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Recovery Problem

• Object f ∈ RN we wish to reconstruct: digital signal, image; dataset.

• Can take linear measurements

yk = 〈f, ψk〉, k = 1, 2, . . . ,K.

• How many measurements do we need to do recover f to within accuracy ε

‖f − f ]‖`2 ≤ ε

for typical objects f taken from some class f ∈ F ⊂ RN .

• Interested in practical reconstruction methods.
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Agenda

• Background: exact reconstruction of sparse signals

• Near-optimal reconstruction of compressible signals

• Uniform uncertainty principles

• Exact reconstruction principles

• Relationship with coding theory

• Numerical experiments



4

Sparse Signals

• Vector f ∈ RN ; digital signal, coefficients of a digital signal/image, etc.)

• |T | nonzero coordinates (|T | spikes)

T := {t, f(t) 6= 0}

• Do not know the locations of the spikes

• Do not know the amplitude of the spikes
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Recovery of Sparse Signals

• Sparse signal f : |T | spikes

• Available information

y = F f,

F is K by N with K << N

• Can we recover f from K measurements?
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Fourier Ensemble

• Random set Ω ⊂ {0, . . . , N − 1}, |Ω| = K.

• Random frequency measurements: observe (Ff)k = f̂(k)

f̂(k) =
N−1∑
t=0

f(t)e−i2πkt/N , k ∈ Ω
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Exact Recovery from Random Frequency Samples

• Available information: yk = f̂(k), Ω random and |Ω| = K.

• To recover f , simply solve

(P1) f ] = argming∈RN ‖g‖`1 , subject to Fg = Ff.

where

‖g‖`1 :=
N−1∑
t=0

|g(t)|.

Theorem 1 (C., Romberg, Tao) Suppose

|K| ≥ α · |T | · logN.

Then the reconstruction is exact with prob. greater than 1 − O(N−αρ) for
some fixed ρ > 0: f ] = f . (N.b. ρ ≈ 1/29 works).
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Exact Recovery from Gaussian Measurements

• Gaussian random matrix

F (k, t) = Xk,t, Xk,t i.i.d. N(0, 1)

• This will be called the Gaussian ensemble

Solve

(P1) f ] = argming∈RN ‖g‖`1 subject to Fg = Ff.

Theorem 2 (C., Tao) Suppose

|K| ≥ α · |T | · logN.

Then the reconstruction is exact with prob. greater than 1 − O(N−αρ) for
some fixed ρ > 0: f ] = f .
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Gaussian Random Measurements

yk = 〈f,X〉, Xt i.i.d. N(0, 1)
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Equivalence

• Combinatorial optimization problem

(P0) min
g

‖g‖`0 := #{t, g(t) 6= 0}, F g = Ff

• Convex optimization problem (LP)

(P1) min
g

‖g‖`1 , F g = Ff

• Equivalence:

For K � |T | logN , the solutions to (P0) and (P1) are unique and are the
same!
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About the `1-norm

• Minimum `1-norm reconstruction in widespread use

• Santosa and Symes (1986) proposed this rule to reconstruct spike trains
from incomplete data

• Connected with Total-Variation approaches, e.g. Rudin, Osher, Fatemi
(1992)

• More recently, `1-minimization, Basis Pursuit, has been proposed as a
convex alternative to the combinatorial norm `0. Chen, Donoho Saunders
(1996)

• Relationships with uncertainty principles: Donoho & Huo (01), Gribonval &
Nielsen (03), Tropp (03) and (04), Donoho & Elad (03)
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min `1 as LP

min ‖x‖`1 subject to Ax = b

• Reformulated as an LP (at least since the 50’s).

