Moore's Law

Every 18 months, the speed of your com-
puter is doubled

Every 18 months, the memory on your com-
puter is doubled

At the same time, the cost of your com-
puter goes down - not quite exponentially,
because the box does not become much
cheaper!

A good number to look at

Cost of CPU time

Cost of human time

Ri970 =

1970 is the year

Different CPUs, different humans, etc.
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Observation

Rqi945 >> 1000
R1i960 >> 100
Ri970 >> 10
Ri1980 ~ 1
Rop0op << 0.01

Unlike men, not all CPUs are created equal!
But then, most CPUs do not vote...

The thing is not slowing down, though even-
tually . . .

What should we be doing as applied math-
ematicians, numerical analysts, etc.?



consequences

Ticket reservations
Phone systems
Tactical bombing
Experimental science

Manufacturing



Missing from the list

Philosophy

T heater

Politics

Dealing with teen-age children
Mathematics

Numerical simulation of physical phenom-
ena (77711)



Structure of the Talk

Changing paradigm in the numerical use of
computers

Interaction of Moore's law with numerical
algorithms

Characteristics of a modern numerical al-
gorithm

Example: rapid evaluation of radiation fields

Pontification



Paradigm as of 1945

Critical mission (Manhattan project, for ex-
ample)

Willingness to expend human time on pro-
gramming (ouch!), debugging of the nu-
merical scheme, interpretation

Limited computer resources: only small-
scale problems can be solved

Extremely uncomfortable programming en-
vironment

Air of heroism and desperation

No difference between theoretical numeri-
cal analysts and practitioners

Numerical approaches appropriate to small-
scale problems

Numerical algorithms usually written from
scratch



Paradigm as of 1970

Mission not necessarily critical (oil explo-
ration, NACA airfoils, more involved air-
dynamics, civil and mechanical engineer-
ing, rocket fuel stoichiometry, . . .)

Willingness to expend human time on pro-
gramming (still pretty uncomfortable), in-
terpretation

Improved computer capabilities;: CPU time
still quite expensive, but the flop rate is
much higher; one can try running things at
night

The air much less heroic; most applications
in non-desperate environments

Numerical algorithms appropriate to small-
scale problems

Most numerical codes written from scratch
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Paradigm as of 2000

Mission usually not critical: computer games,
medical imaging, design of fishing rods,
Boeing-767's . . .

Limited willingness to expend human time
on programming (could be fun, though!),
interpretation. . . and most interpreters
are not named Teller, Ulam, or Fermi. . .

Very much improved computer capabilities;
CPU time dirt cheap, and flop rate is about
to become gigaflop rate

Air not heroic at all; lots of applications,
and most in non-desperate environments

Numerical algorithms appropriate to small-
scale problems

Most numerical codes written from scratch
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The Purpose of a Modern Numerical
Algorithm

e Produce engineering (physical, biochemi-
cal, etc.) results with a minimum expendi-
ture of human time

e CPU time is irrelevant as long as it is af-
fordable (1)

e Note to the algorithm designer: torpedoes
should not be aimed at the present location
of the ship!



Illustration: Algorithms with CPU time
estimates O(n3), O(n - log(n))

Linear vs. cubic cost
I I I

e TO a large extent, the choice of the algo-
rithm is determined by the power of one’s
computer (1)
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What do We Want from a
Numerical Algorithm?

Speed, in the asymptotic sense
Adaptivity
Robustness

Rapid convergence and controlled accuracy:
fallacy of the “engineering accuracy” argu-
ment; high cost of low precision

Surprise: adaptivity implies controlled con-
dition numbers; integral vs. differential
equations; fast algorithms

Related surprise: in order to be efficient
(or even simply useful), certain algorithms
have to be fairly complicated (think about
modern cars)
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Subject of This Talk

Talk is cheap - examples are needed

FMMs for the Helmholtz (Maxwell’'s) Equa-
tion in the “wideband’ environment - ex-
plain

Something of a misnomer - mea culpa!

Disclaimer: Boeing, HRL, Illinois,
MadMax...

