Unfolding a manifold by semidefinite programing

Prof. Lawrence Saul Computer and Information Science University of Pennsylvania

(with S. Roweis, K. Weinberger, F. Sha, and B. Packer)

Statistics, Geometry, Computation

Given high dimensional data sampled from a low dimensional manifold, how to compute a faithful embedding?

Low dimensional manifolds arise in many areas of information processing.

(Seung & Lee, 2000)

(Stopfer et al, 2003)

Dimensionality reduction

- Inputs (high dimensional) $\vec{X}_i \in \Re^D$ with i = 1, 2, ..., N
- Outputs (low dimensional) $\vec{Y}_i \in \mathfrak{R}^d$ where d < D
- Embedding

Nearby points remain nearby. Distant points remain distant. (Estimate *d*.)

Subspaces

Linear methods

 Principal component analysis
 Project inputs into subspace of maximal variance:

$$\max(\operatorname{tr}[Y^T Y]) \text{ with } Y = PX$$

 Multidimensional scaling Project inputs into subspace that preserves pairwise distances:

$$\left|\vec{Y}_{i} - \vec{Y}_{j}\right|^{2} \approx \left|\vec{X}_{i} - \vec{X}_{j}\right|^{2}$$

Matrices of PCA and MDS

Correlation matrix: $C^{\alpha\beta} \sim \operatorname{E}[X^{\alpha}X^{\beta}]$ **Gram matrix:** $G_{ij} = \vec{X}_i \cdot \vec{X}_j$

These matrices have the same rank and nonzero eigenvalues.

Dimensionality reduction

Eigenvectors

eigs(C) = linear projections of PCA
eigs(G) = projected outputs of MDS

Eigenvalues

Always nonnegative. Gaps indicate latent dimensionality.

> **Different intuitions, but equivalent results.**

Properties of PCA and MDS

- Strengths
 - -Eigenvector methods
 - -Non-iterative
 - -No local optima
 - -No "free" parameters
- Weakness

PCA and MDS are linear methods.

Subspaces vs Manifolds

Linear methods are limited.

Questions

 Are there eigenvector methods for nonlinear dimensionality reduction?

(Yes)ⁿ with $n \ge 8$

Equally simple as PCA and MDS?

Almost!

Recent Algorithms

In this talk

Locally linear embedding (LLE) Semidefinite embedding (SDE)

Related work by others

Isomap (Tenebaum, de Silva, & Langford) Laplacian eigenmaps (Belkin & Niyogi) Local tangent space alignment (Zhang & Zha) Hessian LLE (Donoho & Grimes) Charting (Brand)

Outline of talk

Thesis

LLE preserves local linearity relations. Constructs, diagonalizes a sparse matrix.

• Antithesis

SDE preserves local distances, angles. Constructs, diagonalizes a dense matrix.

Synthesis

Exploit symmetries of LLE to speed up SDE by several orders of magnitude.

Algorithm #1: LLE Locally Linear Embedding "Think globally, fit locally."

Local linearity

A manifold is locally linear, even if globally nonlinear.

How can we use this?

Locally Linear Embedding (LLE)

- Steps
 - 1. Nearest neighbor search.
 - 2. Least squares fits.
 - 3. Sparse eigenvalue problem.
- Properties
 - -Obtains highly nonlinear embeddings.
 - -Non-iterative, not prone to local minima.

Step 1. Identify neighbors.

- Examples of neighborhoods
 - -K nearest neighbors
 - –Neighbors within radius *r*
 - -Metric based on prior knowledge
- Assumptions
 - Data is sampled from a manifold.
 - -Manifold is well sampled.

Nearest neighbor graph

Assumptions:

- Graph is connected.
- Neighborhoods on the graph correspond to neighborhoods on the manifold.

Step 2. Compute weights.

 Characterize local geometry of each neighborhood by weights W_{ii}.

 Compute weights by reconstructing each input (linearly) from neighbors.

Linear reconstructions

Local linearity

Neighbors lie on locally linear patches of a low dimensional manifold.