• Split x into x = x+ − x−

min 1Tx+ + 1Tx− subject to


(
A −A

) x+

x−

 = b

x+ ≥ 0, x− ≥ 0
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Reconstruction of Spike Trains from Fourier Samples

• Gilbert et al. (04)

• Santosa & Symes (86)

• Dobson & Santosa (96)

• Bresler & Feng (96)

• Vetterli et. al. (03)
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Why Does This Work? Geometric Viewpoint

Suppose f ∈ R2, f = (0, 1).

y= F f

f ! = f

f !

f
y= F f

Exact Miss
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Higher Dimensions
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Duality in Linear/Convex Programming

• f unique solution ’if and only’ if dual is feasible

• Dual is feasible if there is P ∈ RN

– P is in the rowspace of F

– P is a subgradient of ‖f‖`1

P ∈ ∂‖f‖`1 ⇔

P (t) = sgn(f(t)), t ∈ T

|P (t)| < 1, t ∈ T c
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Interpretation: Dual Feasibility with Freq. Samples

t

P(t) P(!)

!

^

Space Frequency
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Numerical Results

• Signal length N = 256

• Randomly place |T | spikes, observe K| Gaussian coefficients

• Measure % recovered perfectly

• White = always recovered, black = never recovered
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Numerical Results

• Signal length N = 1024

• Randomly place |T | spikes, observe K random frequencies

• Measure % recovered perfectly

• white = always recovered, black = never recovered
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Reconstruction of Piecewise Polynomials, I

• Randomly select a few jump discontinuities

• Randomly select cubic polynomial in between jumps

• Observe about 500 random coefficients

• Minimize `1 norm of wavelet coefficients
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Reconstruction of Piecewise Polynomials,II

• Randomly select 8 jump discontinuities

• Randomly select cubic polynomial in between jumps

• Observe about 200 Fourier coefficients at random
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Reconstruction of Piecewise Polynomials, III

0 500 1000 1500 2000 2500
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

t

S
(t

)

Exact Reconstruction of a random piecewise cubic polynomial from 60 Fourier samples

Original signal
Reconstructed signal

0 500 1000 1500 2000 2500
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

t

S
(t

)

Exact Reconstruction of a random piecewise cubic polynomial from 60 Fourier samples

Original signal
Reconstructed signal

Reconstructed signal Reconstructed signal

About 200 Fourier coefficients only!



23

Minimum TV Reconstruction
Many extensions:

min
g

‖g‖T V s.t. ĝ(ω) = f̂(ω), ω ∈ Ω

Naive Reconstruction
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Other Phantoms
Classical Reconstruction
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Compressible Signals
• In real life, signals are not sparse but most of them are compressible

• Compressible signals: rearrange the entries in decreasing order
|f |2(1) ≥ |f |2(2) ≥ . . . ≥ |f |2(N)

Fp(C) = {f : |f |(n) ≤ Cn−1/p, ∀n}

• This is what makes transform coders work (sparse coding)
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Compressible Signals I: Wavelets in 1D
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Compressible Signals II: Wavelets in 2D
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Compressible Signals II: Curvelets
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Examples of Compressible Signals

• Smooth signals. Continuous-time object has s bounded derivatives, then
nth largest entry of the wavelet or Fourier coefficient sequence

|f |(n) ≤

C · n−s−1/2 1 dimension

C · n−s/d−1/2 d dimension

• Signals with bounded variations. In 2 dimensions, the BV norm of a
continuous time object is approximately

‖f‖BV ≈ ‖∇f‖L1

In the wavelet domain

|θ(f)|(n) ≤ C · n−1.

• Many other examples: e.g. Gabor atoms and certain classes of oscillatory
signals, curvelets and images with edges, etc.
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Nonlinear Approximation of Compressible Signals

• f ∈ Fp(C), |f |(n) ≤ C · n−1/p

• Keep K-largest entries in f → fK

‖f − fK‖ ≤ C ·K−r, r = 1/p− 1/2.

• E.g. p = 1, ‖f − fK‖ ≤ C ·K−1/2.

Recovery of Compressible Signals

• How many measurements to recover f to within precision ε = K−r.

