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Outline

• Introduction

• Tangent spaces and their global alignment

• Spectral analysis of alignment

• Applications to molecular dynamics simulations
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Linear and nonlinear dimension reduc-
tion

• Principal component analysis and probabilistic extensions (PCA)

• Kernel PCA

• Kahonen’s self-organizing maps (SOM)

• Topology-preserving networks

• Principal curves, surfaces and manifolds

• Multi-dimensional scaling (MDS)

• Many more ...
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Prior/Related Work

• Isomap, J. Tenenbaum, V. De Silva and J. Langford. Science, 2000.

• LLE, S. Roweis and L. Saul Science, 2000.

• Automatic alignment of local representations, Y. W. Teh and S.

Roweis, NIPS, 2002.

• Charting a manifold, Geodesic nullspace method, M. Brand, NIPS,

2002/2004.

• Laplacian eigenmap, M. Belkin and P. Niyogi, 2002.

• Hessian LLE, D. Donoho and C. Grimes, PNAS, 2003.
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Introduction

• Assume a d-dimensional Parametrized manifold F embedded in an

m-dimensional space (d < m),

f : C ⊂ Rd → Rm,

where C is a compact and connected subset ofRd with open interior.

(Note. F well-behaved, no self-intersection etc.)
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• Given a set of data points x1, · · · , xN , where xi ∈ Rm,

xi = f (τi) + εi, i = 1, . . . , N,

where εi represent noise.

• By dimension reduction we mean the estimation of the un-

known lower dimensional parameter vectors τi’s from the xi’s

• By manifold learning we mean the reconstruction of f from

the xi’s.
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PCA and Orthogonal Projections

(Figure from Hastie et. al. Element of Statistical Learning)
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PCA for Linear Case
• Data points sampled from a d-dimensional affine subspace, i.e.,

xi = c + Uτi + εi, i = 1, . . . , N,

U orthonormal columns. In matrix format, let

X = [x1, · · · , xN ], T = [τ1, · · · , τN ], E = [ε1, · · · , εN ].

• Find c, U and T to minimize the reconstruction error E, i.e.,

min ‖E‖ = min
c,U,T

‖X − (c eT + UT )‖F .

• Solutions are given by

c = x̄

τi = V T
d (xi − c)

Vd = d largest left singular vectors of centered X
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Tangent space

• At a reference point τ , first-order Taylor expansion,

f (τ̃ ) = f (τ ) + Jf(τ ) · (τ̃ − τ ) + O(‖τ̃ − τ‖2)

with Jf(τ ) ∈ Rm×d the Jacobi matrix,

f (τ ) =

 f1(τ )
...

fm(τ )

 , then Jf(τ ) =

 ∂f1/∂τ1 · · · ∂f1/∂τd
... ... ...

∂fm/∂τ1 · · · ∂fm/∂τd

 .

• Local linear approximation in a neighborhood of τ ,

f (τ̃ ) ≈ f (τ ) + Jf(τ ) · (τ̃ − τ )

Points in the neighborhood lie close to a d-dimensional affine sub-

space spanned by columns of Jf(τ ).
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Relation between local coordinates and
global coordinates

• Qτ : orthonormal basis of tangent space at τ

Jf(τ ) · (τ̃ − τ ) = Qτθτ , τ̃ − τ = J+
f (τ )Qτθτ̃ ≡ Lτθτ̃

• Local vs. global

x̃ = x + Qτθτ̃ , τ̃ = τ + Lτθτ̃ ,

i.e., local coordinates θτ̃ and global coordinates τ̃ are related by an

affine transformation.

• Note. If f is locally isometric, Jf is orthonormal, and Lτ is orthog-

onal.
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Alignment

Find global coordinate τ and local affine transformation Lτ to mini-

mize (Symbolically),∫
Ω

( ∫
Ω(τ)

‖τ̄ − τ − Lτθ(τ̄ )‖dτ̄
/ ∫

Ω(τ)

dτ̄
)
dτ

over all possible nonsingular Lτ .
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Overlay a K-NN graph on the sample
points

• For each xi, let Xi = [xi1, . . . , xik ] be its k-nearest neighbors in-

cluding xi, say in terms of the Euclidean distance. (Other possibili-

ties and acceleration.)
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Constructing approximate tangent space

Apply PCA to each neighborhood Xi = [xi1, . . . , xik ] ⇒ sensitive to

outliers.
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Weighted (robust) PCA

∑
j

wi,j‖xij − (x̄w
i + Uiθ

(i)
j )‖2

2 = min
c, U, θj

∑
j

wi,j‖xij − (c + Uθj)‖2
2,

Weight selection

Choose the initial vector x̄w(0) as the mean of the k vectors xi1, . . . , xik,

1. Compute the current weights,

w(j)
s = exp(−γ‖xis − x̄w(j−1)‖2

2).