Reconstruction errors

Least squared errors should be small:

$$\Phi(W) = \sum_{i} \left| \vec{X}_{i} - \sum_{j} W_{ij} \vec{X}_{j} \right|^{2}$$

Least squares fits

- Choose weights to minimize errors: $\Phi(W) = \sum_{i} \left| \vec{X}_{i} - \sum_{j} W_{ij} \vec{X}_{j} \right|^{2}$
- Constraints:

Nonzero W_{ij} only for neighbors. Weights must sum to one: $\sum W_{ij} = 1$

Symmetry

• Cost per input

$$\Phi_i(W) = \left| \vec{X}_i - \sum_j W_{ij} \vec{X}_j \right|^2$$

Local invariance

Optimal weights W_{ij} are invariant to rotations, translations, and dilations.

Local linearity

Each neighborhood map looks like a translation, rotation, and dilation.

Local geometry

These transformations do not affect the weights W_{ii}: they remain valid.

Step 3. Compute the embedding.

- **Embedding** Map inputs to outputs: $\vec{X}_i \in \Re^D$ to $\vec{Y}_i \in \Re^d$
- Minimize reconstruction errors.
 Optimize outputs Y_i for fixed weights W_{ii}:

$$\Psi(Y) = \sum_{i} \left| \vec{Y}_{i} - \sum_{j} W_{ij} \vec{Y}_{j} \right|^{2}$$

Constraints

Center outputs on origin: $\sum \vec{Y}_i = \vec{0}$. Impose unit covariance matrix: $\frac{1}{N} \sum \vec{Y}_i \vec{Y}_i^T = I_d$.

Sparse eigenvalue problem

Quadratic form

 $\Psi(Y) = \sum_{ij} \Psi_{ij} \begin{pmatrix} \vec{Y}_i & \vec{Y}_j \end{pmatrix} \text{ with } \Psi = (I - W)^T (I - W)$

Rayleigh-Ritz theorem

Optimal embedding given by bottom d+1 eigenvectors.

Solution

Discard bottom eigenvector [1 1 ... 1]. Other eigenvectors satisfy constraints.

Summary of LLE

- Three steps
 - **1. Compute K nearest neighbors.**
 - 2. Compute weights W_{ii}.
 - 3. Compute outputs Y_i.
- Optimizations

$$\Phi(W) = \sum_{i} \left| \vec{X}_{i} - \sum_{j} W_{ij} \vec{X}_{j} \right|^{2}$$

$$\Psi(Y) = \sum_{i} \left| \vec{Y}_{i} - \sum_{j} W_{ij} \vec{Y}_{j} \right|^{2}$$

Summary of LLE

- Three steps:
 - **1.** k-nearest neighbors of inputs X_i.
 - 2. Least squares fits for weights W_{ij}.
 - 3. Sparse eigensystem for outputs Y_i.
- Local symmetries:
 - translation
 - rotation
 - dilation

"Think globally, fit locally."

Algorithm #2: SDE Semidefinite Embedding "Maximum variance unfolding."

Motivation

What class of mappings:

- –Includes rotations and translations as a special case?
- -Unravels manifolds into subsets of Euclidean space?

Isometry

Intuitively

Whatever you can do to a sheet of paper without holes, tears, or self-intersections.

Isometry (con't)

Informally

A smooth, invertible mapping that preserves distances and looks *locally* like a rotation plus translation.

• Formally

Two Riemannian manifolds are isometric if there is a diffeomorphism that pulls back the metric on one to the other.

Data on manifolds

From the continuous to the discrete: Isometry is defined between manifolds. Can we extend the relation to data sets?

Discretely sampled manifolds

 Neighborhood graph
 Connect each point to its k nearest neighbors.

Locally isometric

Consider an embedding *Y* of *X* locally isometric if:

$$\left(\vec{Y}_i - \vec{Y}_j\right) \quad \left(\vec{Y}_i - \vec{Y}_k\right) = \left(\vec{X}_i - \vec{X}_j\right) \quad \left(\vec{X}_i - \vec{X}_k\right)$$

for all \vec{X}_i with neighbors \vec{X}_j and \vec{X}_k .

