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Plan of the talk

Separated representations for:

1. Green’s functions

2. Lattice sums

3. Green’s function for the confining harmonic potential

4. 3D applications: electron structure computations in quantum chemistry

5. Fast Poisson solver

6. Schrödinger operator,

7. Antisymmetric wave function
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An example of separated representation

We have
˛

˛

˛

˛

1

||r||
−

M
X

m=1

wme−pm||r||2
˛

˛

˛

˛

≤
ε

||r||
,

for δ ≤ ||r|| ≤ 1, where pm, wm > 0 and M = O(− log δ).
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Error (log10) of approximating the Poisson kernel for 10−9 ≤ ||r|| ≤ 1, M = 89.
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Separated representations via quadratures

We use the trapezoidal rule to discretize the integral

r−α =
2

Γ(α/2)

∫ ∞

−∞

e−r2e2s+αsds

to obtain the initial approximation.

Theorem 1. For any α > 0, 0 < δ ≤ 1, and 0 < ε ≤ min
{

1
2,

8
α

}

, there exist positive

numbers pm and wm such that

∣

∣

∣
r−α −

M
∑

m=1

wme
−pmr2

∣

∣

∣
≤ r−αε, for all δ ≤ r ≤ 1

with

M = log ε−1[c0 + c1 log ε−1 + c2 log δ−1],

where ck are constants that only depend on α. For fixed power α and accuracy ε, we

have M = O(log δ−1).
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Nearly optimal quadratures

The number of nodes obtained via Theorem 1 is of correct order, but not close to optimum
(mostly in the range of small exponents, away from the singularity).

We optimize the quadrature by solving the following approximation problem: given

f(x) =

M0
∑

m=1

bme−τm x ,

and ε > 0, find a function (of the same form),

g(x) =
M
∑

m=1

wme−tm x ,

with M < M0 and such that

|f(x) − g(x)| ≤ ε , for x ∈ [0, 1].

4



A connection to optimal rational approximations

• Our method (developed with Lucas Monzón) uses finite Hankel matrices.

• The nearly optimal nodes are found as zeros of certain functions constructed from the
singular vectors of these matrices.

• If approximation were on the interval [0,∞] then, by using the Laplace transform, the
problem reduces to that for rational functions.

• Finding best L∞ approximation for rational functions is a part of Arov, Adamjan, Krein
theory (circa 1970).

Not enough time to go into details
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The projector on the divergence-free functions

For the projector on the divergence-free functions, we have

˛

˛

˛

˛

1

||r||3
−

M
X

m=1

wme−pm||r||2
˛

˛

˛

˛

≤
ε

||r||2
,

for δ ≤ ||r|| ≤ 1, where pm, wm > 0 and M = O(− log δ).
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Error of the approximation with 110 terms over the domain 10−7 ≤ ||r|| ≤ 1.
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How do we use it?

We need a few additional constructions ...
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Multiresolution Analysis

Chain of subspaces:
. . . ⊂ V0 ⊂ V1 ⊂ V2 ⊂ . . .

⋂

j Vj = {0} and
⋃

j Vj = L2(Rd) .

Examples: piecewise-constant functions, Daubechies’ scaling functions, polynomials up to
degree m − 1 on a collection of intervals.

Detail spaces Wj : Vj+1 = Vj ⊕Wj

Orthonormal bases in Vj and Wj are defined by the scaling function φ and wavelet ψ.

Examples: Haar basis, Daubechies’ wavelets, multiwavelets.

Projectors: Pj onto Vj, Qj onto Wj.
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Non-standard representation of operators

Consider

T : L2 → L2

Define

Tj = PjTPj, Aj = QjTQj, Bj = QjTPj Cj = PjTQj, for j ∈ Z.

We have the telescopic expansion,

Tn − T0 =

j=n
∑

j=1

(PjTPj − Pj−1TPj−1) =

j=n
∑

j=1

(Tj − Tj−1).
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Choice of bases

We use multiwavelet bases

On each scale the scaling functions are orthogonal polynomials of degree up to m− 1 on
subintervals.