A post-mortem for a project

Connections with Moore’'s law, etc.
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FMM for the Helmholtz
(Maxwell) Equation

Function: evaluate potentials, fields, etc.
of charge distributions. N2 vs. N or
N - log(N), or N - (log(N))2. . .

Does not provide discretizations, integral
formulations, iterative solvers, etc. (left to
the user as an exercise)

Indifferent to all of these issues - explain

In reality, consists of two procedures. One
is used on the subwavelength scale (or in
low-frequency environments), the other is
used in the high-frequency environment; tran-
sition is seamless
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Low-Frequency
(Subwavelength) Environment

- Similar to Laplace - explain

- Very simple “bare-bones” scheme, more in-
volved “modern” versions

- Fairly fast: (several times slower than the
Laplace FMM) for groups up to 4 X\ or so
(define the groups)

- Break-even points
- Behavior as groups increase

- Serious deterioration for groups greater than
5to8 A\

- Fairly simple implementations produce ac-
ceptable results
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High-Frequency Environment

- Not at all similar to the Laplace case:
cillatory behavior”

oS-

- Example with the Moon

- “At a fixed number of points per A\, the
rank of each submatrix is proportional to
its size” - not quite true, Michielssen coun-
terexample

- How bad is it?

- Let us see
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At the Bottom of the Scheme

DI
RPN

N Sources M Targets

Rl Qi— Py

V@)= Z UG~ Pl

Direct evaluation requires O(NNM) work
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At the Bottom of the Scheme II

Radius=R

b n
VQ)=V(ro,9)~ > > MgY"(0,¢)hn(kr),

n=0m=-—n

with multipole moments

N
My = > ;Y5 (05, 65)in(kr), Pj = (r5,6;,¢;)
j=1

In the low frequency regime, the error in the
multipole approximation decays like (R/|Q|)PT1.

For our simple example, R/|Q| < 1/2, so that
setting p = loga(2) yields a precision of e.
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At the Bottom III

DL
RPN

N Sources M Targets

Evaluate multipole coefficients M]* for n =
O,...,p

Evaluate expansion at target points Qj, for
7=1,.... M

Total operation count: p?2- (N+M) = (N+
M) -log?(1)

The schemes depend critically on p2 being
much smaller than N
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Hard Life at High Frequencies

DL
RPN

N Sources M Targets

b n
V(ir,0,0)~ >, > MY (0,¢)hn(kr)

n=0m=—n

- Coefficients M;* do not start decaying until
n > |k - R|, after which decay is extremely
rapid

- Condition p > |k-R|4+O(|k-R|}/3) is needed
if we are to have any accuracy at all
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Hard Life II

DI
RPN A

N Sources M Targets

p iS proportional to %

In BIE discretizations: fixed number of nodes
per \2

Thus, total number of elements in the ex-
pansion is of the same order as N

None of the O(N:log(N)) schemes (Barnes-
Hut, etc.) will work in this regime
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Hard Life III

L

Another way to put it: the rank approach
will not work because the ranks are high

Cooked goose, vicious gloating

The situation is a little better when vol-
ume distributions and volume integrals are
considered, but not enough - and there is
FFT-based competition

What about order N algorithms (FMMs)?
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Translation Operators (h — h)

e eap)
< — JI_ -d-¢g--=-9-
p n

Z Z M"Y, (0, 9)hn(kr) —

n=0m=—n
p n

= > > NPV, B)ha(kp)

n=0m=—n

- Cost: O(p*)
- O(p3) via “point and shoot” procedure

- Fatal in the BIE environment
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Translation Operators (h — 7)

p n

> >, MY, p)hn(kr) —

n=0m=—n

D n
— Z Z L:znngn(aaﬁ)jn(kp)

n=0m=—n

- No better than h — h

- Dominant type of translation in an FMM
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Translation Operators (57 — 7)

(r8.0) Q  (pop

- | -
______

P n

SO L0, ) dn(kr) —

n:O m=-—n
P n

= Y Y o™ (a,B) jn(kp)

n=0m=—n
- Same as h — h
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A Grim ODbservation

Ranks of translation operators in the high-
frequency Helmholtz (Maxwell's, etc.) en-
vironment are proportional to the sizes of
the groups in wavelengths (with subtle ex-
ceptions - Michielssen)

For surface distributions of charges, any
FMM that as much as creates translation
operators will be of order at least O(N?2) -
horror!

