
MultiresolutionMultiresolution Proximity Proximity
Maintenance for Moving ObjectsMaintenance for Moving Objects

Including a Quick Introduction to
Kinetic Data Structures

Jie Gao, Leonidas J. Guibas, An Nguyen
Computer Science
Stanford University

Proximity Information in Physical Proximity Information in Physical
SimulationsSimulations

Most forces in nature are
short range: neighbor lists
in MD

Collision, or self-collision
detection

objects interact when they are near ...

Challenges in Proximity MaintenanceChallenges in Proximity Maintenance

Proximity information can change rapidly
Each object can potentially come near every
other object (O(n2) interactions)
We seek a proximity data structure that at
the same time

is relatively stable under motion
is output-sensitive
quickly delivers the required (distance, collision,
etc.) information

Some Questions ...Some Questions ...

I’m a statistician and only care about data analysis; why
do I have to hear about simulations?

Proximity maintenance is also important for observed motions,
using sensors --- particularly in a distributed setting
Even more so when you have to take actions quickly, based on
proximity information

I only care about multiresolution analysis and proximity
has to do with just small distances; where are the other
scales?

Sometimes, to solve a problem, one has to enlarge it first ...
3-D is trivial; why should I pay attention when I only care
about data in high dimensional spaces?

Because you make care about data in spaces that don’t even have
coordinates, like certain metric spaces

Traditional: Hashed Traditional: Hashed VoxelVoxel GridsGrids

Partition space into a (possibly hierarchical)
voxel grid and apportion the objects into cells
of that grid

Use a hash table, since many cells will be empty
To find the neighbors of a given object, search
nearby cells

Requires re-apportioning all the objects into
cells after each simulation time step

Bad when system is moving but not deforming
much

Efficiency highly dependent on voxel grid size
chosen

Traditional: Bounding Volume Traditional: Bounding Volume
HierarchiesHierarchies

Bounding volume hierarchies (BVH),
using spheres, bounding boxes, etc.,
have been successfully used for
collision checking of rigid objects
Rigid bounding volume hierarchies
are good for rigid objects, but

Use a fair amount of space
Collision checking requires a hierarchy
traversal
Hierarchy must be updated when
deformation occurs

A Small Detour:A Small Detour:
Kinetic Data StructuresKinetic Data Structures

Kinetic Data Structures (KDS) are used to track geometric attributes
in a system of moving or deforming geometric objects in space. A
KDS maintains an assertion cache that facilitates or trivializes the
computation of the attribute.

A KDS for an attribute of interest is an easily repairable set
of elementary relations (the certificates of the assertion
cache) that allows an easy (re-)computation of the attribute
of interest
At each certificate failure, the KDS procedure repairs the
assertion set and updates the attribute value
At all times, the certificates mathematically prove the validity
of the attribute computation

Motion ModelsMotion Models

The certificate failures must be either detected or
predicted. Prediction is possible if the objects
follow known motion laws.
Between certificate failures the fundamental
structure of the attribute of interest cannot change.
An event queue of future certificate failures can be
used when short term motion prediction is
possible.
However, at any moment, the motion law of an
object may change. Then the failure times of all
certificates involving that object must be updated.

Convex Hull of Four PointsConvex Hull of Four Points

Failure Times and the Event QueueFailure Times and the Event Queue

Processing an EventProcessing an Event

The Eternal KDS LoopThe Eternal KDS Loop

A Kinetic CH AnimationA Kinetic CH Animation

Choosing Which Relations to TrackChoosing Which Relations to Track

We need to choose sets of elementary relations to track that:

vary smoothly and stably as the objects move
always make the computation of the attribute of
interest fast

A Faustian trade-off: The more we
know about the world, the easier it
will be to repair the attribute
certification. But the more assertions
about the world we maintain, the
more certificate failures we will
have to process.

Drum hab ich mich der Magie ergeben,
Ob mir durch Geistes Kraft und Mund
Nicht manch Geheimnis würde kund;
Daß ich nicht mehr mit saurem Schweiß
Zu sagen brauche, was ich nicht weiß;
Daß ich erkenne, was die Welt
Im Innersten zusammenhält,
Schau alle Wirkenskraft und Samen,
Und tu nicht mehr in Worten kramen.

KDS Quality MeasuresKDS Quality Measures

KDSs have a number of associated quality measures:

Responsiveness: at each certificate failure, the
repair cost for the certificate set and the attribute
computation is small
Efficiency: the worst-case number of events to be
processed, over a reasonable class of motions, is
comparable to the number of combinatorial
changes in the attribute of interest
Compactness: the size of the certificate set
maintained is small
Locality: motion plan updates are inexpensive

The Interface Between KDS and The Interface Between KDS and
MotionMotion

In the classical KDS setting, objects move according to posted flight
plans with “closed-form” motion descriptions (e.g., polynomial
trajectories).

Certificates are typically elementary algebraic relations; thus the
KDS itself can calculate the certificate failure times and insert those
into an event queue.

This limits the applicability of the KDS framework, because

In physical simulations elements are moved by an ODE or
PDE integrator – there are no explicit motion plans
In real-world settings certificate failures have to be sensed by
sensors – there are no motion plans at all ...

