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Given high dimensional data sampled
from a low dimensional manifold,
how to compute a faithful embedding?

Statistics, Geometry, Computation



Applications
Low dimensional manifolds arise in
many areas of information processing.

(Seung & Lee, 2000) (Stopfer et al, 2003) 



Dimensionality reduction
• Inputs (high dimensional)

• Outputs (low dimensional)

• Embedding
Nearby points remain nearby.
Distant points remain distant.
(Estimate d.)
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Y i Œ ¬d  where d < D



Subspaces
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D = 2
d =1
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D = 3
d = 2



Linear methods
• Principal component analysis

Project inputs into subspace of
maximal variance:

• Multidimensional scaling
Project inputs into subspace that
preserves pairwise distances:
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Matrices of PCA and MDS

Correlation matrix: Cab ~ E[XaXb]
     Gram matrix: Gij = Xi • Xj

These matrices have the same rank
and nonzero eigenvalues.



Dimensionality reduction
• Eigenvectors

eigs(C) = linear projections of PCA
eigs(G) = projected outputs of MDS

• Eigenvalues
Always nonnegative.
Gaps indicate latent dimensionality.

Different intuitions,
but equivalent results.



Properties of PCA and MDS
• Strengths

– Eigenvector methods
– Non-iterative
– No local optima
– No “free” parameters

• Weakness
PCA and MDS are linear methods.



Subspaces vs Manifolds

Linear methods are limited.



Questions
• Are there eigenvector methods for

nonlinear dimensionality reduction?

(Yes)n with n ≥ 8
• Equally simple as PCA and MDS?

Almost!



Recent Algorithms
• In this talk

Locally linear embedding (LLE)
Semidefinite embedding (SDE)

• Related work by others
Isomap (Tenebaum , de Silva, & Langford)

Laplacian eigenmaps (Belkin & Niyogi)

Local tangent space alignment (Zhang & Zha)

Hessian LLE (Donoho & Grimes)

Charting (Brand)



Outline of talk
• Thesis

LLE preserves local linearity relations.
Constructs, diagonalizes a sparse matrix.

• Antithesis
SDE preserves local distances, angles.
Constructs, diagonalizes a dense matrix.

• Synthesis
Exploit symmetries of LLE to speed up
SDE by several orders of magnitude.



Algorithm #1: LLE
Locally Linear Embedding
“Think globally, fit locally.”



Local linearity

A manifold is
locally linear,
even if globally
nonlinear.

How can we
use this?



Locally Linear Embedding (LLE)
• Steps

1. Nearest neighbor search.
2. Least squares fits.
3. Sparse eigenvalue problem.

• Properties
– Obtains highly nonlinear embeddings.
– Non-iterative, not prone to local minima.



Step 1. Identify neighbors.
• Examples of neighborhoods

– K nearest neighbors
– Neighbors within radius r
– Metric based on prior knowledge

• Assumptions
– Data is sampled from a manifold.
– Manifold is well sampled.



Nearest neighbor graph
Assumptions:
• Graph is

connected.
• Neighborhoods

on the graph
correspond to
neighborhoods
on the manifold.



Step 2. Compute weights.
• Characterize local geometry of each

neighborhood by weights Wij.

• Compute weights by reconstructing
each input (linearly) from neighbors.



Linear reconstructions
• Local linearity

Neighbors lie on locally linear patches
of a low dimensional manifold.

• Reconstruction errors
Least squared errors should be small:
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Least squares fits
• Choose weights to minimize errors:

• Constraints:
Nonzero Wij only for neighbors.
Weights must sum to one:

  

† 

F(W ) =
r 
X i - Wij

r 
X j

j
Â

i
Â

2

† 

Wij =1
j

Â



Symmetry
• Cost per input

• Local invariance
 Optimal weights Wij are invariant to

rotations, translations, and dilations.
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Manifolds

• Local linearity
Each neighborhood map looks like a
translation, rotation, and dilation.

