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‘Why sound? - Motivation

Humans use several perceptual senses!
So why rely on vision alone for Datamining?

Humans have excellent listening skills!
High-developed Pattern Recognition Capabilities
High Spectral and Temporal/Rhythmical Resolution
Parallel Processing of several information streams
Multiple information layers: e.g. speech:
Backgrounding, sound is able to draw/guide Attention
Source Separation, Operation in noisy contexts
Provides qualitative Information (opposed to Quantity)

a
a
a
a
a
a
a
o Auditory Gestalt Formation <> Auditory Learning
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‘ Applications for Sonification

Extension/Replacement for visual display
Multi-modal User Interfaces :

Coordination of actions and human activity|

Process Monitoring [g@
i .

Exploratory Data Analysis
=> to discover the unexpected
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Sonification Techniques

e 4
Audification: (Examples: EEG: & Helicopter-Flights: g &4 )

)
- # onc ¢
Data
base | ™ —" — -
It
Resampling

Data-Table Digital Filter

o Limited to large datasets
o Time ordering required
o Variations in data required
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‘ Sontification Techniques (cont.)

Parameter Mapping: (Examples: EEG: i Traffic: )

_—
Data
base | ™

Data-Table

o Limited number of acoustic parameters
o Different saliency of parameters, and nonlinearity
o Curse of complex specification

o Missing connection of modalities

o Every Mapping is a Unique design
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How do we hear?

Sound is “by-product” of
physical (dynamic) system

is optimized to perform

.nverse mapping“

Data-world: Data are static feature vectors

Example: Describe what you hear!

2004-10-26 IPAM-MGA Workshop

Listening Modes

Sound/Noise :f

/
Musical Listening Everyday Listening

Focus: Structure Pitch Focus: Source |dentification
Rhythm  Brilliance adequate reaction

<—>( Analytical Everyday Listeningj

Focus: Source Properties
Insight on Process
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Model-based Sontfication

Model-coupling between data and media

m .
Excitation f )
(C@ - /
s )
Sound = Optimized for
Physical Everyday Sounds
Process. Souhd =+ Event

Sonification Model

. Mod/el“gw ,'\R TEQTS) @>
Sualin =

Interaction
Excitation

Dynamics | Data—Material
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Sontfication Model Construction

{} Link Variables

Acoustical active

DOF

Mode ) \ Elements
FR
Xcitation

Physical
Laws Data-Material
— — hammer
Initial Conditions Listener = j shake
Equilibrium i K .
Location, Orientation
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Sontfication Models

Data Sonograms

Particle Trajectory Sonification Model
Principal Curve Sonification

McMC Sonification (with M. Hansen)
Data Solids

Local Heat Exploration Model
Growing Neural Gas Sonification
Data Crystallization Sonification
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Data Sonograms

Setup:

Point Masses in Data Space
Dynamics: Newton’s laws
o Spring Forces

o Wave Propagation

5 [@ class 1
78 |0 lass2

Excitation: \Shock wavé.center und Listener Position
Shock Wave (pressure wave) Physical
. . Properties
Link-Variables: Spring Stiffness
Mass

Point mass elongations Cinn e

Listener: binaural Friction constant

o Orientation: PCA#1
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Data Sonogram Examples

T T
Cancer dataset - color=benign

Sound Examples:
Breast Cancer Diagnosis
o N=700,d=10
= Distances in hd spaces

Principal Axis #1

) Iris Dataset
N T B o N=150,d=5,
L I T Gousen] 3 sorts of plants
. . _- ] &4 = Class separation
E Y "L P LI
R 1" M .
H H;rj. e ¥ Clustered Data in R®
e il o ] = Spatial relations
2 lgf" : & g:c‘.:
= epatiangn | N Cars d
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Particle Trajectory Soniﬁcz;t/in

Model for Cluster Analysis
Setup: Particles in Data Potential A\

V(x):{éwx—xlu) o) =-New (~1) @® @

o

Dynamics: Newton's Law + damping
mx(t) = =V, V(x) — vx(t)

Excitation:

o Particle Injection

o Energy Injection (shake, hammer)

Link-Variable: kinetic particle energy ey
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Particle Sonifications (cont.)