KDSsKDSs in Physical Simulationin Physical Simulation

Solving differential-algebraic inequalities is hard
But, we can control the integrator time-step size (and therefore element
displacements)
Key geometric problem:

We need to deal with
multiple certificate failures
no knowledge of what transpired between system snapshots

Example: a deformable spanner

Find ways to efficiently repair geometric structures
after small motions of their defining elements

Some Some SomberingSombering DelaunayDelaunay Thoughts Thoughts
......

Small motions can cause large
combinatorial changes
A small number of certificate
failures may require a high
repair cost
Canonical structures not
desirable ...

Geometric SpannersGeometric Spanners

An -spanner is a sparse subgraph G’ of a graph G such that the
shortest path distance in G’ is at most times that of G.

Geometry setting: Approximate all distances between points.

To come: a kinetic (1+ ε)-spanner with O(n) edges total, O(log n)
edges per node.

spanning ratio (G,G’)

= poly(n).longest pairwise distance
shortest pairwise distance

aspect ratio (G) =

Proximity Queries Using a Proximity Queries Using a
SpannerSpanner

To find all neighbors of a node u within
Euclidean distance d, just run a breadth-
first search from u up to distance d.

u

Replace a continuous geometric
search by a more efficient graph
search.

Spanner ConstructionSpanner Construction

Discrete centers with radius r: A sample of the nodes s.t.
Every node is covered by at least one center;
No two centers are covered by each other.

The spanner: a graph G built by
1. Constructing a hierarchy of discrete centers and

taking parent-child edges.
Level i has radius 2i.

2. Adding all edges with length c 2i within each
level.

c = 4+16/ε.

Theorem: Graph G is a (1+ε)-spanner.

11stst Level CentersLevel Centers

r

ParentParent--Child RelationshipsChild Relationships

22ndnd Level CentersLevel Centers

33rdrd Level CentersLevel Centers

22ndnd Level Spanner EdgesLevel Spanner Edges

Parent ChainParent Chain

• All parent-child edges are in G.
• A node p is connected to its ancestor at level i by the

parent chain whose total length is 2i+1.

p

Spanner TheoremSpanner Theorem

G is a (1+ε)-spanner, where ε = 16/(c-4).

Level i

 2i

p q

 2i

 2i

 2i
> c · 2i-1

pi-1
qi-1

pi qi

Level i-1

Level 0

|pq| > (c - 4) 2i-1

path(p,q) |piqi| + 4 · 2i

 |pq| + 8 · 2i

< (1+ε) |pq|

Spanner QualitySpanner Quality

The hierarchy has log = O(log n) levels.
Linear size: O(n) edges;
Small degree: max degree O(log n) per node.

Maintenance Under Node MotionMaintenance Under Node Motion

1. Maintain parent-child edges (the discrete centers hierarchy).
a) Node promotion. b) Node demotion.

2. Maintain within level spanner edges.
c) Edge deletion. d) Edge insertion.

Only distance certificates
get used

Maintenance Under Node MotionMaintenance Under Node Motion

1. Maintain parent-child edges.
a) Node promotion. b) Node demotion.

2. Maintain within level spanner edges.
c) Edge deletion. d) Edge insertion.

Maintenance Under Node MotionMaintenance Under Node Motion

1. Maintain parent-child edges.
a) Node promotion. b) Node demotion.

2. Maintain within level spanner edges.
c) Edge deletion. d) Edge insertion.

Maintenance Under Node MotionMaintenance Under Node Motion

1. Maintain parent-child edges.
a) Node promotion. b) Node demotion.

2. Maintain within level spanner edges.
c) Edge deletion. d) Edge insertion.

Maintenance Under Node MotionMaintenance Under Node Motion

1. Maintain parent-child edges.
a) Node promotion. b) Node demotion.

2. Maintain within level spanner edges.
c) Edge deletion. d) Edge insertion.

Maintenance Under Node MotionMaintenance Under Node Motion

1. Maintain parent-child edges.
a) Node promotion. b) Node demotion.

2. Maintain within level spanner edges.
c) Edge deletion. d) Edge insertion.

Maintenance Under Node MotionMaintenance Under Node Motion

1. Maintain parent-child edges.
a) Node promotion. b) Node demotion.

2. Maintain within level spanner edges.
c) Edge deletion. d) Edge insertion.

Maintenance Under Node MotionMaintenance Under Node Motion

1. Maintain parent-child edges.
a) Node promotion. b) Node demotion.

2. Maintain within level spanner edges.
c) Edge deletion. d) Edge insertion.

This is the difficult case – each node
can have only a few neighbors; losing
is easy to know about, but gaining
neighbors is hard.

Maintenance Under Node MotionMaintenance Under Node Motion

1. Maintain parent-child edges.
a) Node promotion. b) Node demotion.

2. Maintain within level spanner edges.
c) Edge deletion. d) Edge insertion. Sufficient to consider only

“cousin” pairs.

Multiresolution to the rescue!

