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Problem Statement
Given

an elliptic PDE kernel, e.g.
points in
charges

Evaluate potential

Direct evaluation: 
Barnes-Hut algorithm:
Fast Multipole Method (FMM):

Greengard and Rokhlin (JCP, 1987)

G

ui =
PN
j=1G(xi,xj)φj, i= 1, . . . ,N

{xi}
{φi}

O(N2)
O(N logN)
O(N)

Rd (d = 2, 3)

G(x, x0) = 1
|x−x0|



Contribution
New kernel-independent FMM

Use only kernel evaluations
Extend FMM to general kernels
Efficiency and accurate

MPI based parallel implementation
Scale up to 3000 processors
1.6 Tflops peak / 1.13Tflops sustained performance 
on 2.1 billion unknowns

3D high-order BIE solver
Laplace and Stokes equation
Smooth boundary



Applications
Electrostatics

Gravitation

Fluid dynamics

Molecular dynamics

…



Outline
Classical FMM

New algorithm

Parallel algorithm

Boundary integral equation solver



Idea of Classical FMM
Direct evaluation FMM, 2-level

Barnes-Hut

FMM, one-level
Well separated

2 efficient representation
3 efficient translation



Domain Partitioning
Quadtree / Octree

Leaf box contains at most s charges

For each box B, define
Near range
Far range
Interaction list

Near range Far range

B

Interaction list

B and its far range are well separated



Efficient Representations
Multipole expansion (ME)

Local expansion (LE)
{φj} at {zj} : |zj − zC| > R, for |z − zC | < r

u(z) ≈
pX

k=0

ck(z − zC)k

c0 =
mX
j=1

φj log(zC − zj) cl =
mX
j=1

−φj
l · (zj − zC)l

.

{φj} at {zj} : |zj − zC| < r, for |z − zC| > R

u(z) ≈ a0 log(z − zC)+
pX

k=1

ak
(z − zC)k

a0 =
mX
j=1

φj ak =
mX
j=1

−φi(zi− zC)k
k

.

m is a constant Both expansions are efficient



Efficient Translations
M2M: multipole to multipole

From child to parent box

M2L:  multipole to local
From B’s interaction list to B

L2L:   local to local
From parent to child box

All translations are efficient



Algorithm
1. Compute multipole expansion (ME) for each box 

If leaf box, compute from exact sources in that box
If non-leaf box, compute from its children’s ME using M2M

2. Compute local expansion (LE) for each box 
Use M2L to translate the ME of the boxes in the interaction list 
and add to the LE of the current box
Use L2L to translate the LE of the parent box and add to the 
LE of the current box

3. For each box, compute potential at each of its point 
by combining

Contribution from LE of this box
Potential from points in near range of this box

Invariance: LE represents the potential from far field accurately 



Kernel Dependency
Expansions and translations depend on underlying PDE

3D implementation only available for Laplace and Helmholtz 

10 years to get efficient implementation for Laplace kernel

FMM can be extremely difficult for kernels look like this:
D(x,y) = A ((r · n)I+ n⊗ r)+B(r⊗n)+C(r·n)(r⊗r)

A = −frrr
r
−(d−3)frr

r2
+(d−3)fr

r3
B = −p+2frr

r2
−2fr
r3

C = 2
frrr

r3
−6frr

r4
+6

fr

r5

f =

 1
2πλ2

(ln(1r)− k0(λr)) (2D)
1
4πλ2

(1r − 1re−λr) (3D)
p=

 1
2π
1
r2

(2D)
1
4π
1
r4

(3D) 
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Previous Work
FMM without multipole

Anderson ’92
Not fully kernel independent

FFT-based methods
Phillips, White ’97, pre-corrected FFT
Bruno, Kunyansky ’01, improved version

Wavelet-based methods
BCR ’91 and Alpert et al. ’93



Idea of New Algorithm

An electrostatic example
Represent sources with equivalent densities on the circle
Match check potential on the boundary of the far field

Extend this idea to FMM
Multipole expansion—upwards equivalent density
Local expansion—downs equivalent density 
M2M, M2L and L2L translation—linear solution for the 
matching process



Efficient Representations
Upwards equivalent density

Downwards equivalent density

Z
yB,u

G(x,y)φB,udy =
X
i∈IBs

G(x, yi)φi = uB,u

for any x ∈ xB,u.