Choices:

1. The Legendre polynomials

2. The Lagrange interpolating polynomials with the Legendre nodes

Many useful properties
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Adaptive subdivision
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Adaptive representation of a function
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Another example

Consider the characteristic function of a disk
Nnod = 8, ε = 1.0e − 02, Nblocks = 1276Nnod = 8, ε = 1.0e − 02, Nblocks = 1276
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The cross-correlation functions of scaling functions

For convolution operators we only need the cross-correlation functions of the scaling
functions, namely,

Φii′(x) =







Φ+
ii′(x), 0 ≤ x ≤ 1,

Φ−
ii′(x), −1 ≤ x < 0,
0, 1 < |x|,

where i, i′ = 0, . . . ,m − 1, m is the order of the basis, and

Φ+
ii′(x) =

∫ 1−x

0

φi(x+ y)φi′(y)dy , Φ−
ii′(x) =

∫ 0

−x

φi(x+ y)φi′(y)dy .

The scaling functions φi are the normalized Legendre polynomials on the interval [0, 1],

φi(x) =

{ √
2i+ 1Pi(2x− 1), x ∈ [0, 1]

0, x /∈ [0, 1]
,

where Pi are the Legendre polynomials on [−1, 1]. This implies that the functions Φii′

are piecewise polynomials of degree i+ i′ + 1 with the support in [−1, 1].
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The first four cross-correlation functions Φ00,Φ01,Φ10 and Φ11.
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The Poisson kernel

Due to the homogenuity of the Poisson kernel, we have

tn; l
ii′,jj′,kk′ = 2−2n tlii′,jj′,kk′ ,

where

tlii′,jj′,kk′ = tl1,l2,l3
ii′,jj′,kk′ =

1

4π

∫ 1

−1

∫ 1

−1

∫ 1

−1

1

||x + l|| Φii′(x1) Φjj′(x2) Φkk′(x3) dx,

and

Φii′(x) =

∫ 1

0

φi(x+ y)φi′(y)dy , i, i′ = 0, . . . , k − 1 ,

are the cross-correlation functions of the scaling functions of the multiwavelet basis.
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Separated representation of the Poisson kernel

Theorem: For any ε > 0 the coefficients tlii′,jj′,kk′ have an approximation with a low
separation rank,

rlii′,jj′,kk′ =
M
∑

m=1

wm

b
Fm,l1

ii′ Fm,l2
jj′ Fm,l3

kk′ ,

such that

|tlii′,jj′,kk′ − rlii′,jj′,kk′| ≤ 2ε

π
max

i
|li| ≥ 2

|tlii′,jj′,kk′ − rlii′,jj′,kk′| ≤ Cδ2 +
2ε

π
max

i
|li| ≤ 1

Fm,l
ii′ =

∫ 1

−1

e−pm/b2(x+l)2 Φii′(x) dx ,

b =
√

3 + ||l||, and δ, M = O(− log δ) + O(− log ε), pm, wm, m = 1, . . . ,M are
from the separated representation of the kernel.
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Other important examples

1. The projector on the divergence-free functions (similar to the Poisson kernel)

2. The Helmholtz kernel, eiKr/r ≈ ∑

mwme
τmr2

for K ∼ 100 (some other time)

3. Lattice Sums

4. The Green’s function for (N-particle) confining harmonic potential

H =
N

∑

j=1

(−∆j + ||xj||2)

H−1(x,y) =
M
∑

m=1

ŵm

N
∏

j=1

e−τm||xj||
2
e−σm||xj−yj||

2
e−τm||yj||

2
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Separated representations for computing lattice sums

• Lattice sums and periodic Green’s functions appear in many applications

• Examples: lattice sums for gratings, elastodynamics, optics, chemistry ...

• Many publications, mostly using the spherical harmonics, summation formulas ...
McPhedran, Movchan, ...

• Variants of Ewald summation remain methods of choice

• Huang’s integral representations of harmonic lattice sums
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Lattice sums for Green’s Functions

Formally, the periodic Green’s function for the Poisson equation is given by

G(x) =
X

n∈Z3

1

||x + n||
=

1

||x||
+

X

n∈Z3

′ 1

||x + n||
,

for x ∈ B, where B = [−1/2, 1/2]3 and n = (n1, n2, n3).

