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Statistics, Geometry, Computation

Given high dimensional data sampled
from a low dimensional manifold,
how to compute a faithful embedding?




Applications

Low dimensional manifolds arise in
many areas of information processing.
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(Seung & Lee, 2000) (Stopfer et al, 2003)



Dimensionality reduction
* Inputs (high dimensional)
X € Pwithi=12,...N

l

* Outputs (low dimensional)
Y. € ¢ whered<D

- Embedding

Nearby points remain nearby.
Distant points remain distant.
(Estimate d.)



Subspaces




Linear methods

* Principal component analysis
Project inputs into subspace of
maximal variance:

max(tr] Y'Y |] with Y = PX
(u¥"Y])

- Multidimensional scaling

Project inputs into subspace that
preserves pairwise distances:

- = |2 — — |2
VY[ ~[X,-X,

! J




Matrices of PCA and MDS

Correlation matrix: C* ~ E[X?XPF]

Gram matrix: G; = X; * X;

These matrices have the same rank
and nonzero eigenvalues.




Dimensionality reduction

- Eigenvectors
eigs(C) = linear projections of PCA
eigs(G) = projected outputs of MDS

- Eigenvalues
Always nonnegative.
Gaps indicate latent dimensionality.

Different intuitions,
but equivalent results.



Properties of PCA and MDS

- Strengths
—Eigenvector methods
—Non-iterative
—No local optima
—No “free” parameters

 Weakness
PCA and MDS are linear methods.



Subspaces vs Manifolds

o

imited.

Linear methods are |



Questions

- Are there eigenvector methods for
nonlinear dimensionality reduction?

(Yes)"withn=8
- Equally simple as PCA and MDS?
Almost!



Recent Algorithms

* In this talk
Locally linear embedding (LLE)
Semidefinite embedding (SDE)

- Related work by others
Isomap (Tenebaum , de Silva, & Langford)
Laplacian eigenmaps (8elkin & Niyogi
Local tangent space alignment (@hang & zha)
Hessian LLE (ponoho & Grimes)
Charting (®rand)



Outline of talk

Thesis

LLE preserves local linearity relations.
Constructs, diagonalizes a sparse matrix.
Antithesis

SDE preserves local distances, angles.
Constructs, diagonalizes a dense matrix.
Synthesis

Exploit symmetries of LLE to speed up
SDE by several orders of magnitude.



Algorithm #1: LLE

Locally Linear Embedding
“Think globally, fit locally.”




Local linearity

A manifold is
locally linear,

even if globally
nonlinear.
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How can we
use this?
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Locally Linear Embedding (LLE)

- Steps
1. Nearest neighbor search.
2. Least squares fits.
3. Sparse eigenvalue problem.

- Properties

— Obtains highly nonlinear embeddings.
—Non-iterative, not prone to local minima.



Step 1. Identify neighbors.

- Examples of neighborhoods
— K nearest neighbors
—Neighbors within radius r
—Metric based on prior knowledge

- Assumptions

—Data is sampled from a manifold.
—Manifold is well sampled.



Nearest neighbor graph

Assumptions: ] T

- Graph is 4 / ""'*"""“.5. \" %
connected. 1 v & &

 Neighborhoods ¥ o ‘i """"" >~ N
on the graph R A S
correspond to SR a4
neighborhoods NN . o

on the manifold.



Step 2. Compute weights.

- Characterize local geometry of each
neighborhood by weights W,.

- Compute weights by reconstructing
each input (linearly) from neighbors.



Linear reconstructions

 Local linearity

Neighbors lie on locally linear patches
of a low dimensional manifold.

 Reconstruction errors

Least squared errors should be small:
2

OW)= Y (X, - YW,X,
{ J




Least squares fits

- Choose weights to minimize errors:
2
OW)= Y (X, - YW,X,
I J

« Constraints:

Nonzero W; only for neighbors.
Weights must sum to one: EW ~1




Symmetry
- Cost per input

(I)Z(W) = )_éi - EszXj
J

- Local invariance

Optimal weights W;; are invariant to
rotations, translations, and dilations.



Manifolds

- Local linearity

Each neighborhood map looks like a
translation, rotation, and dilation.

- Local geometry

These transformations do not affect the
weights W;;: they remain valid.



Step 3. Compute the embedding.