• Intuition: at least K, probably many more.
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Where Are the Largest Coefficients?
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Near Optimal Recovery of Compressible Signals

• Select K Gaussian random vectors (Xk), k = 1, . . . ,K

Xk ∼ N(0, IN)

• Observe yk = 〈f,Xk〉

• Reconstruct by solving (P1); minimize the `1-norm subject to constraints.

Theorem 3 (C., Tao) Suppose that f ∈ Fp(C) for 0 < p ≤ 1 or ‖f‖`1 for
p = 1. Then with overwhelming probability,

‖f# − f‖2 = C · (K/ logN)−r.

See also Donoho (2004)
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Big Surprise

Want to know an object up to an error ε; e.g. an object whose wavelet
coefficients are sparse.

• Strategy 1: Oracle tells exactly (or you collect all N wavelet coefficients)
which K coefficients are large and measure those

‖f − fK‖ � ε

• Strategy 2: Collect K logN random coefficients and reconstruct using `1.

Surprising claim

• Same performance but with only K logN coefficients!

• Performance is achieved by solving an LP.
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Optimality

• Can you do with fewer than K logN for accuracy K−r?

• Simple answer: NO (at least in the range K << N )
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Optimality: Example

f ∈ B1 := {f, ‖f‖`1 ≤ 1}

• Entropy numbers: for a given set F ⊂ RN , we N(F , r) is the smallest
number of Euclidean balls of radius r which cover F

ek = inf{r > 0 : N(F , r) ≤ 2k−1}.

Interpretation in coding theory: to encode a signal from F to within
precision ek, one would need at least k bits.

• Entropy estimates (Schütt (1984), Kühn (2001))

ek �
(

log(N/k + 1)

k

)1/2

, logN ≤ k ≤ N.

To encode an object f in the `1-ball to within precision 1/
√
K one would

need to spend at least O(K log(N/K)) bits. For K � Nβ, β < 1,
O(K logN) bits.
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Gelfand n-width (Optimality)

• k measurements Ff ; this sets the constraint that f live on an affine space
f0 + S where S is a linear subspace of co-dimension less or equal to k.

• The data available for the problem cannot distinguish any object belonging
to that plane. For our problem, the data cannot distinguish between any
two points in the intersection B1 ∩ f0 + S. Therefore, any reconstruction
procedure f∗(y) based upon y = FΩf would obey

sup
f∈F

‖f − f∗‖ ≥
diam(B1 ∩ S)

2
.

• The Gelfand numbers of a set F are defined as

ck = inf
S

{sup
f∈F

‖f|S‖ : codim(S) < k},
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Gelfand Width



38

Gelfand and entropy numbers (Optimality)

• Gelfand numbers dominate the entropy numbers (Carl, 1981)(
logN/k

k

)1/2

� ek / ck

• Therefore, for error 1/k

k logN/k / #meas.

• Similar argument for Fp
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Something Special about Gaussian Measurements?

• Works with the other measurement ensembles

• Binary ensemble: F (k, t) = ±1 with prob. 1/2

‖f ] − f‖2 = C · (K/ logN)−r.

• Fourier ensemble:

‖f ] − f‖2 = C · (K/ log3N)−r.
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Axiomatization I: Uniform Uncertainty Principle (UUP)

A measurement matrix F obeys the UUP with oversampling factor λ if for all
subsets T such that

|T | ≤ α ·K/λ,

the matrix FT obtained by extracting T columns obeys the bounds

1

2
·K/N ≤ λmin(F ∗

TFT ) ≤ λmax(F ∗
TFT ) ≤

3

2
·K/N

This must be true w.p. at least 1 − O(N−ρ/α)
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UUP: Interpretation

W. Heisenberg

• Suppose F is the randomly sampled DFT, Ω
set of random frequencies.

