

Tangent Space Alignment for Manifold Learning

Hongyuan Zha & Zhenyue Zhang

Department of Computer Science and Engineering The Pennsylvania State University

Department of Mathematics Zhejiang University

IPAM, Oct. 29, 2004

Acknowledgment

Collaborators on spectral analysis of alignment: Qiang Ye and Rencang Li, Math/U. of Kentucky.

Collaborators on CAMLET project: Qiang Du, Math/PSU, Richard Li, Statistics/PSU, Jorge Sofo, Physics/PSU.

Outline

- Introduction
- Tangent spaces and their global alignment
- Spectral analysis of alignment
- Applications to molecular dynamics simulations

PENNSTATE

3/48

Linear and nonlinear dimension reduction

- Principal component analysis and probabilistic extensions (PCA)
- Kernel PCA
- Kahonen's self-organizing maps (SOM)
- Topology-preserving networks
- Principal curves, surfaces and manifolds
- Multi-dimensional scaling (MDS)
- Many more ...

N

Prior/Related Work

- Isomap, J. Tenenbaum, V. De Silva and J. Langford. Science, 2000.
- LLE, S. Roweis and L. Saul Science, 2000.
- Automatic alignment of local representations, Y. W. Teh and S. Roweis, *NIPS*, 2002.
- Charting a manifold, Geodesic nullspace method, M. Brand, *NIPS*, 2002/2004.
- Laplacian eigenmap, M. Belkin and P. Niyogi, 2002.
- Hessian LLE, D. Donoho and C. Grimes, PNAS, 2003.

Introduction

• Assume a d-dimensional Parametrized manifold ${\mathcal F}$ embedded in an m-dimensional space (d < m),

$$f: C \subset \mathcal{R}^d \to R^m,$$

where C is a compact and connected subset of \mathcal{R}^d with open interior. (Note. \mathcal{F} well-behaved, no self-intersection etc.)

PENNSTATE

7/48

• Given a set of data points x_1, \dots, x_N , where $x_i \in \mathcal{R}^m$,

$$x_i = f(\tau_i) + \epsilon_i, \quad i = 1, \dots, N,$$

where ϵ_i represent noise.

- By DIMENSION REDUCTION we mean the estimation of the unknown lower dimensional parameter vectors τ_i 's from the x_i 's
- By MANIFOLD LEARNING we mean the reconstruction of f from the x_i 's.

PCA and Orthogonal Projections

(Figure from Hastie et. al. *Element of Statistical Learning*)

10/48

PCA for Linear Case

• Data points sampled from a *d*-dimensional affine subspace, i.e.,

 $x_i = c + U\tau_i + \epsilon_i, \quad i = 1, \dots, N,$

 \boldsymbol{U} orthonormal columns. In matrix format, let

$$X = [x_1, \cdots, x_N], \quad T = [\tau_1, \cdots, \tau_N], \quad E = [\epsilon_1, \cdots, \epsilon_N].$$

• Find c, U and T to minimize the reconstruction error E, i.e.,

$$\min \|E\| = \min_{c, U, T} \|X - (c e^T + UT)\|_F.$$

• Solutions are given by

 $c = \bar{x}$ $\tau_i = V_d^T (x_i - c)$ $V_d = d \text{ largest } left \text{ singular vectors of } centered X$

PENNSTATE

Tangent space

• At a reference point τ , first-order Taylor expansion,

$$f(\tilde{\tau}) = f(\tau) + J_f(\tau) \cdot (\tilde{\tau} - \tau) + O(\|\tilde{\tau} - \tau\|^2)$$

with $J_f(au) \in \mathcal{R}^{m imes d}$ the Jacobi matrix,

$$f(\tau) = \begin{bmatrix} f_1(\tau) \\ \vdots \\ f_m(\tau) \end{bmatrix}, \text{ then } J_f(\tau) = \begin{bmatrix} \partial f_1 / \partial \tau_1 & \cdots & \partial f_1 / \partial \tau_d \\ \vdots & \vdots & \vdots \\ \partial f_m / \partial \tau_1 & \cdots & \partial f_m / \partial \tau_d \end{bmatrix}$$

