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The Cosmic Microwave
Background



The Cosmic Microwave
Background

Where do these primary fluctuations come from ?



The Cosmic Microwave
Background



The Cosmic Microwave
Background

• The power spectrum gives constrains on the
geometry and physical state of the Universe.

• It supports the hypothesis of a period of rapid
expansion of the early Universe: the Inflation
period.



The Primary fluctuations

• Inflation causes random distributed density
seeds and Gaussian distributed fluctuations.

• Non-linear coupling between fluctuations
can generate non-Gaussian signatures.

•At the end of this period, topological
defects can occur that produce non-Gaussian
fluctuations e.g. Cosmic Strings.



The Secondary fluctuations

The secondary fluctuations arise from the
interaction of the CMB photons with the
interleaved matter or structures.

• The Sunyaev Zel’dovich (SZ) effect.

• Gravitational lensing by large scale structures.



The Sunyaev Zel’dovich
effect

The SZ effect comes from the
interaction of the cold CMB
photons with the hot electrons
(TSZ) of moving (KSZ) galaxy
clusters



The Sunyaev Zel’dovich
effect

Frequency dependence of Thermal SZ
=> Allows component separation



The Sunyaev Zel’dovich
effect

Thermal SZ Kinetic SZ



Lensing

CMB photons are
deflected by the mass of
large scale structure =>
the CMB exhibit a
deformation



Lensing

© K. Benabed



The other contributions
Besides the secondary
fluctuations, other foreground
fluctuations contribute to the
signal,  the Galaxy, the dust
emission from interstellar
clouds. Finally observation
strategy and/or instrumental
systematics corrupt the final
signal.



Questions
1. Can we detect a non-Gaussian signal embedded in

a dominant Gaussian one ? (Aghanim & Forni, Forni
& Aghanim, 1999)

2. How do multiscale analysis compare with N point
correlation functions ? (Aghanim, Kunz, Castro &
Forni, 2003)

3. Can we discriminate between two (or more) non-
Gaussian signals? (Starck, Aghanim & Forni, 2004)

4. Can we separate the non-Gaussian signal from the
dominant Gaussian one  (Forni & Aghanim, 2004)



Can we detect ?

Simulated signals taken in this study

 Primary fluctuations
- Gaussian field resulting from inflation

 Secondary fluctuations
- Sunyaev Zel’dovich effect

512x512 pixels maps : 1.5'/pixel



CMB SZ

Total



Methodology
Two types of data set are analysed

1. The non-Gaussian data set
2. A Gaussian data set having the same power spectrum

as the non-Gaussian one.

• Bi-orthogonal transform is performed on both data sets
• The resulting moment of the coefficient distribution are

compared using a Kolmogorov-Smirnov test.
• This test gives a probability of detection.



Bi-orthogonal wavelet transform

h(n) : Scaling function

Smooth scale
1

Details scale 1

Smooth scale 2

Details scale 2

g(n) : Wavelet function





Statistical criteria
Moments of the coefficient

distribution
 The Skewness The Kurtosis

Disymmetry Flatness





Results

Diagonal details Gradient details

• The non-Gaussian character is detected to the third
scale where the Gaussian signal dominates by a factor
of 10.





Comparison with other methods

• We have compared the bi-orthogonal transform with
3 and 4 point correlation functions.

• We have done this comparison on different
simulated maps type (Point sources, filaments, etc…)

• We have also studied a very weak non-Gaussian
process which results from the addition to a Gaussian
field of a weak non-linear coupling of that field.

 χ(x)= χG(x) + fNL (χ2
G (x) -< χ2

G (x>) with fNL=0.01

• This kind of coupling can arise during the Inflation
period.



Comparison with other methods



Conclusions
• The multiscale analysis is a very sensitive
method to detect non-Gaussian signals.

• It is fast and demands low computing
resources

• High order correlation function can be
analytically predicted

• They can be directly related to physical
phenomena.



Can we discriminate ?

 Primary fluctuations
- Gaussian field resulting from inflation
- Cosmic strings

 Secondary fluctuations
- Kinetic SZ

3 types of simulation
- α 1/2 CMB + (1-α) 1/2 CS (α = 0.82)
- CMB + Kinetic SZ
- α 1/2 CMB + (1-α) 1/2 CS + Kinetic SZ



CMB
-0.1

CS
0.8

SZ
14.2

Total
-0.1



Multiscale Analysis

We have applied the following transforms.

• bi-orthogonal wavelet transform

• undecimated  isotropic wavelet transform

•  Ridgelets transform with 16 pixels aside sub-
images

•  Ridgelets transform with 32 pixels aside sub-
images

•  Curvelets



Scale 1 Scale 2   Scale 3 Scale 4 Scale 5

 h h h h h

WT

Undecimated isotropic wavelet transform
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Ridgelet Transform

 The function is constant along lines. Transverse to this ridge, it is a wavelet. 