• Signal f with support T obeying

|T | ≤ αK/λ

• UUP says that with overwhelming probability

‖f̂|Ω‖ ≤
√

3K/2N‖f‖

• No concentration is possible unless K � N

• “Uniform” because must hold for all such T ’s
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Axiomatization II: Exact Reconstruction Principle
(ERP)

A measurement matrix F obeys the ERP with oversampling factor λ if for each
fixed subset T

|T | ≤ α ·K/λ,

and each ‘sign’ vector σ defined on T , |σ(t)| = 1, there exists P ∈ RN s.t.

(i) P is in the row space of F

(ii) P (t) = σ(t), for all t ∈ T ;

(iii) and |P (t)| ≤ 1
2

for all t ∈ T c

Interpretation: Gives exact reconstruction for sparse signals
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Near-optimal Recovery Theorem [C., Tao]

• Measurement ensemble obeys UUP with oversampling factor λ1

• Measurement ensemble obeys ERP with oversampling factor λ2

• Object f ∈ Fp(C).

‖f − f ]‖ ≤ C · (K/λ)−r, λ = max(λ1, λ2).
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UUP for the Gaussian Ensemble

• F (k, t) = Xk,t/
√
N

• Singular values of random Gaussian matrices

(1 −
√
c) ·

√
K

N
/ σmin(FT ) ≤ σmax(FT ) / (1 +

√
c) ·

√
K

N

with overwhelming probability (exceeding 1 − e−βK).

Reference, S. J. Szarek, Condition numbers of random matrices, J.
Complexity (1991),

See also Ledoux (2001), Johnstone (2002), El-Karoui (2004)

• Marchenko-Pastur law: c = |T |/K.

• Union bound give result for all T provided

|T | ≤ γ ·K/(logN/K).
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ERP for the Gaussian Ensemble

P = F ∗FT (F ∗
TFT )−1sgn(f) := F ∗V.

• P is in the row space of F

• P agrees with sgn(f) on T

P|T = F ∗
TFT (F ∗

TFT )−1sgn(f) = sgn(f)

• On the complement of T : P|T c = F ∗
T cV .

P (t)
1

√
N

K∑
k=1

Xk,tVk.

• By independence of F ∗
T c and V , conditional distribution

L(P (t)|V ) ∼ N(0, ‖V ‖2/N)
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• With overwhelming probability (UUP)

‖V ‖ ≤ ‖FT (F ∗
TFT )−1‖ · ‖sgn(f)‖ ≤

√
6N/K ·

√
|T |

so that

L(P (t)|V ) ∼ N(0, σ2). σ2 ≤ 6|T |/K

• In conlusion: for t ∈ T c

P (P (t) > 1/2) ≤ e−βK/|T |.

• ERP holds if

|K| ≥ α · |T | · logN.
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Universal Codes

Want to compress sparse signals

• Encoder. To encode a discrete signal f , the encoder simply calculates the
coefficients yk = 〈f,Xk〉 and quantizes the vector y.

• Decoder. The decoder then receives the quantized values and
reconstructs a signal by solving the linear program (P1).

Conjecture Asymptotically nearly achieves the information theoretic limit.
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Information Theoretic Limit: Example

• Want to encode the unit-`1 ball: f ∈ RN :
∑

t |f(t)| ≤ 1.

• Want to achieve distortion D

‖f − f ]‖2 ≤ D

• How many bits? Lower bounded by entropy of the unit-`1 ball:

# bits ≥ C ·D · (log(N/D) + 1)

• Same as number of measured coefficients
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Robustness

• Say with K coefficients

‖f − f ]‖2 � 1/K

• Say we loose half of the bits (packet loss). How bad is the reconstruction?

‖f − f ]
50%‖2 � 2/K

• Democratic!
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Reconstruction from 100 Random Coefficients
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Reconstruction from Random Coefficients
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Reconstruction from Random Coefficients (Method II)

0 200 400 600 800 1000 1200
−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2
Reconstruction of "Cusp" from 150 random coefficients

Original signal
Reconstructed signal



53

Summary

• Possible to reconstruct a compressible signal from a few measurements
only

• Need to randomize measurements

• Need to solve an LP

• This strategy is nearly optimal

• Many applications


