctuations can generate non-Gaussian signatures.

•At the end of this period, topological defects can occur that produce non-Gaussian fluctuations e.g. Cosmic Strings.

The Secondary fluctuations

The secondary fluctuations arise from the interaction of the CMB photons with the interleaved matter or structures.

- The Sunyaev Zel'dovich (SZ) effect.
- Gravitational lensing by large scale structures.

The Sunyaev Zel'dovich effect

Hubble Deep Field HST • W PRC96-01a • ST Scl OPO • January 15, 1996 • R. Williams (ST Scl), NASA

The SZ effect comes from the interaction of the cold CMB photons with the hot electrons (TSZ) of moving (KSZ) galaxy clusters

The Sunyaev Zel'dovich effect

Frequency dependence of Thermal SZ => Allows component separation

The Sunyaev Zel'dovich effect

Thermal SZ

Kinetic SZ

Lensing

CMB photons are deflected by the mass of large scale structure => the CMB exhibit a deformation

Lensing

© K. Benabed

The other contributions

Besides the secondary fluctuations, other foreground fluctuations contribute to the signal, the Galaxy, the dust emission from interstellar clouds. Finally observation strategy and/or instrumental systematics corrupt the final signal.

Questions

- Can we detect a non-Gaussian signal embedded in a dominant Gaussian one ? (Aghanim & Forni, Forni & Aghanim, 1999)
- How do multiscale analysis compare with N point correlation functions ? (Aghanim, Kunz, Castro & Forni, 2003)
- 3. Can we discriminate between two (or more) non-Gaussian signals? (Starck, Aghanim & Forni, 2004)
- 4. Can we separate the non-Gaussian signal from the dominant Gaussian one (Forni & Aghanim, 2004)

Can we detect ?

Simulated signals taken in this study

- Primary fluctuations
 Gaussian field resulting from inflation
- Secondary fluctuations
 Sunyaev Zel'dovich effect

512x512 pixels maps : 1.5'/pixel

Total

Methodology

Two types of data set are analysed

- 1. The non-Gaussian data set
- 2. A Gaussian data set having the same power spectrum as the non-Gaussian one.
- Bi-orthogonal transform is performed on both data sets
- The resulting moment of the coefficient distribution are compared using a Kolmogorov-Smirnov test.
- This test gives a probability of detection.

Bi-orthogonal wavelet transform

Détails			Détails
Horizontaux			Diagonaux
j=1			j=1
H		D	Détails
j=2		j=2	Verticeux
Н	D	V	j=1
R	v	j=2	

Disymmetry

Flatness

Results

• The non-Gaussian character is detected to the third scale where the Gaussian signal dominates by a factor of 10.

Comparison with other methods

- We have compared the bi-orthogonal transform with 3 and 4 point correlation functions.
- We have done this comparison on different simulated maps type (Point sources, filaments, etc...)
- We have also studied a very weak non-Gaussian process which results from the addition to a Gaussian field of a weak non-linear coupling of that field.

 $\chi(x) = \chi_G(x) + f_{NL} (\chi^2_G(x) - \chi^2_G(x))$ with $f_{NL} = 0.01$

• This kind of coupling can arise during the Inflation period.

Comparison with other methods

	Scale 1	Scale 2	Scale 3	Scale 4	Scale 5	Scale 6
Vertical	2.0810^{-18}	0.226	0.488	0.828	0.158	0.368
G vs G	0.411	0.450	0.160	0.160	0.791	0.036
	0.488	0.426	0.367	0.426	0.426	0.189
G vs G	0.332	0.791	0.068	0.940	0.411	0.332
Horizontal	1.9710^{-17}	0.002	0.828	0.555	0.695	0.625
G vs G	0.876	0.207	0.940	0.876	0.940	0.332
	0.315	0.0450	0.625	0.764	0.426	0.226
G vs G	0.264	0.596	0.411	0.940	0.596	0.791
Diagonal	0.001	0.157	0.828	0.368	0.315	0.315
G vs G	0.791	0.596	0.940	0.695	0.049	0.791
	0.828	0.695	0.930	0.828	0.764	0.963
G vs G	0.265	0.265	0.876	0.791	0.499	0.596

Conclusions

- The multiscale analysis is a very sensitive method to detect non-Gaussian signals.
- It is fast and demands low computing resources
- High order correlation function can be analytically predicted
- They can be directly related to physical phenomena.

Can we discriminate?

> Primary fluctuations

- Gaussian field resulting from inflation
- Cosmic strings
- > Secondary fluctuations
 - Kinetic SZ

3 types of simulation

- $\alpha^{1/2}$ CMB + (1- α) ^{1/2} CS (α = 0.82)
- CMB + Kinetic SZ
- $\alpha^{1/2}$ CMB + (1- α) ^{1/2} CS + Kinetic SZ

Multiscale Analysis

We have applied the following transforms.

- bi-orthogonal wavelet transform
- undecimated isotropic wavelet transform
- Ridgelets transform with 16 pixels aside subimages
- Ridgelets transform with 32 pixels aside subimages
- Curvelets

Undecimated isotropic wavelet transform

 $I(x,y) = c_{j}(x,y) + \overset{J}{a} w(j,x,y)$

Ridgelet Transform

Ridgelet Transform (Candes, 1998), with ridgelet function below:

$$\psi_{a,b,\vartheta}(x) = a^{1/2} \psi \left(\frac{(x_1 \cos(\vartheta) + x_2 \sin(\vartheta) - b)}{a} \right)$$

The function is constant along lines. Transverse to this ridge, it is a wavelet.