• Local geometry
These transformations do not affect the
weights Wij: they remain valid.



Step 3. Compute the embedding.
• Embedding

Map inputs to outputs:

• Minimize reconstruction errors.
Optimize outputs Yi for fixed weights Wij:

• Constraints
Center outputs on origin:
Impose unit covariance matrix: 
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Sparse eigenvalue problem
• Quadratic form

• Rayleigh-Ritz theorem
Optimal embedding given by bottom
d+1 eigenvectors.

• Solution
Discard bottom eigenvector [1 1 … 1].
Other eigenvectors satisfy constraints.
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Summary of LLE
• Three steps

1. Compute K nearest neighbors.
2. Compute weights Wij.
3. Compute outputs Yi.

• Optimizations
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Surfaces
N=1000
inputs

K=8
neighbors

D=3
d=2



Pose and
expression

N=1965
images

K=12
neighbors

D=560
pixels

d=2
(shown)



Lips
N=15960
images

K=24
neighbors

D=65664
pixels

d=2
(shown)



Summary of LLE
• Three steps:

1. k-nearest neighbors of inputs Xi.
2. Least squares fits for weights Wij.
3. Sparse eigensystem for outputs Yi.

• Local symmetries:
    - translation
    - rotation
    - dilation

“Think globally, fit locally.”



Algorithm #2: SDE
Semidefinite Embedding

“Maximum variance unfolding.”



Motivation
What class of mappings:

– Includes rotations and translations
as a special case?

– Unravels manifolds into subsets of
Euclidean space?



Isometry
• Intuitively

Whatever you can do to a sheet of
paper without holes, tears, or self-
intersections.



Isometry (con’t)
• Informally

A smooth, invertible mapping that
preserves distances and looks locally
like a rotation plus translation.

• Formally
Two Riemannian manifolds are isometric
if there is a diffeomorphism that pulls
back the metric on one to the other.



Data on manifolds
From the continuous to the discrete:
Isometry is defined between manifolds.
Can we extend the relation to data sets?



Discretely sampled manifolds
• Neighborhood graph

Connect each point to
its k nearest neighbors.

• Locally isometric
Consider an embedding Y of X
locally isometric if:

for all Xi  with neighbors Xj and Xk.
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Dot product constraints
• Gram matrices

• Locally isometric
Consider an embedding Y of X
locally isometric if:

for all Xi  with neighbors Xj and Xk.
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Manifold learning
• Input

Vectors Xi and Gram matrix Gij = Xi•Xj;
latter determines former up to rotation.

• Problem
Given Gij = Xi•Xj, how to construct Kij = Yi•Yj

such that Y “unfolds” the manifold of X?
• Algorithm

What to optimize?
What to constrain?



Constraints on Kij
• Centered

Constrain outputs to have zero mean:

• Locally isometric
Preserve local angles
and distances:
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Constraints (con’t)
• Semidefinite

Eigenvalues of K must be nonnegative.

Semidefinite
and linear
constraints
are convex.

K0

K1

† 

lK0 + (1- l)K1

with l Œ [0,1] O(Nk2) constraints
  O(N2) variables



Unfolding a manifold

Before
 Gij = Xi•Xj 

After
Kij =Yi•Yj

What function of the Gram matrix is
being optimized below?



Optimization
• Pull points apart

Maximize sum of pairwise distances,
same as var(Y) or trace(K):

(Similar intuition as PCA.)
• Boundedness

Follows from triangle inequality and
connectedness of neighborhood graph.
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Semidefinite programming

† 

 (i) K ≥ 0,
(ii) Kij

ij
Â = 0,

† 

(iii) for all neighborhoods (ijk),
           Kii -Kij -Kik + K jk

             = Gii -Gij -Gik + G jk

            

Maximize trace(K) subject to:



Convex optimization
• Solution

Feasible region is convex.
Never empty (includes G).
Objective is linear and bounded.
Efficient algorithms exist.

• Caveat
Generic solvers
scale poorly.