2. Compute a new weighted center

x̄w(j) =

k∑
s=1

w(j)
s xis.
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Illustration
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Alignment

• In each nbhd, apply (weighted) PCA to Xi = [xi1, . . . , xik ],

xij = x̄i + Viθ
(i)
j , j = 1, . . . , k

Vi orthonormal basis.

• Global vs. local,

τij = τ̄i + Liθ
(i)
j , j = 1, . . . , k

Let Ti = [τi1, . . . , τik ] and Θi = [θ
(i)
1 , · · · , θ

(i)
k ]

TiJk − LiΘi ≈ 0, i = 1, . . . , N

with Jk = Ik − eeT/k, centering matrix.
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(Con’t)

• A minimization problem (over T, Li)∑
i

‖TiJk − LiΘi‖2 = min

• Fix Ti and minimize

‖TiJk − LiΘi‖
w.r.t. Li =⇒ ‖TiJk(I − Θ+

i Θi)‖.

• Let Wi = Jk(I − Θ+
i Θi). Note.

WiW
T
i = Jk(I − Θ+

i Θi)Jk,

orthogonal projection onto span⊥([e, ΘT
i ]).
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(Con’t)

• Define Si a selection matrix such that

Ti = TSi, T = [τ1, . . . , τN ].

• Let

[TS1W1, . . . , TSNWN ] ≡ TΨ

leading to

min
T
‖TΨ‖2

F = min
T

trace
(
T (ΨΨT )T T

)
.

• Normalization TT T = Id. Solution T given by the eigenvectors of

Φ ≡ ΨΨT corresponding to the 2nd to d+1st smallest eigenvalues.

(more on normalization later).
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Computational Issues
• Forming Krylov subspaces (Φ = ΨΨT )

Kp(Φ, v0) = span{v0, Φv0, Φ
2v0, . . . , Φ

p−1v0}.

• Matrix-vector multiplications Φx

Φx = S1W1W
T
1 ST

1 x + · · · + SNWNW T
NST

Nx,

where

Wi = (I − 1

k
eeT )(I − Θ+

i Θi).

Each term involves the xi’s in one neighborhood.

• With the SVD of Xi − x̄ie
T = QiΣiH

T
i

Wi = I−1

k
eeT−HiH

T
i = I−[e/

√
k, Hi][e/

√
k, Hi]

T ≡ I−GiG
T
i .
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Local Tangent Space Alignment (LTSA)

Given N m-dimensional points sampled possibly with noise from

an underlying d-dimensional manifold, this algorithm produces N d-

dimensional coordinates T ∈ Rd×N for the manifold constructed from

k local nearest neighbors.

Step 1. [Extracting local information.] For each i = 1, · · · , N ,

1.1 Determine k nearest neighbors xij of xi, j = 1, . . . , k.

1.2 Compute the d largest eigenvectors g1, · · · , gd of the correlation matrix (Xi−x̄ie
T )T (Xi−

x̄ie
T ), and set

Gi = [e/
√

k, g1, · · · , gd].

Step 2. [Constructing the alignment matrix.] Form the the alignment matrix Φ by locally summation if
a direct eigen-solver will be used. Otherwise implement a routine that computes matrix-vector
multiplication Bu for an arbitrary vector u.

Step 3. [Computing global coordinates.] Compute the d+1 smallest eigenvectors of Φ and pick up the
eigenvector matrix [u2, · · · , ud+1] corresponding to the 2nd to d + 1st smallest eigenvalues,
and set T = [u2, · · · , ud+1]

T .
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Solving jigsaw puzzles
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(Better, we allow each piece be affinely transformed.)
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Examples

Consider d = 1, and

xi = c + uτi, i = 1, . . . , N.

PCA on X = [x1, . . . , xN ] is equivalent to finding the nullspace of

Φ = I−JN(I−X+X)JN = I−JN(I−T+T )JN , JN = I−eeT/N.

Here T = [τ1, . . . , τN ], all distinct.

Φ is the orthogonal projection onto span⊥([e, T T ]).
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(Con’t)

Split T into two parts T = [T1, T2], and build the matrix

Φ = diag(Φ1, Φ2), Φi = I − [e, T T
i ]+[e, T T

i ], i = 1, 2.

It is easy to check

e, T T ∈ N (Φ) = span

{[
e

0

]
,

[
T T

1

0

]
,

[
0

e

]
,

[
0

T T
2

]}
but dim(N (Φ)) = 4. How to get rid of the unwanted info in N (Φ)?
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Illustration
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(Con’t)

Now let T1 and T2 share a point. Build Φ as before,

Φ = Φ1 + Φ2.

Φ1 and Φ2 overlap one row and one column. Again it is easy to see that

e, T T ∈ N (Φ) = span

{
e, T T ,

[
T T

1

2T1(n1)− T2(2 : n2)
T

]}



29/48

�

�

�

�

�

�

	

Illustration
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(Con’t)

Now let T1 and T2 share two distinct points. Build Φ as before,

Φ = Φ1 + Φ2,

Φ1 and Φ2 overlap two rows and two columns. Then

N (Φ) = span{e, T T}.
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Illustration
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Spectral analysis of the alignment
• Consider T = [τ1, . . . , τN ] ∈ Rd×N , d-dimensional parameter vec-

tors with each neighborhood (patch) corresponding to a submatrix

of T , called a section.