Z
yB,d

G(x,y)φB,ddy=
X

i∈IFBs
G(x, yi)φi = uB,d

for any x ∈ xB,d.



Efficient Translations
M2M

From child to parent

M2L
From interaction list to box

L2L
From parent to child

Z
yB,u

G(x,y)φB,u(y) dy=
Z
yA,u

G(x,y)φA,u(y)dy

for all x ∈ xB,uZ
yB,d

G(x,y)φB,d(y) dy=
Z
yA,u

G(x,y)φA,u(y)dy

for all x ∈ xB,dZ
yB,d

G(x,y)φB,d(y) dy=
Z
yA,d

G(x,y)φA,d(y)dy

for all x ∈ xB,d



Discretization
3D case

Equivalent and check surfaces are cubes
Boundary points of Cartesian grid as discretization 
points

Discretized translations (M2M, M2L and L2L) are 
small matrices

Independent of the position of the box involved
Pre-compute and store them



Acceleration of M2L
2D

Store the SVD of the M2L matrix
3D

Pad interior Cartesian nodes with zeros
Kernel translation invariant
M2L translation = small 3D discrete convolution
Use 3D FFT to compute it



Eq. Density Approximation
2D

3D



3D Laplace Kernel



3D Navier Kernel
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Motivation
Real applications solve huge N-body problem

E.g. astrophysics, molecular dynamics
New algorithm can still be slow

Parallel linear solvers are available
E.g. PetSc
FMM (often serves as matvec) better be parallel as 
well

FMM algorithm can be nicely parallelized
Most operations are local
E.g. parent to child, box to its interaction list …



Two Problems
Octree can be huge

Needs to be generated and stored in a distributed 
way
Each processor keeps its Local Essential Tree (LET)
Most work is done on LET

Synchronization due to data dependence
Parent node’s ME depends on child node’s ME, but 
two nodes can reside in different processors
Use linearity to remove data dependence

All translations are linear operator



Tests setup
Laplace, Stokes, Navier and modified versions
Uniform and non-uniform distributions in box 

Software
C++, uses PETSC, FFTW

Hardware
TCS1 HP Alpha cluster at 
Pittsburgh supercomputing center

750 compute nodes
4 1GHz processors and 4GB memory per node
187GB/s quadrics interconnection network

[−1, 1]3

Results



Fixed Size Scalability
Laplace equation, 

uniform distribution
3.2 million points in total
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Isogranular Scalability
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Laplace equation, 
uniform distribution

0.2 million points per processor



3000 Processor Run
Stokes equation, uniform distribution

Summary
Fixed size tests, 80% efficiency up to 256 processors
Isogranular tests, good efficiency up to 3000 processors
1.6 Tflops peak / 1.13 Tflops sustained for 2.1 billion 
unknowns 
Tree construction bottleneck for 1024+ processors
Some load imbalance in non-uniform distribution
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3D BIE Solver
Properties

Uses second-kind integral formulation
Works for Laplace, Stokes equations
General smooth domain boundary
Based on Nyström discretization
High-order accurate
Efficient



Components
High-order accuracy high-order boundary 

representation
Manifold-based boundary representation method 
(ACM Transaction of Graphics 23(3), ’04)

Smooth (dense) part of the integral operator
Kernel independent FMM algorithm

Singular (diagonal) part of the integral operator
Use local partition of unity to isolate singularity
Local high-order integration in polar coordinates
Similar to (Bruno and Kunyansky ’01)



Summary
New kernel-independent FMM

Use only kernel evaluations
Extend FMM to general kernels
Efficiency and accurate

MPI based parallel implementation
Scale up to 3000 processors
1.6 Tflops peak / 1.13Tflops sustained performance 
on 2.1 billion unknowns

3D high-order BIE solver
Laplace and Stokes equation
Smooth boundary



Thank you
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