Steps of SDE
1) K nearest neighbors

Compute nearest neighbors,
distances and angles.

2) Semidefinite programming
Maximize trace of centered, locally
isometric Gram matrices.

3) Matrix diagonalization
Top eigenvectors give embedding.
Estimate d from eigenvalues.



Experimental Results

“maximum variance unfolding”
(Sun, Boyd, Xiao, & Diaconis)



Swiss Roll

† 

N = 800
k = 6



Trefoil knot

† 

N = 539
k = 4



Teapot (half rotation)

Images ordered by
one dimensional

embedding
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N = 200
k = 4
D = 23028 



Teapot (full rotation)

† 

N = 400
k = 4
D = 23028



Images of faces
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N =1000
k = 4
D = 560



Handwritten digits

† 

N = 638
k = 4
D = 256



Eigenvalues

(normalized by trace)



Evaluating SDE
• Pros

– Eigenvalues reveal dimensionality.
– Constraints ensure local isometry.
– Algorithm tolerates small data sets.

• Cons
– Computation intensive.
– Currently limited to N ≤ 2000, k ≤ 6.



LLE vs SDE
• Sparse vs dense

LLE constructs a sparse matrix.
SDE constructs a dense matrix.

• Bottom vs top
LLE computes bottom eigenvectors.
SDE computes top eigenvectors.

• Estimating the dimensionality
LLE eigenvalues do not reveal d.
SDE eigenvalues do reveal d.



Algorithm #3: lSDE
landmark SDE

 (a happy marriage of LLE & SDE)

† 

N =10000
k = 4



Matrix factorization
• Why is SDE slow?

Algorithm learns NxN matrix Kij = Yi•Yj.
Solving SDPs is superlinear in N.

• Approximate K ≈ QLQT

Q is Nxn matrix (given).
L is nxn matrix, with n<<N (learned).



Reformulation K ≈ QLQT

• Old SDP over NxN matrix K

• New SDP over nxn matrix L



Sketch of idea
• Choose landmarks:

• Reconstruct inputs:

• Unfold inputs:

• Matrix factorization
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Reconstructing from landmarks
• Error function

• Optimizations
Compute weights Wij as in LLE.
Clamp landmarks; reconstruct inputs.

Reconstruct by solving a sparse
system of linear equations.
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Reconstructing from landmarks
• Input reconstructions

• Output reconstructions
LLE weights are invariant to unfolding.
Same matrix reconstructs outputs!

N=2000       n=4           n=8          n=16         n=32
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Steps of lSDE
As in LLE:
(1) Compute nearest neighbors.
(2) Compute LLE weights W.
(3) Choose landmarks.
(4) Compute landmark weights Q.
As in SDE:
(5) Solve SDP to unfold landmarks.
(6) Compute top eigenvectors.
(7) Construct outputs from landmarks.



Experimental results



How much faster?



Related work
• Other algorithms:

Isomap, Laplacian eigenmaps,
local tangent space alignment,
hessian LLE, charting

• Common framework:
1) Compute nearest neighbors.
2) Construct an N x N matrix.
3) Compute eigenvectors.



“Local” vs “global” methods
• Local methods (LLE, LTSA, …)

Construct sparse matrix.
Compute bottom eigenvectors.
Scale (relatively) well.

• Global methods (Isomap, SDE)
Construct dense matrix.
Compute top eigenvectors.
Eigenvalues reveal dimensionality.



Landmark methods
• lIsomap

Distances to landmarks are used to
“triangulate” non-landmarks.

• lSDE
Landmark locations are propagated
through sparse weighted graph.
Analogous to recent work in semi-
supervised learning.
(Belkin, Matveeva, & Niyogi; Smola & Kondor; Zhu, Ghahramani, & Lafferty)



Conclusion
• Big ideas

– Manifolds are everywhere.
– Graph-based methods can learn them.

• Ongoing work
– Scaling up to larger data sets
– Theoretical guarantees
– Alternative topologies
– Extrapolation and functional maps