Dot product constraints

Gram matrices

$$G_{ij} = \vec{X}_i \quad \vec{X}_j \quad \text{(inputs)}$$
$$K_{ij} = \vec{Y}_i \quad \vec{Y}_j \quad \text{(outputs)}$$

Locally isometric

Consider an embedding *Y* of *X* locally isometric if:

$$K_{ii} - K_{ij} - K_{ik} + K_{jk} = G_{ii} - G_{ij} - G_{ik} + G_{jk}$$

for all \vec{X}_i with neighbors \vec{X}_j and \vec{X}_k .

Manifold learning

• Input

Vectors \vec{X}_i and Gram matrix $G_{ij} = \vec{X}_i \cdot \vec{X}_j$; latter determines former up to rotation.

Problem

Given $G_{ij} = \vec{X}_i \cdot \vec{X}_j$, how to construct $K_{ij} = \vec{Y}_i \cdot \vec{Y}_j$ such that *Y* "unfolds" the manifold of *X*?

Algorithm

What to optimize? What to constrain?

Constraints on *K*_{*ij*}

Centered

Constrain outputs to have zero mean:

$$\sum_{i} \vec{Y}_{i} = \vec{0} \text{ implies } \left| \sum_{i} \vec{Y}_{i} \right|^{2} = \sum_{ij} \vec{Y}_{i} \quad \vec{Y}_{j} = \left| \sum_{ij} K_{ij} = 0 \right|$$

 Locally isometric
 Preserve local angles and distances:

$$K_{ii} - K_{ij} - K_{ik} + K_{jk} = G_{ii} - G_{ij} - G_{ik} + G_{jk}$$

Constraints (con't)

• Semidefinite Eigenvalues of *K* must be nonnegative.

Semidefinite and linear constraints are convex.

O(Nk²) constraints O(N²) variables

Unfolding a manifold

What function of the Gram matrix is being optimized below?

Optimization

Pull points apart

Maximize sum of pairwise distances, same as var(Y) or trace(K):

$$\frac{1}{2N} \sum_{ij} \left| \vec{Y}_i - \vec{Y}_j \right|^2 = \sum_i \left| \vec{Y}_i \right|^2 = \sum_i K_{ii}$$

(Similar intuition as PCA.)

Boundedness

Follows from triangle inequality and connectedness of neighborhood graph.

Semidefinite programming

Convex optimization

Solution

Feasible region is convex. Never empty (includes *G*). Objective is linear and bounded. Efficient algorithms exist.

Caveat

Generic solvers scale poorly.

Steps of SDE

1) K nearest neighbors

Compute nearest neighbors, distances and angles.

2) Semidefinite programming

Maximize trace of centered, locally isometric Gram matrices.

3) Matrix diagonalization

Top eigenvectors give embedding. Estimate *d* from eigenvalues.

Experimental Results

"maximum variance unfolding"

(Sun, Boyd, Xiao, & Diaconis)

Swiss Roll

Trefoil knot

$$N = 539$$
$$k = 4$$

Teapot (half rotation)

Images ordered by one dimensional embedding

$$N = 200$$

 $k = 4$
 $D = 23028$

Teapot (full rotation)

Images of faces

Handwritten digits

Eigenvalues

(normalized by trace)

Evaluating SDE

- Pros
 - -Eigenvalues reveal dimensionality.
 - -Constraints ensure local isometry.
 - -Algorithm tolerates small data sets.
- Cons
 - -Computation intensive.
 - -Currently limited to $N \leq 2000$, $k \leq 6$.

LLE vs SDE

- Sparse vs dense
 - LLE constructs a sparse matrix. SDE constructs a dense matrix.
- Bottom vs top

LLE computes bottom eigenvectors. SDE computes top eigenvectors.

Estimating the dimensionality
 LLE eigenvalues do not reveal *d*.
 SDE eigenvalues do reveal *d*.

Algorithm #3: *(*SDE landmark SDE (a happy marriage of LLE & SDE)

$$N = 10000$$

 $k = 4$

Matrix factorization

• Why is SDE slow?

Algorithm learns NxN matrix $K_{ij} = Y_i \bullet Y_j$. Solving SDPs is superlinear in N.

• Approximate $K \approx QLQ^T$

Q is Nxn matrix (given). L is nxn matrix, with n << N (learned).

