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High-dimensional data
• Modern scientists are often confronted with 

very large high-dimensional data sets.

• lots of test subjects

• lots of observed variables

• observed phenomenon may still be simple

• How do you extract low-dimensional structure 
from a high-dimensional data set? 
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Topological structure

• “Identify topological 
features of a point-
cloud dataset.”

• Perhaps the data are 
sampled finely from 
some unknown object. 

• Can we describe the 
topological properties 
of the object?
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Present goal

• Develop robust methods for extracting 
topological features from point-cloud data.

• Develop an accompanying theory of “point-
cloud topology”.

• Address geometrical questions such as 
localisation of features.
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Applications
• Shape descriptors from tangent-space topology.
[Collins, Zomorodian, Carlsson, Guibas, 2004]

• Locating singular points in a data set.
[Carlsson, Carlsson, de Silva, 2003]

• Estimating the fractal dimension of dynamical 
system attractors.
[Robins, Meiss, Bradley, 2000]

• Dimension estimation, hole detection, ...



1. Topology of spaces
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What is topology?

• It is the branch of mathematics which cannot 
distinguish between a teacup and a bagel.

=
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Why topology?
• It strips away irrelevant geometrical details and 

identifies the essential structure of a space.
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Why topology?
• It strips away irrelevant geometrical details and 

identifies the essential structure of a space.
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Why topology?

• It gives answers to qualitative questions.
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Why topology?
• It gives answers to qualitative questions.
[Carlsson, Collins, Guibas, Zomorodian]
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Betti numbers
• Betti numbers give a count of basic topological 

features: components, holes, etc.

• Sensible goal: estimate Betti numbers.
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Betti numbers

• The k-th Betti number bk(X) is a non-negative 
integer which measures the k-dimensional 
connectivity of a space X.
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For a 2-dimensional object

• b0 = # connected components

• b1 = # holes

b0 = 2, b1 = 2
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For a 3-dimensional object
• b0 = # connected components

• b1 = # tunnels or handles

• b2 = # voids

b0 = 1, b1 = 1, b2 = 0

b0 = 1, b1 = 0, b2 = 1
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Calculating Betti numbers
• Betti numbers are defined 

abstractly for topological spaces. 

• (This uses infinite-dimensional 
linear algebra.)

• Often we can represent the space 
by a finite simplicial complex.

• This reduces the problem to finite-
dimensional linear algebra.
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Simplicial homology
• Ck = vector space with a generator α for each 

k-simplex α of simplicial complex

• αi = (k-1)-simplex obtained by deleting the i-th 
vertex of α.

• Boundary map ∂ : Ck → Ck-1 defined:

∂α =
k∑

i=0

(−1)i
αi
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Simplicial homology
• ∂2 = 0 (a boundary has 

no boundary)

• Ker(∂) = cycle-space

• Im(∂) = boundary-space

• H* = Ker(∂)/Im(∂) = 
homology

• bk = dim(Hk)



2. Topology of point-clouds
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Point-cloud data

• Rather than a topological space, we have a 
cloud of data points.
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Space reconstruction...

topological
space

point-cloud
dataset

simplicial
complex

Start here
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...or point-cloud topology?

topological
space

point-cloud
dataset

simplicial
complex

Start here
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Space reconstruction

topological
space

point-cloud
dataset

simplicial
complex

Start here



NLDR (e.g. Isomap)

…

Input: randomly ordered sequence of images varied in 
pose and lighting.

Output: low-dimensional embedding.



Generative model for NLDR
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Non-euclidean topology
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Space reconstruction...

topological
space

point-cloud
dataset

simplicial
complex

Start here
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Reconstruction criterion

• In surface/manifold reconstruction, we ask 
that the simplicial complex and the hidden 
space be homeomorphic to each other.

• If the goal is to estimate Betti numbers, it is 
enough for them to be homotopy equivalent. 