The Green’s function with the zero b.c. is given by

G0(x) =
X

n∈Z3

(−1)n1+n2+n3

||x + n||
=

1

||x||
+

X

n∈Z3

′(−1)n1+n2+n3

||x + n||
.
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Approximation of lattice sums

Rescaling, we obtain for 1/2 ≤ ||x|| ≤ 1/(2δ)

∣

∣

∣

1

||x|| −
M
∑

m=1

(2δwm)e−4pmδ2||x||2
∣

∣

∣
≤ ε

||x||.

We set ρm = 2δwm and tm = 4pmδ
2.

Assuming that we assign the lattice sum Σ′ a finite value, we have for x ∈ B,

|
∑

n∈Z3

′ 1

||x + n|| −
∑M

m=1
ρm

∑

n∈Z3

′
e−tm||x+n||2|| ≤ ε

∑

n∈Z3

′ 1

||x + n|| .
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Approximation of the Green’s function

We obtain an approximation to G as

1

||x|| −
M
∑

m=1

ρme
−tm||x||2 +Gper(x),

where Gper is the periodic component,

Gper(x) =

M
∑

m=1

ρm

∑

n∈Z3

e−tm||x+n||2.

The combination
1

||x|| −
M
∑

m=1

ρme
−tm||x||2

is less than ε outside the ball of radius 1/2.
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Smooth periodic component

For the periodic function Gper, we have

Gper(x) =
∑

p∈Z3

ĝpe
2πix·p,

where

ĝp = π3/2
M
∑

m=1

ρm

t
3/2
m

e−π2p2/tm, p 6= 0

and ĝ0 = 0.
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A Madelung-Like sum

As an example, compute

S =
∑

n∈Z3

′(−1)n1+n2+n3

||n|| ,

which according to D. Borwein, J.M. Borwein, C. Pinner, in “Convergence of Madelung-
Like sums”, Trans. Amer. Math. Soc., v. 350, 8, 1998,

S = −1.74756459...

We have

S = π3/2
M
∑

m=1

ρm[
∑

n∈Z

1√
tm

e−(n+1/2)2π2/tm]3 −
M
∑

m=1

ρm = −1.7475645946...
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A multiresolution approach

1. Given the free-space operator, construct its telescopic series

T = T0 + (T1 − T0) + (T2 − T1) + . . .

2. Compute lattice sums on each scale separately; they are unconditionally convergent
except that for T0.

3. The projection T0 of the Poisson kernel is given by the integrals

tnii′,jj′,kk′ =

∫

B

1

||x + n|| Φii′(x1) Φjj′(x2) Φkk′(x3) dx ,

where n ∈ Z3, B = [−1/2, 1/2]3, x = (x1, x2, x3), i, i
′, j, j′, k, k′ = 0, . . . ,m− 1 and

m is the order of the basis.
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Lattice sum for T0

We need to define lattice sums of integrals with cross-correlation functions

tper
ii′,jj′,kk′ =

∑

n∈Z3

tnii′,jj′,kk′ =
∑

n∈Z3

∫

B

1

||x + n|| Φii′(x1) Φjj′(x2) Φkk′(x3) dx .

Let us consider tnii′,jj′,kk′ as a function of n ∈ Z3. Using

1

||x + n|| =
1

||n|| −
x · n
||n||3 − 1

2

||x||2
||n||3 +

3

2

(x · n)2

||n||5 + O(
1

||n||4),

we observe that the coefficient tper
00,00,00 cannot be given any meaning.

But if we apply the resulting operator to periodic functions with zero mean, the coefficient
tper
00,00,00 is not needed and we simply set tper

00,00,00 = 0.
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Convergence due to vanishing moments

For i+ i′ ≥ 1 all functions Φii′ have vanishing moments, namely,

∫ 1

−1

Φii′(x)x
m dx = 0, 0 ≤ m ≤ i+ i′ − 1.

Integrals involving functions Φii′ with indices i + i′ ≥ 3 yield a rapid decay of the
coefficients,

tnii′,jj′,kk′ = O(
1

||n||4),

and the absolute convergence of the corresponding lattice sums.
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Conditional convergence

For functions Φii′ with indices 1 ≤ i+ i′ ≤ 2, we have (for example)

t01,00,00(n) =
n1

||n||3 (

∫ 1

−1

xΦ01(x)dx) (

∫ 1

−1

Φ00(x)dx)
2 + O(

1

||n||4),

or

t11,00,00(n) =
2n2

1 − n2
2 − n2

3

2||n||5 (

∫ 1

−1

x2 Φ11(x)dx) (

∫ 1

−1

Φ00(x)dx)
2 + O(

1

||n||4).