Translation operators in their “point and
shoot” form reduce best possible order to
O(N3/2) - not nearly good enough

Classical translation operators are of Ilit-
tle use in the construction of Helmholtz
FMMs, except at low frequencies
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What Is Needed

Bases in which translation operators are di-
agonal, or at least very sparse

Transitions between such bases must be
Very sparse

Transitions between the standard represen-
tations (partial wave expansions) and the
new bases must be very sparse

Alternatively, it should be possible to carry
out the whole procedure in the “dual’ bases

Where does one find such paragons?
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A Pleasant Observation

All translation operators on a given level
are diagonalized by the same unitary oper-
ator

All diagonal forms are available analytically

Transitions between bases (corresponding
to different levels) can be done in a “fast”
manner

The whole procedure is quite simple, as
long as it is understood in an appropriate
weak sense
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Radiation Potentials and T},

“+ o0 n
P(r,0,p)= > > MgY(0,6)hn(kr)

n——o00 Mm——"n

0 n
P(F0,8) = > > MPY(0,8)hn(kF)

n——o0 M——"mn

Sommerfeld condition:

lim P(r,0,0) -r-e “*" = F(0, $)

r—00
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Observation

The mapping
U:{M;"}t = F(0,¢)
diagonalizes the translation operator
Thp - {M}'} — {M}'}

On the diagonal

ei-k-a-cos(zp)
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Proof:

For large r,
(0, 3) ~ (0, ¢),
which means that the mapping
U_loThhoU . F - F
is diagonal. For large r,

r—r~a-cos(vy),

and

<U—1 o Ty, 0 U) 0, 0) = ei-k-a-cos(?,b)
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What Is U~?

For large r

ez-k-r

hm(kr) ~

T

(up to some powers of i), and

p n
Z Z M"Y, (8, o) hn(kr) ~

n=0m=—n

el'kr P n
T2 2. Mp'YR(0,9) = F(6, )

n=0m=—n

Y
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What Have We Achieved?

Ty 1S a spherical convolution; it is diag-
onalized by the spherical harmonic trans-
form; its diagonal form is a function living
on S2.

T}, is unitary; its diagonal is et"k-a-cos(¥)

Direct result of the Sommerfeld condition,
and has been known for a long time

And what about Tj; and Tj;?
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Diagonalizing T};

For large r

cos(k - 1)

gm(kr) ~

(up to some phase corrections), and

b n

Z Z M,,TY#(H, @) Jn(kr) ~
n=0m=-—n
cos(k - 1)

p n
o2 > MPY6,9) = F(9,¢)

n=0m=—n

- A Sommerfeld condition of sorts
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Diagonalizing T}, 11

D n
Z Z Mfrfrznyﬁ(eﬂo)jn(k"“) ~

n=0m=—n

cos(k-r) & n
v k) S MY, ¢)

k T ’I’I,:O m=—n

Makes no physical sense whatsoever

As p — oo, the limit usually does not even
exist!

First truncate, then take the limit; for this,
we will pay later

Diagonalized by the harmonic transform,
same as T);; the same et'kacos(¥) on the
diagonal

Purely formal expedient
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Corollary

Far-field signature of a unit charge is given by
the formula

F(8,9) = ei-k-a-cos(¢);

The potential at the point (a,0,¢p) of the J —
expansion With the far-field signature o is given
by the formula

P(a,6, o) = / 0_(5, 3) - o ik-arcos(¥) 4

52
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What about 73,7

(M} Th {(Nmy
T ]
Thh g T;;
(¥} Ty (N}

Operators Tyy, Tj; are diagonal in the far-

field representation, and Ty, = Tj;

Furthermore,

Tjj0Th; = Tphj0Thy

Inevitable consequences

Commutative diagrams, morality, etc.
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What Is On The Diagonal?