• For example, “nerve complexes” are amenable 
to proofs of homotopy equivalence.  
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Nerve complexes
• Let X = U1 ∪ ... ∪ Un be a space (or set) 

expressed as union of subspaces (or subsets). 
The Nerve complex is defined to have:

•  a vertex [i] for every i such that Ui ≠ ø;

• an edge [ij] whenever Ui ∩ Uj ≠ ø;

• a triangle [ijk] whenever Ui ∩ Uj ∩ Uk ≠ ø;

• and so on.
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Example
X

U1 ∪ U2 ∪ U3 ∪ U4 ∪ U5

Nerve
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The Čech nerve theorem

• [This is the basis of Čech (co-)homology]
If every finite intersection of the sets Ui is 
empty or contractible, then the Nerve complex 
and X have the same homotopy type.
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Example: Čech complex
•  Let R > 0. Define Čech(X,R) has:

• a vertex [x] for every data point x in X;

• an edge [xy] if |x-y| < 2R;

• a triangle [xyz] if the three balls with 
centres x,y,z and radius R have a non-empty 
common intersection;

• and so on, for higher dimensional cells.
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Čech complex as a nerve

• Čech(X,R) is the nerve of the union of balls of 
radius R centered at the points x of X.
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Reconstruction Theorem

• [Niyogi, Smale, Weinberger, 2004]
Let M ⊂ Rn be a smooth submanifold with 
feature size τ. For any 0 < R < τ√(3/5), suppose 
X ⊂ M is a finite sample which is (R/2)-dense 
in M. Then Čech(X,R) has the same homotopy 
type as M.
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How to choose R?
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How to choose R?



3. Persistent homology
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Dichotomy

• Homology groups and Betti numbers are 
discrete quantities.

• The world of data sets is continuous.

• How can we maintain the (useful, qualitative) 
discrete flavour of homology, while taking into 
account the continuous flavour of real data?
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Persistent homology
• Instead of computing Betti numbers for each 

value of R, combine the calculations for all 
values of R simultaneously.

• Edelsbrunner, Delfinado, Zomorodian (2000) 
give a strikingly effective algorithm for 
computing persistent homology.

• The output takes the form of an “interval 
graph”, where each interval represents the 
lifetime of a feature.
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Filtered complex
parametrised by R
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Filtered complex
parametrised by R
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Filtered complex
parametrised by R
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Example of an interval graph

b0

b1

b2
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Theoretical interpretation
• [Carlsson, Zomorodian, 2003]

This kind of interval graph structure occurs 
whenever you have a sequence of complexes 
with maps S1 → S2 → ... → Sn.

• Ordinary homology uses coefficients over the 
field Z2 (for example).

• Persistent homology uses coefficients over the 
polynomial ring Z2[t]. This has a well-behaved 
module theory.
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Outstanding open problem

• With a single filtration parameter, persistent 
homology works beautifully.

• With two independent filtration parameters, 
the corresponding polynomial ring Z2[s,t] has 
a horribly complicated module theory.

• How should one handle these situations?



4. Witness complexes
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In search of efficiency

• The Čech complex has good homotopy 
properties. However, the number of cells 
becomes huge as R grows.

• The Alpha-shape complex [Edelsbrunner, 1995] 
has the same homotopy type with far fewer 
cells. Based on Delaunay triangulation: curse of 
dimensionality (extrinsic).

• Can we avoid this trade-off? 
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Strategy

• [Carlsson, VdS, 2003]
Strong & Weak witness complexes.

• Use a small subset of the data as the vertex set.

• Simplices should lie close to existing data 
points (rather than cutting across chasms).

• (Cheaply) mimic the restricted Delaunay 
triangulation, in a point-cloud data setting.
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4 paradigms
flat curved

continuous

point cloud
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4 paradigms
flat curved

manifold Delaunay 
triangulation

restricted 
Delaunay 

triangulation

point 
cloud ? ?



Vin de Silva
Stanford University

MGA Workshop III
IPAM, UCLA, October 25-29, 2004

4 paradigms
flat curved

manifold Delaunay 
triangulation

restricted 
Delaunay 

triangulation

point 
cloud

weak/strong 
witness 
complex

weak/strong 
witness 
complex
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Strategy

• Given large point-cloud data set X, choose a 
much smaller set L of vertices.

• L can be chosen randomly or using a greedy 
optimisation strategy for good coverage.