• Local linear approximation in a neighborhood of au,

 $f(\tilde{\tau}) \approx f(\tau) + J_f(\tau) \cdot (\tilde{\tau} - \tau)$

Points in the neighborhood lie close to a d-dimensional affine subspace spanned by columns of $J_f(\tau).$

•

Relation between local coordinates and global coordinates

• Q_{τ} : orthonormal basis of tangent space at τ

 $J_f(\tau) \cdot (\tilde{\tau} - \tau) = Q_\tau \theta_\tau, \quad \tilde{\tau} - \tau = J_f^+(\tau) Q_\tau \theta_{\tilde{\tau}} \equiv L_\tau \theta_{\tilde{\tau}}$

• Local vs. global

$$\tilde{x} = x + Q_{\tau}\theta_{\tilde{\tau}}, \quad \tilde{\tau} = \tau + L_{\tau}\theta_{\tilde{\tau}},$$

i.e., local coordinates $\theta_{\tilde{\tau}}$ and global coordinates $\tilde{\tau}$ are related by an affine transformation.

• Note. If f is locally isometric, J_f is orthonormal, and L_{τ} is orthogonal.

Alignment

Find global coordinate τ and local affine transformation L_{τ} to minimize (Symbolically),

$$\int_{\Omega} \Big(\int_{\Omega(\tau)} \left\| \bar{\tau} - \tau - L_{\tau} \theta(\bar{\tau}) \right\| d\bar{\tau} \Big/ \int_{\Omega(\tau)} d\bar{\tau} \Big) d\tau$$

over all possible nonsingular L_{τ} .

Overlay a K-NN graph on the sample points

• For each x_i , let $X_i = [x_{i_1}, \ldots, x_{i_k}]$ be its k-nearest neighbors including x_i , say in terms of the Euclidean distance. (Other possibilities and acceleration.)

Constructing approximate tangent space

Apply PCA to each neighborhood $X_i = [x_{i_1}, \ldots, x_{i_k}] \Rightarrow$ sensitive to outliers.

16/48

Weighted (robust) PCA

$$\sum_{j} w_{i,j} \|x_{i_j} - (\bar{x}_i^w + U_i \theta_j^{(i)})\|_2^2 = \min_{c, U, \theta_j} \sum_{j} w_{i,j} \|x_{i_j} - (c + U \theta_j)\|_2^2,$$

Weight selection

Choose the initial vector $\bar{x}_{w^{(0)}}$ as the mean of the k vectors x_{i_1}, \ldots, x_{i_k} ,

1. Compute the current weights,

$$w_s^{(j)} = \exp(-\gamma \|x_{i_s} - \bar{x}_{w^{(j-1)}}\|_2^2).$$

2. Compute a new weighted center

$$\bar{x}_{w^{(j)}} = \sum_{s=1}^{k} w_s^{(j)} x_{i_s}.$$

Illustration

Constate

18/48

Alignment

• In each nbhd, apply (weighted) PCA to $X_i = [x_{i_1}, \ldots, x_{i_k}]$,

$$x_{i_j} = \bar{x}_i + V_i \theta_j^{(i)}, \quad j = 1, \dots, k$$

 V_i orthonormal basis.

• Global vs. local,

$$\tau_{ij} = \bar{\tau}_i + L_i \theta_j^{(i)}, \quad j = 1, \dots, k$$

Let $T_i = [\tau_{i_1}, \dots, \tau_{i_k}]$ and $\Theta_i = [\theta_1^{(i)}, \dots, \theta_k^{(i)}]$
 $T_i J_k - L_i \Theta_i \approx 0, \quad i = 1, \dots, N$

with $J_k = I_k - ee^T/k$, centering matrix.