Flexibility and StabilityFlexibility and Stability

Dynamic environment
Node insertion and deletion: O(log n) time (Do you know about
skip lists?)
Initial construction: O(n log n) time.

Stability under motion
The spanner can be provably repaired, as long as no node at
level i moves more than (c - 4) 2i-1 in each time step.
In the worst-case, any α-spanner changes (n2/α2) times under
certain smooth algebraic motions.
This spanner changes O(n2 log n) times.

Spanners for Physical ObjectsSpanners for Physical Objects

Molecular dynamics: Add a sparse
set of shortcuts, sufficient to
guarantee the spanning property
for a protein backbone.

A protein example with α = 33HVT

Spanner Performance under Spanner Performance under
Motion:Motion:

Practice Practice –– Molecular DynamicsMolecular Dynamics
Each frame corresponds to a
hundred actual MD steps (Tinker
data)
Only 2-4% of spanner edges
change between frames
Spanner is quite stable, except for
bottom-level edges (high frequency
atomic vibrations)

green = edge birth, red = edge death, gray = steady state

Nodes Edges Time
frames

Ave.
promotions

Ave.
demotions

Ave. add
edge/

Ave. drop
edge

Clone0 50 159-214 249 .22 .23 5.42 5.24

R7C27 110 376-506 33 .38 .59 17.7 13.7

Distributed Spanner ImplementationDistributed Spanner Implementation

Each node maintain its O(log n) spanner edges by
communicating only with its spanner neighbors.

Load balancing.
Low communication cost.

The first truly distributed Kinetic Data Structure (dKDS)

Additional Spanner GoodiesAdditional Spanner Goodies

1. Neighbor lists within distance r.
2. (1+ε)-approximate nearest neighbor query.
3. Well-separated pair decomposition.
4. Geometric k-center.

Neighbor Lists

Output all pairs within distance
r.

Walk on the spanner until
the distance to A is (1+ ε)r.
Running time: O(n + k), k is
the size of the output.

Approximate Nearest NeighborsApproximate Nearest Neighbors

Given any point p, return a node q s.t. |pq|
(1+)|pq*|, where q* is the nearest neighbor of p.

Insert p into the spanner, take its shortest edge.
Running time: O(log n).

r
(1+ε) r

p

q

q*

WellWell--Separated Pair Separated Pair
DecompositionDecomposition

Take every non-connected cousin pair
Provides an N-body style approximation

but affixed to the
points, not to the
ambient space.

Geometric Geometric kk--CentersCenters

Select a set K S, assign each node of S to its nearest
neighbor in K, so that the maximum radius is minimized.
Take the lowest level i such that the number of discrete
centers is less than k.
Ri is 8-approximate k-center.

5-center

Higher DimensionsHigher Dimensions

In Ed, all the foregoing still works, but the
storage and the query/update times now
have a factor of 1/ d

It still works in general metric spaces of
bounded doubling dimension (so we can
build spanners on collections of shapes,
images, etc. – a poor man’s manifold
learning for sparse data ...)

Spanner SummarySpanner Summary

“One-stop shopping” data structure for all
proximity information

Lightweight and combinatorial
Stable under motion
Load-balanced
Distributed
Scalable
Provides hierarchical clustering

“Tutto cambia perchè nulla cambi”
T. di Lampedusa, Il Gattopardo (1860+)

Kinetic Data Structure ProblemsKinetic Data Structure Problems
Are FunAre Fun

On-line problems –
deal with unknown
future data
Learn only what you
need to answer the
questions that you
have to
Proofs as active
objects

KDS Application TaxonomyKDS Application Taxonomy

Efficient KDSs have been developed for a variety of
geometric problems:

Extent Problems: convex hull, diameter, width for moving
points
Proximity Problems: closest pair, Voronoi/Delaunay
diagrams
Communication Problems: MST for geometric and general
graphs, connectivity of moving rectangles and unit disks
Visibility: BSPs and visibility orders
Tilings and Triangulations: pseudo-triangulations and
triangulations for moving points and polygons
Collision Detection: for rigid and deformable objects

	Multiresolution Proximity Maintenance for Moving Objects
	Proximity Information in Physical Simulations
	Challenges in Proximity Maintenance
	Some Questions ...
	Traditional: Hashed Voxel Grids
	Traditional: Bounding Volume Hierarchies
	A Small Detour:Kinetic Data Structures
	Motion Models
	Convex Hull of Four Points
	Failure Times and the Event Queue
	Processing an Event
	The Eternal KDS Loop
	A Kinetic CH Animation
	Choosing Which Relations to Track
	KDS Quality Measures
	The Interface Between KDS and Motion
	KDSs in Physical Simulation
	Some Sombering Delaunay Thoughts ...
	Proximity Queries Using a Spanner
	Spanners for Physical Objects
	Spanner Performance under Motion:Practice – Molecular Dynamics
	Distributed Spanner Implementation
	Additional Spanner Goodies
	Approximate Nearest Neighbors
	Well-Separated Pair Decomposition
	Geometric k-Centers
	Higher Dimensions
	Spanner Summary
	Kinetic Data Structure ProblemsAre Fun
	KDS Application Taxonomy