Typical Particle behavior: 44 4 4

5

Parameters:
o Mass 0s
o Bandwidth o o

o Friction constant  **

4

EE)
s 4 05 0 05 1 15

Represents V in multiple resolutions in time
chaotic - timbral - pure harmonic - sinusoid
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Particle Trajectory Sonification

Holistic multiscale encoding
of properties of V(x)
Single particles
- not very informative
Particle Ensembles
summarize properties .
o Example: 1ddor 34 clusters
o-sweeps:

- Multiscale Analysis
- ,Auditory Gestalt"

frequency

frequency
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‘ MBS-Discussion

+ Separation of Design/Use

+ Generality

+ Model facilitates Interpretation

+ Built-in Interaction Concepts

+ Fewer & more intuitive Control Parameters
+ Supports Task-Oriented Design

% New Perspective on
Acoustic Data Representation

- High computational complexity
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| Growing Neural Gas Networks

Conceptually between Vector Quantization and SOM
Local Method: Neuron Weight Vectors as Prototypes
Flexible Topology (compared to SOM or Principal Manifolds)

a) Delaunay triangulation

b) induced Delaunay triangulation
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GNG Algorithm N e GNG Properties

New edge Age++ Topology Preserving
data point x Incremental Memory \ |~
Draw a data point x from the underlying distribution. Segmentation of Clusters
Find the nearest and second nearest neurons iy, i,. Map Magnification \ ke
Increment the age of all edges emanating from neuron iy. (Fovea Effect) )
Update Ry « Ry + klel_Xﬂ

Connectivity <> 1D
Pure Online Learning

Update neuron i, and its topological neighbors p by

Wiy = E\X =Wy ), W, :Sn?x'wngI
Create edge j between neuron i, and i,, if it does not already exist.
Setits age A/=0.
Remove old edges (A > a,,,,). Remove “edgeless” neurons.
Every L steps:

Insert new neuron g between the neuron g, = arg max; R; and its
topological neighbor neuron g, with the largest error. Handle edges.

Update R,-aR,, R,-aR,andset R =R,
Decrease errors Rj= a R;with o < 1.
goto 1 (until a stopping criterion is fulfilled).

it

56 7
‘Subspace dimension q
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Sontification of GNGs GNG Neuron Sontification

Model for Exploration/Comparison of local intrinsic

data dimensionality A!IOWS Task-Qrientec! Desi.gn
) Simplest choice: spring stiffness < #edges
- E Implicit dimensionality display
—- @ — - )) o Single Neuron sound conveys
local dimensionality properties of the network
Energy Flow Integer #edges - harmonics, periodic waveforms
Setup: GNG-computed neuron objects o
as acoustic entities Excitations:
Dynamics: Atomic acoustics & energy flow Browsing: Excite single Neurons
Excitation: all sorts, e.g. hammering, shaking Growth Process: Reprelsentation at changing
Listener: not localized w.r.t. the model complexity
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Acoustic Energy Propagation GNGS-Probing/Examples
dE, Gaussian Distributions of Rank d >+ 4% 4*
— = 9E®) — D alEi() — Ej(1) e 2
Jely(i) o9 3 i g4
Energy spreads into . 4 ‘5: 4
topological neighborhood 5 ga g‘;
6
Dynamics induces T
Timbre evolution 0 s Y i ‘ 7 s 44 g4

(typical in real instruments) S R T R
High Sensitivity on
local characteristics

Temporal evolution
=> Multiscale analysis

Mixture of 2d/5d distributions

Energy Loss Series:
0.99(edge, center) 4‘.! 4"‘ 0.95(center) !1". 0.90(edge) q"‘

Energy Flow Series
0.01(e) €f%0.1(e) 4 0.2(e) €4 0.5(e) &4 0.5(c)f4
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GNGS-Probing/Examples (cont.)