(Con't)

• A minimization problem (over T, L_i)

$$\sum_{i} ||T_i J_k - L_i \Theta_i||^2 = \min$$

• Fix T_i and minimize

 $\left\|T_iJ_k-L_i\Theta_i\right\|$

w.r.t.
$$L_i \Longrightarrow \|T_i J_k (I - \Theta_i^+ \Theta_i)\|$$

• Let $W_i = J_k(I - \Theta_i^+ \Theta_i)$. Note.

$$W_i W_i^T = J_k (I - \Theta_i^+ \Theta_i) J_k,$$

orthogonal projection onto $\operatorname{span}^{\perp}([e, \Theta_i^T])$.

20/48

(Con't)

• Define S_i a selection matrix such that

$$T_i = TS_i, \quad T = [\tau_1, \ldots, \tau_N].$$

• Let

$$[TS_1W_1,\ldots,TS_NW_N]\equiv T\Psi$$

leading to

$$\min_{T} \|T\Psi\|_{F}^{2} = \min_{T} \operatorname{trace} \left(T(\Psi\Psi^{T})T^{T}\right).$$

• Normalization $TT^T = I_d$. Solution T given by the eigenvectors of $\Phi \equiv \Psi \Psi^T$ corresponding to the 2nd to d+1st smallest eigenvalues. (more on normalization later).

Computational Issues

• Forming Krylov subspaces ($\Phi = \Psi \Psi^T$)

$$K_p(\Phi, v_0) = \operatorname{span}\{v_0, \Phi v_0, \Phi^2 v_0, \dots, \Phi^{p-1} v_0\}.$$

• Matrix-vector multiplications Φx

$$\Phi x = S_1 W_1 W_1^T S_1^T x + \dots + S_N W_N W_N^T S_N^T x,$$

where

$$W_i = (I - \frac{1}{k}ee^T)(I - \Theta_i^+\Theta_i).$$

Each term involves the x_i 's in one neighborhood.

• With the SVD of $X_i - \bar{x}_i e^T = Q_i \Sigma_i H_i^T$

$$W_{i} = I - \frac{1}{k}ee^{T} - H_{i}H_{i}^{T} = I - [e/\sqrt{k}, H_{i}][e/\sqrt{k}, H_{i}]^{T} \equiv I - G_{i}G_{i}^{T}$$

PENNSTATE

21/48

Local Tangent Space Alignment (LTSA)

Given N *m*-dimensional points sampled possibly with noise from an underlying *d*-dimensional manifold, this algorithm produces N *d*dimensional coordinates $T \in \mathcal{R}^{d \times N}$ for the manifold constructed from k local nearest neighbors.

Step 1. [Extracting local information.] For each $i = 1, \dots, N$,

1.1 Determine k nearest neighbors x_{i_j} of x_i , $j = 1, \ldots, k$.

1.2 Compute the *d* largest eigenvectors g_1, \dots, g_d of the correlation matrix $(X_i - \bar{x}_i e^T)^T (X_i - \bar{x}_i e^T)$, and set

 $G_i = [e/\sqrt{k}, g_1, \cdots, g_d].$

- Step 2. [Constructing the alignment matrix.] Form the the alignment matrix Φ by locally summation if a direct eigen-solver will be used. Otherwise implement a routine that computes matrix-vector multiplication Bu for an arbitrary vector u.
- Step 3. [Computing global coordinates.] Compute the d+1 smallest eigenvectors of Φ and pick up the eigenvector matrix $[u_2, \dots, u_{d+1}]$ corresponding to the 2nd to d+1st smallest eigenvalues, and set $T = [u_2, \dots, u_{d+1}]^T$.

Solving jigsaw puzzles

(Better, we allow each piece be affinely transformed.)

24/48

Examples

Consider d = 1, and

 $x_i = c + u\tau_i, \quad i = 1, \dots, N.$

PCA on $X = [x_1, ..., x_N]$ is equivalent to finding the nullspace of $\Phi = I - J_N(I - X^+X)J_N = I - J_N(I - T^+T)J_N, \quad J_N = I - ee^T/N.$ Here $T = [\tau_1, ..., \tau_N]$, all distinct.