- Embedding B
Map inputs to outputs: X.€ “toY €

- Minimize reconstruction errors.
Optimize outputs Y; for fixed weights W;;:

W(Y)=EZ_EWUYJ
- Constraints

Center outputs on origin: D.Y,=0
Impose unit covariance matrlx —Eﬁ =1,




Sparse eigenvalue problem

- Quadratic form
W(Y) = EU\I@.(Z -YJ.) with W=(I-W) (I-W)

- Rayleigh-Ritz theorem

Optimal embedding given by bottom
d+1 eigenvectors.
- Solution

Discard bottom eigenvector [1 1 ... 1].
Other eigenvectors satisfy constraints.



Summary of LLE

* Three steps
1. Compute K nearest neighbors.
2. Compute weights W,
3. Compute outputs Y..

- Optimizations

CI)(W)=2

iX
i

~

]

X,- YW,
J
W)=Y Y, - YW,
[ J




Surfaces

N=1000
inputs

K=8
neighbors

D=3
d=2
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Pose ar_1d
expression

N=1965
images

K=12
neighbors

2

D=560
pixels
d=
(shown)



Lips

N=15960
images

K=24
neighbors

D=65664
pixels

=2

(shown)



Summary of LLE

 Three steps:

1. k-nearest neighbors of inputs X..
2. Least squares fits for weights W.
3. Sparse eigensystem for outputs Y..

» Local symmetries:

- translation
- rotation
- dilation

“Think globally, fit locally.”



Algorithm #2: SDE

Semidefinite Embedding
“Maximum variance unfolding.”




Motivation

What class of mappings:

—Includes rotations and translations
as a special case?

—Unravels manifolds into subsets of
Euclidean space?



Isometry

* Intuitively

Whatever you can do to a sheet of
paper without holes, tears, or self-
intersections.




Isometry (con’t)

* Informally

A smooth, invertible mapping that
preserves distances and looks /ocally
like a rotation plus translation.

* Formally

Two Riemannian manifolds are isometric
if there is a diffeomorphism that pulls
back the metric on one to the other.



Data on manifolds

From the continuous to the discrete:

Isometry is defined between manifolds.
Can we extend the relation to data sets?




Discretely sampled manifolds

- Neighborhood graph
Connect each pointto | ~—V\
its k nearest neighbors. ég

» Locally isometric

Consider an embedding Y of X
locally isometric if:

75 -7) - (5% )+ (%)

for all 7(,- with neighbors j(iand 7(,(.



Dot product constraints

- Gram matrices

G, = {( . 3( ; (inputs)
K, =Y, *Y, (outputs)
» Locally isometric

Consider an embedding Y of X
locally isometric if:

Kii_Kij _Kik +Kjk =Gii_Gij _Gik +ij

for all )?i with neighbors )?,and 7(,(.



Manifold learning
* Input
Vectors X; and Gram matrix Gy=fg-)?j;
latter determines former up to rotation.
* Problem
Given G;= XX, how to construct K;= VY,
such that Y “unfolds” the manifold of X?
 Algorithm

What to optimize?
What to constrain?



Constraints on K,.j

- Centered
Constrain outputs to have zero mean:

2
217;6 implies 22 =EI7I.°I7].= EKU,: 0
[ ij ij

» Locally isometric

Preserve local angles |« =
and distances: e

Kii_Kij _Kik +Kjk =Gii_Gij _Gik +ij




Constraints (con’t)

« Semidefinite

Eigenvalues of K must be nonnegative.

AK, + (1 - A)K,
with A € [0,1]

Semidefinite
and linear
constraints
are convex.

O(NK?) constraints
O(N?) variables



Unfolding a manifold

What function of the Gram matrix is
being optimized below?

e e

Before After

Gy=XeX K; =YY,




Optimization

 Pull points apart
Maximize sum of pairwise distances,

same as var(Y) or trace(K)'
1 E K.

2N
(Similar |ntU|t|on as PCA)

 Boundedness

Follows from triangle inequality and
connectedness of neighborhood graph.




Semidefinite programming

Maximize trace(K) subject to:
(1) K =0,
(ii)ZKij -0,
1
(111) for all neighborhoods (ijk),

Kii _Kij _Kik +Kjk
=Gii_sz _Gik +ij




Convex optimization

- Solution
Feasible region is convex.
Never empty (includes G).

Objective is linear and bounded.
Efficient algorithms exist.

- Caveat

Generic solvers
scale poorly.




Steps of SDE

1) K nearest neighbors

Compute nearest neighbors,
distances and angles.

2) Semidefinite programming

Maximize trace of centered, locally
isometric Gram matrices.

3) Matrix diagonalization

Top eigenvectors give embedding.
Estimate d from eigenvalues.