• The number of landmark points constrains the 
complexity of the detectable topology. Fewer 
may be better.
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Delaunay triangulation
• Let L ⊂ Rn be a finite set of points and let 

x0,x1,...,xk ∈ L. Then TFAE:

• x0,x1,...,xk span a Delaunay k-cell;

• the Voronoi cells for x0,x1,...,xk  meet;

• there is a point w ∈ Rn, whose k+1 nearest 
neighbours in L are x0,x1,...,xk, and which is 
equidistant from them.
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Restricted Delaunay 
triangulation

• Let L be a set of points in a manifold M ⊂ Rn 
and let x0,x1,...,xk ∈ L. Then TFAE:

• x0,x1,...,xk span a restricted Delaunay k-cell;

• there is a point w ∈ M, whose k+1 nearest 
neighbours in L are x0,x1,...,xk, and which is 
equidistant from them.

• the Voronoi cells for x0,x1,...,xk meet in M;
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Strong witness complex

• Let L be a set of points taken from a finite set 
X ⊂ M ⊂ Rn and let x0,x1,...,xk ∈ L. We decree 
that x0,x1,...,xk span a k-cell in the strong 
witness complex if and only if:

• There is a point w ∈ X, whose k+1 nearest 
neighbours in L are x0,x1,...,xk; and

• w is equidistant from x0,x1,...,xk.
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Immediate disaster!

• The existence of the point w in the finite set X 
is a ‘probability zero’ event.

• Need to introduce a tolerance parameter R, 
and interpret the definition “up to error R”. 
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Strong nerves (1)

• Strong(X,L) can be defined as follows.

• Let f : X → Rn map x in X to the vector of 
its distances to the n landmarks.

• Partition the positive quadrant of Rn into 
sets Vi = {v : vi is the smallest coordinate}.

• Let Ui = f-1(Vi) and construct the nerve.
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Strong nerves (2)

• Strong(X,L,R) can be defined as follows.

• Thicken Vi ⊂ Rn to its R-neighbourhood 

Vi(R) with respect to a suitable metric on Rn.

•  The l∞ (supremum) norm is convenient.

• Construct the nerve with Ui(R) = f-1(Vi(R)).
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Strong and weak witnesses
• Consider again the following statement:

• there is a point w ∈ Rn, whose k+1 nearest 
neighbours in L are x0,x1,...,xk, and which is 
equidistant from them.

• Such a point w is called a strong witness for 
the simplex [x0,x1,...,xk]. If we drop the 
equidistance condition, we say that w is a weak 
witness for [x0,x1,...,xk]. 
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Example

f

d

e

c

b
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The weak witnesses theorem

• [VdS, 2003] Let L ⊂ Rn be a finite set of points 
and let x0,x1,...,xk ∈ L. Then [x0,x1,...,xk] has a 
strong witness in Rn ⇔ [x0,x1,...,xk] and all of 
its subsimplices have weak witnesses in Rn.

• For edges, this is well known. Exploited by 
Martinetz & Schulten (1994) to build topology-
representing graphs.
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Example (continued)
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Example (continued)
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Example (continued)

f

d

e

c

b

a



Vin de Silva
Stanford University

MGA Workshop III
IPAM, UCLA, October 25-29, 2004

Example (continued)
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Example (continued)
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Example (continued)
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Example (continued)
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Example (continued)
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Weak witness complex
• Let L be a set of points taken from a finite set 

X ⊂ M ⊂ Rn and let x0,x1,...,xk ∈ L. We decree 
that x0,x1,...,xk span a k-cell in the weak 
witness complex if and only if:

• There is a point w ∈ X, whose k+1 nearest 
neighbours in L are x0,x1,...,xk; and

• all the faces of [x0,x1,...,xk] belong to the 
weak witness complex.
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Comments

• Weak witnesses exist with positive probability 
(though sometimes positive = small).

• We also define a version of the weak witness 
complex with a tolerance parameter R.

• Heuristically, weak witness complexes ought to 
give good results even when R is very small.
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Strong vs. Weak
• Empirical evidence and heuristic arguments 

suggest:

• Strong: noisy for small values of R; the 
“correct” stable realm begins later.