 Φ is the orthogonal projection onto $\operatorname{span}^{\perp}([e, T^T])$.

26/48

(Con't)

Split T into two parts $T = [T_1, T_2]$, and build the matrix

 $\Phi = \text{diag}(\Phi_1, \Phi_2), \quad \Phi_i = I - [e, T_i^T]^+ [e, T_i^T], \quad i = 1, 2.$

It is easy to check

$$\boldsymbol{e}, \boldsymbol{T}^{\boldsymbol{T}} \in \mathcal{N}(\Phi) = \operatorname{span}\left\{ \begin{bmatrix} \boldsymbol{e} \\ \boldsymbol{0} \end{bmatrix}, \begin{bmatrix} T_1^T \\ \boldsymbol{0} \end{bmatrix}, \begin{bmatrix} 0 \\ \boldsymbol{e} \end{bmatrix}, \begin{bmatrix} 0 \\ T_2^T \end{bmatrix} \right\}$$

but $\dim(\mathcal{N}(\Phi)) = 4$. How to get rid of the unwanted info in $\mathcal{N}(\Phi)$?

Illustration

28/48

(Con't)

Now let T_1 and T_2 share a point. Build Φ as before,

$$\Phi = \Phi_1 + \Phi_2.$$

 Φ_1 and Φ_2 overlap one row and one column. Again it is easy to see that

$$\boldsymbol{e}, \boldsymbol{T}^{\boldsymbol{T}} \in \mathcal{N}(\Phi) = \operatorname{span}\left\{\boldsymbol{e}, \boldsymbol{T}^{T}, \begin{bmatrix} \boldsymbol{T}_{1}^{T} \\ 2T_{1}(n_{1}) - T_{2}(2:n_{2})^{T} \end{bmatrix}\right\}$$

Illustration

30/48

(Con't)

Now let T_1 and T_2 share two distinct points. Build Φ as before,

$$\Phi = \Phi_1 + \Phi_2,$$

 Φ_1 and Φ_2 overlap two rows and two columns. Then

 $\mathcal{N}(\Phi) = \operatorname{span}\{\boldsymbol{e}, \boldsymbol{T}^T\}.$

Illustration

Spectral analysis of the alignment

- Consider T = [τ₁,...,τ_N] ∈ R^{d×N}, d-dimensional parameter vectors with each neighborhood (patch) corresponding to a submatrix of T, called a section.
- Assume we have computed sections $T_i = [\tau_{i_1}, \ldots, \tau_{i_{k_i}}] \in \mathcal{R}^{d \times k_i}$. (Actually up to an affine transformation, or a rigid motion).
- Given a collection of sections $\{T_1, \ldots, T_s\}$ of T, build an alignment matrix:

$$\Phi = \sum_{i=1}^{s} \Phi_i,$$

here P_i orthogonal projection onto span^{\perp}($[e, T_i^T]$), stretch to obtain Φ_i .

Reminder

Recall,

 $\Phi = S_1(W_1W_1^T)S_1^T + \dots + S_N(W_NW_N^T)S_N^T,$

where

 $W_i = J_k (I - \Theta_i^+ \Theta_i),$

and Θ_i local coordinates. Now

 $W_i W_i^T = J_k (I - \Theta_i^+ \Theta_i) J_k,$

orthogonal projection onto $\operatorname{span}^{\perp}([e, T_i^T])$.

PENNSTATE

33/48

Null space of Φ

Fully overlapped. Two sections T_1 and T_2 are fully overlapped, if the vectors in the intersection part are in general position, i.e., dimension of the spanned affine subspace is d.

Theorem. Assume two sections, then

- 1. span($[e, T^T]$) $\subset \mathcal{N}(\Phi)$.
- 2. $N(\Phi) = \operatorname{span}([e, T^T])$ iff $\{T_1, T_2\}$ is fully overlapped.

Recall in LTSA, we extract the 2nd to d + 1st smallest eigenvectors of Φ .

An example

Nullspace contains unwanted information, and embedding has manifold folds upon itself.

Multiple Sections

Unsuccessful recovery.