• Assume we have computed sections Ti = [τi1, . . . , τiki
] ∈ Rd×ki.

(Actually up to an affine transformation, or a rigid motion).

• Given a collection of sections {T1, . . . , Ts} of T , build an alignment

matrix:

Φ =

s∑
i=1

Φi,

here Pi orthogonal projection onto span⊥([e, T T
i ]), stretch to obtain

Φi.
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Reminder

Recall,

Φ = S1(W1W
T
1 )ST

1 + · · · + SN(WNW T
N )ST

N ,

where

Wi = Jk(I − Θ+
i Θi),

and Θi local coordinates. Now

WiW
T
i = Jk(I − Θ+

i Θi)Jk,

orthogonal projection onto span⊥([e, T T
i ]).
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Null space of Φ

Fully overlapped. Two sections T1 and T2 are fully overlapped, if

the vectors in the intersection part are in general position, i.e., dimension

of the spanned affine subspace is d.

Theorem. Assume two sections, then

1. span([e, T T ]) ⊂ N (Φ).

2. N(Φ) = span([e, T T ]) iff {T1, T2} is fully overlapped.

Recall in LTSA, we extract the 2nd to d + 1st smallest eigenvectors

of Φ.
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An example

Nullspace contains unwanted information, and embedding has mani-

fold folds upon itself.
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Multiple Sections

Unsuccessful recovery.
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Successful recovery.
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Necessary Conditions

Theorem. Let [e, T T
i ] be of full column-rank for i = 1, . . . , s. If

N{Φ} = span{[e, T T ]},

then

1) {T1, . . . , Ts} is connectedly overlapped, or

2) {T1, . . . , Ts} is not connectedly overlapped, and for any maximally

connectedly overlapped subset {Ti1, . . . , Tik},

{[Ti1, . . . , Tik ], [Tik+1, . . . , Tis]}

are fully overlapped.
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Sufficient Conditions

Theorem.

1) {T1, . . . , Ts} is connectedly overlapped, or

2) {T1, . . . , Ts} is not connectedly overlapped, but there is a maxi-

mally connectedly overlapped subset {Ti1, . . . , Tik} such that

{Tik+1, . . . , Tis}

is also a connectedly overlapped subset and

{[Ti1, . . . , Tik ], [Tik+1, . . . , Tis]}

are fully overlapped, then

N{Φ} = span{[e, T T ]}.
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Spectral gap

Recall, two sections fully overlapped iff σd(V − v̄eT ) > 0, where V ,

vectors in the intersection. Quantitatively,

Theorem. The smallest nonzero eigenvalue of Φ is O(σ2
d(V −v̄eT )).

(Only d = 1 case is proved, working on the more general case.)

Theorem. For i = 1, 2, Pi = QiQ
T
i orthogonal projections onto

the orthogonal complements of [e, T T
i ], and Hi = Qi(I1 ∩ I2, :). Then

λ(Φ) = {0, 1, 1± σi(H
T
1 H2)}.
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Practical situation

Each patch is handled separately, local coordinates =⇒ transforma-

tions and approximations w.r.t. global coordinates.

Proposition. Let Ti, i = 1, 2 be two sections of T , and Θi, i = 1, 2

are the same as Ti up to an affine transformation. Pi be the orthogonal

projection onto the orthogonal complement of [e, ΘT
i ]. Then

span{[e, T T ]} ⊂ N{Φ},

where Φ is built from Pi. Furthermore, if Ti fully overlapped, then

span{[e, T T ]} = N{Φ}.
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LTSA recovers isometry

• Assume f is an isometry.

• Up to local approximation errors, local coordinates are isometric to

global coordinates: Jacobi matrix is orthonormal.

• Nullspace of Φ gives global coordinates.

• Normalization of nullspace basis vectors.
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Two competing requirements

• Large overlap favors large neighborhood

• Large neighborhood results in large approximation errors
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Adaptive manifold learning

• Adaptive neighborhood size selection.

• Bias reduction in local coordinate estimation.



46/48

�

�

�

�

�

�

	

Molecular Dynamics Simulation/Example
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Energy Landscape Interpolation

• N -particles simulation system ⇒ configuration space d = 3N

• Not all 3N degrees of freedom are activated

• Trajectories of the particles occupy a low-dimensional manifold

• More efficient and accurate approaches for the potential energy sur-

face and force computation

CAMLET: A Combined Ab-initio Manifold LEarning Tool-

box

• Explore the low-dimensional characteristics particle trajectories

• Identify the suitable clusters in the reduced dimension spaces

• Efficient energy and force interpolations
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Thanks! Questions?

Papers/preprints can be found at

http://www.cse.psu.edu/∼zha/papers.html
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