The Curvelet Transform

The curvelet transform (Candes & Donoho. 1999) is a combination of reversible transformations:

- à trous 2D isotropic wavelet transform
- partitionning
- ridgelet transform

Samples curved features in optimal numbers of linear structures of different sizes.

Less coefficients are needed in the curvelet transform

Wavelet transform

Curvelet transform

Curvelet transform of a circle at 2 scales

Multiscale Analysis of the CMB

- Isotropic wavelet transform
- Bi-orthogonal wavelet transform
- Curvelet transform
- Ridgelet transform

Applied on simulated maps of secondary + primary anisotropies:

1) CMB + KSZ 2) CMB + CS 3) CMB + KSZ + CS

The Gaussian realisations with the same power spectra.

We compare the normalised excess kurtosis values

Results @scale 1 (3')

	Bi-orth.	A trous	Ridgelet	Curvelet
CMB+KSZ	1106.	65.	0.1	10.
CMB+CS	1813.	424.	5.7	198.
CMB+CS+KSZ	1040.	392.	5.9	165.

Results @scale 2 (6')

	Bi-orth.	A trous	Ridgelet	Curvelet
CMB+KSZ	47.	1.	0.1	0.2
CMB+CS	261.	11.	0.7	8.
CMB+CS+KSZ	196.	12.	0.8	7.

Conclusions

- ➢ Bi-orthogonal wavelets are always the most sensitive tool.
- Ridgelet and curvelet transforms are sensitive to CS only.
- In a mixture CS+KSZ dominated by a Gaussian field: isotropic bi-orthogonal wavelets detect non-Gaussianity anisotropic curvelets and ridgelets discriminate CS from KSZ.

Can we separate ?

➤ Thermal SZ

• Spectral signature => Compton parameter

≻ Kinetic SZ

- No spectral signature
- Cannot be separated from primordial fluctuations

Can we separate KSZ?

Hypotheses 2 processes : CMB + SZ

Component separation Temperature fluctuation : CMB+KSZ Compton parameter : TSZ

Spatial correlation between TSZ and KSZ

- if not TSZ then CMB
- if TSZ then CMB+KSZ

Interpolation

$$f_{w} = Wu + \lambda Lu = Au$$

W: weight matrix

When w=0 then Lu=0 (unknown points) w=1 then $f=u + \lambda Lu$ (known points)

 λ controls the tightness of the fit => small λ then f=u

TSZ is used as a spatial template Use of a complete set of thresholds gives a set of estimated KSZ

Minimization

Identify criteria that distinguish CMB from KSZ

- 1. KSZ dominates at high wavenumber
- 2. KSZ is non-Gaussian

=> Wavelet transform

- Diagonal details at the first scale
- TSZ spatially correlated coefficients

$$\zeta = \operatorname{Min}\left[\frac{(\mathcal{M}_2(w_0) - \mathcal{M}_2(w))^2}{\mathcal{M}_2^2(w_0)} + \frac{(\mathcal{M}_4(w_0) - \mathcal{M}_4(w))^2}{\mathcal{M}_4^2(w_0)}\right]$$

Mean error on σ : 5%

Conclusions

- Need of a spatial template
- Add the skewness to account for other components
- Add other wavelet scales to account for the noise and beam dilution

MARS EXPRESS

ORBIT:

- •Orbital inclination : 86.3°
- •Pericentre: 258 km
- •Apocentre: 11 560 km
- •Period: 7.5 h

OMEGA

OMEGA

Visible – Infrared Spectrometre 0.36-5.1 µm

- IFOV : 4.1 arcmin
- Visible channel : CCD 384 x 288 pixels (spatial x spectral) : 0.36-1.1 μm
- Infrared channel : 2 linear InSb 128 pixels detectors cooled at 70 K.

0.93-2.7 μ m et 2.5-5.1 μ m with a spectral resolution of 13 and 20 nm

CUBE : 2 spatial directions (Nx x Ny samples) x 1 spectral direction (Nz sources)

Nc independent components given by ICA

➢ ICA is applied on the direct cube

➢ ICA is applied on the wavelet transformed cube

Independent Component Analysis

• What we observe (x) is a linear combination of independent *latent* variables (s_i)

 $\mathbf{x} = \mathbf{a}_1 \mathbf{s}_1 + \mathbf{a}_2 \mathbf{s}_2 + \ldots + \mathbf{a}_n \mathbf{s}_n$

• The independent variables have non-Gaussian probability distribution function

Independent Component Analysis

- We cannot determine the variances (energies) of the independent variables.
- We cannot determine the order of the independent variables.
- We cannot characterise Gaussian distributed variables.

Wavelet + ICA

ICA

Perspectives

- Discrimination of non-Gaussian signals embedded in a dominant gaussian signal.
- Identification of the sources of the non-Gaussian signal.
- Component separation.
- Use of multiscale transform as preprocessing stage for component separation techniques.