36/48

Successful recovery.

PENNSTATE

1855

37/48

Necessary Conditions

Theorem. Let $[e, T_i^T]$ be of full column-rank for i = 1, ..., s. If

$$\mathcal{N}\{\Phi\} = \operatorname{span}\{[e, T^T]\},\$$

then

1) $\{T_1, \ldots, T_s\}$ is connectedly overlapped, or 2) $\{T_1, \ldots, T_s\}$ is not connectedly overlapped, and for any maximally connectedly overlapped subset $\{T_{i_1}, \ldots, T_{i_k}\}$,

 $\{[T_{i_1}, \ldots, T_{i_k}], [T_{i_{k+1}}, \ldots, T_{i_s}]\}$

are fully overlapped.

PENNSTATE

Sufficient Conditions

Theorem.

1) $\{T_1, \ldots, T_s\}$ is connectedly overlapped, or 2) $\{T_1, \ldots, T_s\}$ is not connectedly overlapped, but there is a maximally connectedly overlapped subset $\{T_{i_1}, \ldots, T_{i_k}\}$ such that

$$\{T_{i_{k+1}},\ldots,\,T_{i_s}\}$$

is also a connectedly overlapped subset and

$$\{[T_{i_1}, \ldots, T_{i_k}], [T_{i_{k+1}}, \ldots, T_{i_s}]\}$$

are fully overlapped, then

$$\mathcal{N}\{\Phi\} = \operatorname{span}\{[e, T^T]\}.$$

Spectral gap

Recall, two sections fully overlapped iff $\sigma_d(V - \bar{v}e^T) > 0$, where V, vectors in the intersection. Quantitatively,

Theorem. The smallest nonzero eigenvalue of Φ is $O(\sigma_d^2(V - \bar{v}e^T))$. (Only d = 1 case is proved, working on the more general case.)

Theorem. For i = 1, 2, $P_i = Q_i Q_i^T$ orthogonal projections onto the orthogonal complements of $[e, T_i^T]$, and $H_i = Q_i(I_1 \cap I_2, :)$. Then

 $\lambda(\Phi) = \{0, 1, 1 \pm \sigma_i(H_1^T H_2)\}.$

Practical situation

Each patch is handled separately, local coordinates \implies transformations and approximations w.r.t. global coordinates.

Proposition. Let T_i , i = 1, 2 be two sections of T, and Θ_i , i = 1, 2 are the same as T_i up to an affine transformation. P_i be the orthogonal projection onto the orthogonal complement of $[e, \Theta_i^T]$. Then

 $\operatorname{span}\{[e, T^T]\} \subset \mathcal{N}\{\Phi\},\$

where Φ is built from P_i . Furthermore, if T_i fully overlapped, then

 $\operatorname{span}\{[e, T^T]\} = \mathcal{N}\{\Phi\}.$

LTSA recovers isometry

- Assume f is an isometry.
- Up to local approximation errors, local coordinates are isometric to global coordinates: Jacobi matrix is orthonormal.
- \bullet Nullspace of Φ gives global coordinates.
- Normalization of nullspace basis vectors.

Two competing requirements

- Large overlap favors large neighborhood
- Large neighborhood results in large approximation errors

44/48

PENNSTATE

Adaptive manifold learning

- Adaptive neighborhood size selection.
- Bias reduction in local coordinate estimation.

Molecular Dynamics Simulation/Example

Energy Landscape Interpolation

- N-particles simulation system \Rightarrow configuration space d = 3N
- \bullet Not all 3N degrees of freedom are activated
- Trajectories of the particles occupy a low-dimensional manifold
- More efficient and accurate approaches for the potential energy surface and force computation

CAMLET: A Combined Ab-initio Manifold LEarning Toolbox

- Explore the low-dimensional characteristics particle trajectories
- Identify the suitable clusters in the reduced dimension spaces
- Efficient energy and force interpolations

48/48

Thanks! Questions?

Papers/preprints can be found at

http://www.cse.psu.edu/~zha/papers.html