1IN o
-TF 1T T

@T wedb) 2

MNIST digits

2" more complex than “1" 1o
GNGS Examples
6000 H :
Logh g ds @ eofif
2000 1
2: 4 & 4 g L

8000 3

o lEE
012345678 9101112131415161718192021222324
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GNG - Growth Process Sonification

Noisy Spiral in R?
- reconfiguration of topology
Multiscale Analysis of Data
o Detect Overfitting
o Evaluate stability of structure

o Find adequate model
complexity

For comparison:
Growth in a 5D Gaussian: 4
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Sontfication as Multiscale Display

Browsing:
o Sound Evolution evolves
from local info - global summary

o Listening is particularly suited to follow changes
Growth Process:

o Model-Complexity scales with network size

o Model evolves from under- to overfitting
Interaction:

o Analogous (e.g. squeezable) interfaces allow
intuitive control of scale/resolution parameters.
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Data Crystallization Sonification

Model for exploring high-dimensional data

L] Excitation
- Data -~ = @ @tz
points \/;/.!«1 o | ™[ acoustic properties
Data |— %/..j ° —m | ofthe data crystal | g >>
@J‘n/}/ time-variant
o 21
& Caetn

Setup: Data atoms at vector positons X IR

Dynamics: Data point inclusion into crystal set according to a

growth inclusion law. E.g.distance dependent inclusion using

linear mapping t = map(|[x-x.||, [0, max; [|x;-x.|[], [0,T])

Initial State: Empty Crystal Set

Interaction: Trigger condensation nucleus in 2d-scatter plot

Listener: non-localized w.r.t. model setup - monaural sound
28

Data Crystal Acoustic Properties

Growth changes o,y = 1o 3" (x-xt) (x—x)'
Modes (Timbre) L@l &t
Data Inclusion is dE
——=—E i6(t —ti

exothermic process  dt v ;g o=t
Modal Synthesis for d .
Sound Computation *(*) = 2 a:()E() s‘%Jr 2
Timbre Vector ' Harmonics
determined by ai(t) = %p wy=fkt(Size)
Spectrum of C,

Timbre Evolution determined by Growth Process

Matches Human Listening Skills
29

DCS - Examples

Gaussian Cluster
DCS Cenler;i Tail ¢ edge.

Mixture of 2 Gaussians
Incr. Edecay: 4 4 4 4
Incr. Time: & 4 4

Mixture of 2d/4d/8d-cluster chain

Starting in
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| Crystallization Son. - Discussion

ioln,

: e
Timbre changes PR
. . Vet
with C,, over Time |

mplitud

ampitude

i ]
u 7000 5000
froquency [Hz]

Resolution/Scope: From Local to Global
=> Multiscale Structure Display

Transient Structure - Timbre Gestalt

Generic Approach (principled...)

o Intuitive control parameters

Open for task-specific optimizations
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| Controlling the Complexity Level

Complexity as ,scale of resolution”
implementable in a Sonification Model
Interaction is possible via

o Control Parameters (e.g. Squeezing force)
o Growth Processes

Proposition: Interactively adjust complexity in
a closed human-computer interaction loop.
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| Ongoing research

Multi-modal interfaces to high-dim. Data

Tangible Computing with Sonification
Application to challenging domains (EEG, etc.)
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| Conclusion

New Framework Model-Based Sonification

Many Sonification models give examples
o Physical motivated control parameters

o Models ground the semantics of sound

o Models offer integrated interaction concepts

o Generic approach - Learnability

Neural Networks provide suitable task-
oriented mediating representations for
interaction and navigation
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'The End

Thank you for your interest!

Questions?
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