S (20 4 1) hn(k p) Pa(cos())

n=0
“Addition theorem”
Abramovitz and Stegun

Series above is divergent; truncation, ac-
curacy, dynamic range, etc.

Usual situation with convolutions with di-
vergent sequences

Analysis is a little detailed; results are sum-
marized below

Variations: beam-like translation operators,
etc.
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Summary

/////
____________

\
AY
——————< — — — — —
\
\

I I : I
I I \ I
T U I//
P e B <
I -

All translations within one level are diago-
nalized by the far-field signature

Far-field signatures of charge (dipole, what-
ever) distributions are given by simple for-
mulae, and fairly inexpensive to evaluate

Far-field signatures are smooth functions
on the sphere, and can be represented by
tables of their values - elaborate

Transitions between levels involve interpo-
lation and filtering of functions on the sphere.
Interpolation is easy; filtering has been taken
care of (Alpert-Jacob-Chien Algorithm, Dem-
bart and VR, etc.)
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“Low-Frequency Break-Down”
G
P

- Outgoing h-expansion behaves as jn(kr)

- Incoming j-expansion is a convolution of
the outgoing h-expansion with the original
(physical space) translation operator; the
latter behaves as hy(k p)

- The potential at a point within the tar-
get sphere (circle) is obtained as an inner
product of the incoming j-expansion with
a sequence behaving as jn(kr)
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“Low-Frequency Break-Down”
II

Behavior of Bessel Functions:

50
40 |
30
20| log1o( Ha(200.0)) —
10|
O L
-10 |
-20 | log10(J,(200.0))
-30| T2
_40 L
-50

0 50 100 150 200 250 300 350

NSRS

- When convolutions are done explicitly, the
procedure is numerically stable as long as
the spheres do not intersect (physics never
lies, even if it takes a conspiracy)
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“Low-Frequency Break-Down”
I11

e

- When convolutions are done via Fourier

Transforms (or via spherical transforms)
the dynamic range of each sequence must
not be large. In other words, Jn(kr) must
implode before H»,(kp) explodes

- For sufficiently large kr, the condition p >
3 r is sufficient. For smaller r, greater sep-
aration is needed

- Separation depends on the required accu-
racy, kr, and the machine € - explain

- In this case, a table is worth a thousand
theories

41



“Low-Frequency Break-Down

able

7
s 7z g
s _ 1 _ __ =

|
I I | I
I | \ |
T U | -
i
P B i I
4 I -

- Double precision calculations

3 digits 0.25 )\ side of the cube
6 digits 3.50 \ side of the cube
O digits 12.0 X\ side of the cube

- Similarity with evaluation sin(a - x)
via Tavlor series - explain

- Marginal improvements are possible
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“Low-Frequency Break-Down' :

Remedy

e

- What does one do in the subwavelength
regime?

- Use the low-frequency version of the FMM

- Transition to the high-frequency (diago-
nal) version at the appropriate point

- We have not tried to play with the size of
the buffer
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Numerical Examples
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A-10 - Helmholtz
T Error Error T Mem.
(dir.) | Acc. | (pot.) (grad.) (sec.) | (Mb)
337329 | 103 | 0.43E-3 | 0.56E-3 485 300
337329 | 10°° | 0.48E-6 | 0.50E-6 | 1291 790
337329 | 1079 | 0.11E-9 | 0.95E-10 | 2947 | 1143
A-10 - Laplace

T Error Error T Mem.
(dir.) | Acc. (pot.) (grad.) (sec.) | (Mb)
60590 | 1073 | 0.27E-3 0.37E-4 48.3 211
60590 | 10°° | 0.19E-6 0.43E-7 119 202
60590 | 1072 | 0.85E-10 | 0.61E-11 | 2437 376
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Horse

50 wavelengths in size
Smallest triangle: 9.34E-3 A\
Largest triangle: 3.27E-1 A
Number of triangles:. 872,694