• Weak: stable realm begins at (or near) R=0.

• ✔ Weak: overcomes sampling irregularity.

• ✘ Weak: ignores small features.



6. Example: the 2-sphere
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The 2-sphere

• Toy example (to check that everything works).

• 1000 points sampled uniformly randomly on 
the unit sphere in 3-space.

• 15 landmark points chosen randomly or by 
greedy separation maximisation.

• Compare Čech/Alpha, strong witness, weak 
witness complexes.
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“true” Betti number profile
for 2-sphere
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Čech/Alpha complex 
15 random landmarks
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Čech/Alpha complex
15 separated landmarks
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Strong witness complex
15 random landmarks
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Strong witness complex
15 separated landmarks
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Weak witness complex
15 random landmarks
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Weak witness complex
15 separated landmarks
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Landmark choice
• Theorems wanted! Analogous to the question 

of how to sample points from manifold.

• [NSW]: (R/2)-denseness is enough for Čech.

• Manifold reconstruction literature: ensure that 
sample points are separated.

• “Greedy furthest point” satisfies both.

• Coverage scale normalises R-truncation.



7. Example: high-contrast 
image patches



Vin de Silva
Stanford University

MGA Workshop III
IPAM, UCLA, October 25-29, 2004

High-contrast
visual image patches

• Ann Lee, Kim Pedersen, David Mumford 
(2003) studied the local statistical properties of 
natural images (from Van Hateren’s database).

• Restrict attention to 3-by-3 pixel patches with 
high contrast between pixels: are some 
patterns more likely than others?

• We investigated the topological properties of 
high-density regions in pixel-patch space.
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The space of image patches

• ~4.2 million high-contrast 3-by-3 patches 
selected randomly from images in database.

• Normalise each patch twice: subtract mean 
intensity, then rescale to unit norm.

• Normalised patches live on a unit 7-sphere in 
8-dimensional space with the following basis:
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High-density regions

• The distribution of patches is dense 
in the 7-sphere (it turns out).

• There are high-density regions: for 
example, edge features are prevalent 
in natural images.

• Can we describe the topology of the 
high-density regions?
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Defining “high-density”
• When does a point belong to a high-density 

region? There is no single answer to this.

• Select a positive integer K.

• For each data point x, let r(x,K) denote the 
distance between x and its K-th nearest 
neighbour.

• Threshold on r(x,K):
x is a high-density point ↔ r(x,K) is small
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Different high-density cuts



Vin de Silva
Stanford University

MGA Workshop III
IPAM, UCLA, October 25-29, 2004

A small platter of cuts
10% 20% 30%

K=15

K=100

K=300
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Persistent homology: Betti 1
10% 20% 30%

K=15

K=100

K=300
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Obvious patterns
• Certain results are easy to interpret.

K = 100; 30% K = 300; 30%K = 300; 10%
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The primary circle

• The thick e1–e2 circle 
consists of linear 
gradient patches and 
their nearby edge 
feature patches.
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Less obvious
• The K = 15 row is initially more mysterious.

K = 15; 10% K = 15; 30%K = 15; 20%
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Three circles model
• Answer: three circles in 
R4 (projected into R2).

• The primary circle in the 
e1–e2 plane meets two 
secondary circles (e1-e3 
and e2-e4) twice each.

• The two secondary circles 
are disjoint.
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Movie (by Afra Zomorodian)
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Movie (by Afra Zomorodian)
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Movie (by Afra Zomorodian)
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The secondary circles

• The thin circles in the 
e1–e3 and e2–e4 planes 
consist of vertically 
symmetric and 
horizontally symmetric 
patches.

• Why is there a greater 
concentration of these 
patches? Two answers.



Closing remarks
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Closing remarks
• Persistent homology + witness complexes: 

make topological measurements robustly, 
reasonably cheaply, with hardly any arbitrary 
parameters.

• “Continuisation” and parameter elimination 
are both based on “integrating” over R. 
Calculations over Z2 are still discrete.

• Working in a more analytic framework over R 
leads to other approaches. (Laplacians etc.)