Reformulation $K \approx QLQ^T$

• Old SDP over NxN matrix K

Maximize trace(K) subject to:

K ≥ 0.
 Σ_{ij}K_{ij} = 0.
 For all (i, j) such that η_{ij}=1, K_{ii} - 2K_{ij} + K_{jj} = ||x_i - x_j||².

• New SDP over *nxn* matrix L

Maximize trace(QLQ^T) subject to:

- **1)** $L \succeq 0$.
- **2)** $\Sigma_{ij}(QLQ^T)_{ij} = 0.$
- 3) For all (i, j) such that $\eta_{ij} = 1$, $(QLQ^T)_{ii} 2(QLQ^T)_{ij} + (QLQ^T)_{jj} \le ||\vec{x}_i \vec{x}_j||^2$.

Sketch of idea

Choose landmarks:

 $\left\{\vec{\mu}_{\alpha}\right\}_{\alpha=1}^{n}$ where $n \ll N$

Reconstruct inputs:

$$\vec{x}_i \approx \hat{x}_i = \sum_{\alpha} Q_{i\alpha} \vec{\mu}_{\alpha}$$

Unfold inputs:

$$\vec{y}_i \approx \hat{y}_i = \sum_{\alpha} Q_{i\alpha} \vec{\ell}_{\alpha}$$

Matrix factorization

$$\vec{y}_i \cdot \vec{y}_j \approx QLQ^T$$
 with $L_{\alpha\beta} = \vec{\ell}_{\alpha} \cdot \vec{\ell}_{\beta}$

Reconstructing from landmarks

• Error function

$$\Phi(W,X) = \sum_{i} \left| \vec{X}_{i} - \sum_{j} W_{ij} \vec{X}_{j} \right|^{2}$$

Optimizations

Compute weights W_{ij} as in LLE. Clamp landmarks; reconstruct inputs.

$$\hat{x}_i = \min_{x \notin \mu} \left[\Phi(W, X) \right] = \sum_{\alpha} Q_{i\alpha} \vec{\mu}_{\alpha}$$

Reconstruct by solving a sparse system of linear equations.

Reconstructing from landmarks

Input reconstructions

N=2000 n=4 n=8

n=32

n=16

Output reconstructions

LLE weights are invariant to unfolding. Same matrix reconstructs outputs!

$$\hat{x}_{i} = \min_{\mathbf{x} \notin \mu} \left[\Phi(W, X) \right] = \sum_{\alpha} Q_{i\alpha} \vec{\mu}_{\alpha}$$
$$\hat{y}_{i} = \min_{\mathbf{y} \notin \ell} \left[\Phi(W, Y) \right] = \sum_{\alpha} Q_{i\alpha} \vec{\ell}_{\alpha}$$

Steps of *l*SDE

As in LLE:

- (1) Compute nearest neighbors.
- (2) Compute LLE weights W.
- (3) Choose landmarks.
- (4) Compute landmark weights Q.

As in SDE:

- (5) Solve SDP to unfold landmarks.
- (6) Compute top eigenvectors.
- (7) Construct outputs from landmarks.

Experimental results

How much faster?

Speedup

Related work

- Other algorithms: Isomap, Laplacian eigenmaps, local tangent space alignment, hessian LLE, charting
- Common framework:
 - 1) Compute nearest neighbors.
 - 2) Construct an N x N matrix.
 - 3) Compute eigenvectors.

"Local" vs "global" methods

- Local methods (LLE, LTSA, ...)
 Construct sparse matrix.
 Compute bottom eigenvectors.
 Scale (relatively) well.
- Global methods (Isomap, SDE)

Construct dense matrix. Compute top eigenvectors. Eigenvalues reveal dimensionality.

Landmark methods

Asomap

Distances to landmarks are used to "triangulate" non-landmarks.

• *C*SDE

Landmark locations are propagated through sparse weighted graph.

Analogous to recent work in semisupervised learning.

(Belkin, Matveeva, & Niyogi; Smola & Kondor; Zhu, Ghahramani, & Lafferty)

Conclusion

- Big ideas
 - Manifolds are everywhere.
 - -Graph-based methods can learn them.
- Ongoing work
 - -Scaling up to larger data sets
 - -Theoretical guarantees
 - -Alternative topologies
 - -Extrapolation and functional maps