Ridgelet Transform (Candes, 1998), with ridgelet function below:
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The Curvelet Transform

The curvelet transform  (Candes & Donoho. 1999) is a
combination of reversible transformations:

- à trous 2D isotropic wavelet transform
- partitionning
- ridgelet transform

Samples curved features in optimal numbers of linear structures of
different sizes.



Less coefficients are needed in the curvelet transform

Wavelet transform Curvelet transform



Curvelet transform of a circle at 2 scales



Multiscale Analysis of the
CMB

- Isotropic wavelet transform

- Bi-orthogonal wavelet  transform

- Curvelet transform

- Ridgelet transform

Applied on simulated maps of secondary + primary anisotropies:

1) CMB + KSZ      2)  CMB + CS    3)  CMB + KSZ + CS

The Gaussian realisations with the same power spectra.

We compare the normalised excess kurtosis values



Results @scale 1 (3’)

392.

424.

65.

A trous

5.9

5.7

0.1

Ridgelet

165.1040.CMB+CS+KSZ

198.1813.CMB+CS

10.1106.CMB+KSZ

CurveletBi-orth.



Results @scale 2 (6’)

12.

11.

1.

A trous

0.8

0.7

0.1

Ridgelet

7.196.CMB+CS+KSZ

8.261.CMB+CS

0.247.CMB+KSZ

CurveletBi-orth.



Conclusions

 Bi-orthogonal wavelets are always the most sensitive tool.

 Ridgelet and curvelet transforms are sensitive to CS only.

 In a mixture CS+KSZ dominated by a Gaussian field:
      isotropic bi-orthogonal wavelets detect non-Gaussianity
      anisotropic curvelets and ridgelets discriminate CS from KSZ.



Can we separate ?

 Thermal SZ
• Spectral signature  => Compton parameter

 Kinetic SZ
• No spectral signature
• Cannot be separated from primordial fluctuations



Can we separate KSZ ?

Hypotheses 
2 processes : CMB + SZ

Component separation
Temperature fluctuation : CMB+KSZ
Compton parameter : TSZ



CMB CMB+KSZ

KSZ

TSZ



Spatial correlation between TSZ and KSZ

• if not TSZ then CMB 
• if TSZ then CMB+KSZ



Interpolation

W : weight matrix

When  w=0 then Lu=0 (unknown points)
w=1 then f=u + λ Lu (known points)

 λ controls the tightness of the fit
=> small λ then f=u

TSZ is used as a spatial template
Use of a complete set of thresholds gives a set of

estimated KSZ



Minimization
Identify criteria that distinguish CMB from KSZ

1. KSZ dominates at high wavenumber
2. KSZ is non-Gaussian

=> Wavelet transform 
• Diagonal details at the first scale
• TSZ spatially correlated coefficients



Mean correlation coefficient : 0.78
Mean error on σ  : 5%







Conclusions

• Need of a spatial template

• Add the skewness to account for other components

• Add other wavelet scales to account for the noise and
beam dilution



MARS EXPRESS
ORBIT:

•Orbital inclination : 86.3o

•Pericentre: 258 km

•Apocentre: 11 560 km

•Period: 7.5 h



OMEGA



OMEGA
Visible – Infrared Spectrometre 0.36-5.1 µm

• IFOV : 4.1 arcmin

• Visible channel : CCD 384 x 288 pixels (spatial x
spectral) : 0.36-1.1 µm

• Infrared channel : 2 linear InSb 128 pixels
detectors cooled at 70 K.

0.93-2.7 µm et 2.5-5.1 µm with a spectral
resolution of 13 and 20 nm





CUBE : 2 spatial directions
(Nx x Ny samples) x 1 spectral
direction (Nz sources)

Nc independent components
given by ICA

 ICA is applied on the direct
cube

 ICA is applied on the
wavelet transformed cube



Independent Component
Analysis

• What we observe (x) is a linear combination of
independent latent variables (si)

x = a1s1 + a2s2 + …+ansn

• The independent variables have non-Gaussian
probability distribution function



Independent Component
Analysis

• We cannot determine the variances (energies) of
the independent variables.

• We cannot determine the order of the
independent variables.

• We cannot characterise Gaussian distributed
variables.



Wavelet + ICA ICA 



CO2 Ice Component



H2O Ice Component





     CO2 / H2O ICES 

  « SWISS CHEESE » AND/OR
     INTIMATE MIXTURE

Modelling points towards an intimately 
mixed H2O component in addition to 
the « swiss cheese » structure

85% CO2 ice,
15% H2O ice



Perspectives
• Discrimination of non-Gaussian signals
embedded in a dominant gaussian signal.

• Identification of the sources of the non-
Gaussian signal.

• Component separation.

• Use of multiscale transform as pre-
processing stage for component separation
techniques.