Single node per triangle

a7



Horse - Helmholtz

T Error Error T Mem.
(dir.) | Acc. | (pot.) (grad.) (sec.) | (Mb)
646143 | 1073 | 0.65E-3 | 0.31E-3 672 549
646143 | 107° | 0.66E-6 | 0.92E-7 | 1832 | 1111
646143 | 107° | 0.33E-9 | 0.33E-11 | 3515 | 2027

Horse - Laplace

T Error Error T Mem.
(dir.) Acc. (pot.) (grad.) | (sec.) | (Mb)
107833 | 103 | 0.91E-3 | 0.57TE-3 | 63.7 328
107833 | 107° | 0.46E-6 | 0.31E-6 | 139.7 | 322
107833 | 1072 | 0.25E-9 | 0.10E-9 | 298 584
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Sphere

50 wavelengths in size
Smallest triangle: 4.91E-2 A\
Largest triangle: 6.27E-2 A\
Number of triangles: 619,520

Single node per triangle
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Sphere - Helmholtz

T Error Error T Mem.
(dir.) Acc. (pot.) (grad.) (sec.) | (Mb)
324381 | 1073 | 0.27E-3 0.19E-3 521 416
324381 | 107° | 0.15E-6 | 0.42E-7 | 1358 | 914
324381 | 107° | 0.91E-10 | 0.24E-10 | 2873 | 1474
Sphere - Laplace
T Error Error T Mem.
(dir.) | Acc. (pot.) (grad.) | (sec.) | (Mb)
52936 | 103 | 0.79E-3 | 0.90E-3 45 245
52936 | 107° | 0.33E-6 | 0.45E-6 | 97.7 244
529036 | 107° | 0.19E-9 | 0.12E-9 | 223 402
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Cube

50 wavelengths in size
Smallest triangle: 9.12E-2 A
Largest triangle: 9.12E-2 A
Number of triangles: 668,352

Single node per triangle
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Cube - Helmholtz
T Error Error T Mem.
(dir.) | Acc. | (pot.) (grad.) (sec.) | (Mb)
376950 | 1073 | 0.97TE-3 | 0.74E-3 393 364
376950 | 10°° | 0.73E-6 | 0.26E-7 | 1022 | 1295
376950 | 1079 | 0.23E-9 | 0.17E-10 | 2077 | 1001
Cube - Laplace
T Error Error T Mem.
(dir.) | Acc. (pot.) (grad.) | (sec.) | (Mb)
56433 | 103 | 0.94-3 | 0.60E-3 52 201
56433 | 10°° | 0.41E-6 | 0.34E-6 | 132 272
56433 | 107 ° | 0.28E-9 | 0.17E-9 | 231 362
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Observations

A fairly mature technology

Unlike the Laplace case, it is technical (as
opposed to incantational), even on the most
basic level - explain

It is not enough to “invent” an order n (or
n -log(n), or whatever) scheme any more -
constants matter

Robustness and ease of use, accuracy con-
trol, careful testing, implementation prac-
tices, etc.

A little mathematics goes a long way - im-
plications

Algorithms are becoming technical and in-
volved; have to be developed by competent
groups

An engineering discipline vs. black art
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Conclusions
Fast BIE solvers for Elliptic, parabolic, hy-
perbolic equations
“Fast” algorithms for fast computers

A different collection of collateral issues:
surface descriptions, high-order discretiza-
tions, volume integrals, etc.

Other environments involving ‘fastness’ -
Moore’'s law and its consequences

There are still some freebies left!

What else?
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Conclusions 1II

Direct vs. iterative solvers
BIEs in two dimensions

Direct solvers for the Lippman-Schwinger
equations, non-oscillatory and otherwise -
scope and promise

“Fast” SVDs and eigendecompositions
DIRECT SOLVERSIH

Applications: Singular perturbation prob-
lems, problems in the vicinity of resonances,
non-linear problems, inverse scattering

INVERSE SCAT TERING!!!
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