Experimental Results
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“maximum variance unfolding”
(Sun, Boyd, Xiao, & Diaconis)



Swiss Roll




Trefoil knot




Teapot (half rotation)

Images ordered by N =200
one dimensional k=4

embedding D =23028




Teapot (full rotation)

N =400

k=4
D =23028




Images of faces




Handwritten digits

N =638
k=4
D =256
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Eigenvalues

Teapot 180 |

Swiss Roll
Teapot 360
]
N 1
.

Trefoil Knot
Faces

Twos

0.00 0.20 0.40 0.60 0.80 1.00

(normalized by trace)



Evaluating SDE

* Pros
—Eigenvalues reveal dimensionality.
—Constraints ensure local isometry.
— Algorithm tolerates small data sets.

« Cons

— Computation intensive.
—Currently limited to N = 2000, k = 6.



LLE vs SDE

- Sparse vs dense

LLE constructs a sparse matrix.
SDE constructs a dense matrix.

- Bottom vs top

LLE computes bottom eigenvectors.
SDE computes top eigenvectors.

- Estimating the dimensionality

LLE eigenvalues do not reveal d.
SDE eigenvalues do reveal d.



Algorithm #3: (SDE
landmark SDE
(a happy marriage of LLE & SDE)

10000




Matrix factorization

* Why is SDE slow?

Algorithm learns NxN matrix K, =YY .
Solving SDPs is superlinear in V.

- Approximate K = QLQ"

0 is Nxn matrix (given).
L is nxn matrix, with n<<N (learned).



Reformulation K = QLQ"'
» Old SDP over NxN matrix K

Maximize trace(K) subject to:

1) K > 0.

2) ;K = 0.

3) For all (z, j) such that 7;=1,
K — 2K + K;; = |T; — T,]°.

 New SDP over nxn matrix L

Maximize trace(QLQ") subject to:
1) L > 0.
2) L,(QLQ™);; = 0.
3) For all (7, j) such that n;;=1,
(QLQT): —2(QLQT);;+(QLQT),; < |7; — )|

)




Sketch of idea

Choose landmarks:

{ﬁ(x}nz where n << N

Reconstruct inputs:

Unfold inputs:

yi=9=) Qul,
Matrix factorization
v,y =QLQ" with L, =0, ¢




Reconstructing from landmarks
 Error function
DWW, X)=

2

X~ WX,

» Optimizations
Compute weights W as in LLE.
Clamp landmarks; reconstruct inputs.

%, =min g, [OW,X)]= ) O,k

Reconstruct by solving a sparse
system of linear equations.




Reconstructing from landmarks
* Input reconstructions
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N=2000 n=4  n=8  n=16  n=32
- Output reconstructions

LLE weights are invariant to unfolding.
Same matrix reconstructs outputs!

% =min ., [OW.X)]=) 0.k,
y,=min,, [®W.N)]=Y 0.1,




Steps of (SDE

As Iin LLE:

(1) Compute nearest neighbors.
(2) Compute LLE weights W.

(3) Choose landmarks.

(4) Compute landmark weights Q.

As In SDE:

(5) Solve SDP to unfold landmarks.
(6) Compute top eigenvectors.
(7) Construct outputs from landmarks.




Experimental results
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How much faster?

Speedup
|= =1
1000 é‘_ —_—
100 —
10 Om=10
BEm=20
Om=30
1 Om=40
Swiss Roll Faces Twos
n=2048 n=1989 n=1389
0.1 -

0.01

Teapots
n=400




Related work

Other algorithms:
Isomap, Laplacian eigenmaps,
local tangent space alignment,
hessian LLE, charting

Common framework:
1) Compute nearest neighbors.
2) Construct an N x N matrix.
3) Compute eigenvectors.



“Local” vs “global” methods

- Local methods (LLE, LTSA, ...)
Construct sparse matrix.
Compute bottom eigenvectors.
Scale (relatively) well.

- Global methods (Isomap, SDE)

Construct dense matrix.
Compute top eigenvectors.
Eigenvalues reveal dimensionality.



Landmark methods

e Asomap

Distances to landmarks are used to
“triangulate” non-landmarks.

* (SDE

Landmark locations are propagated
through sparse weighted graph.

Analogous to recent work in semi-
supervised learning.

(Belkin, Matveeva, & Niyogi; Smola & Kondor; Zhu, Ghahramani, & Lafferty)



Conclusion

- Big ideas
—Manifolds are everywhere.
— Graph-based methods can learn them.

- Ongoing work
—Scaling up to larger data sets
—Theoretical guarantees

— Alternative topologies
— Extrapolation and functional maps