Summing over appropriately chosen domains of indices, we have conditional convergence.
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The Green’s Function for N-particle confining harmonic

potential

First we compute the kernel of the operator e−tH1, where

H1 = − d2

dx2
+ x2

is the Hamiltonian for the confining harmonic potential in 1D.

H1 has discrete spectrum λn = 2n + 1, n = 0, 1, . . ., and its eigenfunctions are well-
known so that

KH1(x, y) = e−(x2+y2)/2
∞
∑

n=0

λn√
π2nn!

Hn(x)Hn(y),

where Hn are the Hermite polynomials.
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The kernel of e−tH1

For the kernel of e−tH1, we have

Ke−tH1(x, y) = e−(x2+y2)/2
∞
∑

n=0

e−tλn

√
π2nn!

Hn(x)Hn(y),

and (with a little bit of work)

Ke−tH1(x, y) =
1

√

2π sinh(2t)
e
−

(x−y)2

2 sinh(2t) e− tanh(t) (x2+y2)/2.
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Spectral approximation of H−1
1 .

We approximate the kernel of the Green’s function G = H−1
1 ,

G(x, y) = e−(x2+y2)/2
∞
∑

n=0

1

λn
√
π2nn!

Hn(x)Hn(y),

with

Gn̄(x, y) = e−(x2+y2)/2
n̄

∑

n=0

1

λn
√
π2nn!

Hn(x)Hn(y),

so that ||G − Gn̄||2 ≤ 1/λn̄ .
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Separated approximation of H−1
1 .

We have H−1
1 =

∫ ∞

0
e−tH1 dt. Since 1/λn =

∫ ∞

0
e−tλndt, we approximate for n ≤ n̄

|
∫ ∞

0

e−tλndt−
M
∑

m=0

wme
−tmλn| ≤ ε,

where M = O(log n̄).

Choosing n̄ so that 1/λn̄ ≤ ε, (thus, M = O(log ε−1) ), we arrive at the representation

H−1(x,y) =
M
∑

m=1

ŵm

N
∏

j=1

e−τm||xj||
2
e−σm||xj−yj||

2
e−τm||yj||

2

which is valid with accuracy ε in operator norm.
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Importance of this example

Conjecture:

The Green’s functions of other confining potentials have representations of this form,
where the exponents and coefficients are determined numerically.

• The linear problem (where the exponents are given) is likely to be badly conditioned

• The non-linear problem appears to be well conditioned

• Many interesting harmonic analysis problems
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Quantum Chemistry

(R. Harrison, G. Fann, T. Yanai and Z. Gan (ORNL))

• Complete elimination of the basis error

• Implementation for one-electron models (HF, DFT)

• Most accurate computations up to now (within these models)

• Correct scaling of cost with system size

• Much smaller computer code than“Gaussians”(<— R. Harrison)

(R. Cramer, V. Cheruvu and F. Pérez)

• Adaptive PDE solvers

• Operator calculus in 3D
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Examples: elements, small molecules...

Adaptive subdivision of space for the benzene molecule C6H6

(from R. Harrison, G. Fann and G. Beylkin)
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Timing results for 3D adaptive Poisson solver

We compute

φ(r) = − 1

4π

∫

R3

ρ(r′)

||r− r′||dr

with ρ which gives a sum of Gaussian solutions:

ρ(r) = −
3

∑

i=1

(4α2 |r− ri|2 − 2nα)e−α|r−ri|
2

.

Timings with:

α = 300,
r1 = (0.5, 0.5, 0.5),
r2 = (0.6, 0.6, 0.5),
r3 = (0.35, 0.6, 0.5).
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Timing results for 3D adaptive Poisson solver

Platform: Pentium 3-1.1 GHz with 512 MB of RAM

k = 8
ε tapply (s) MFLOPS

10−3 34 219
10−4 57 227

k = 12
ε tapply (s) MFLOPS

10−3 18 364
10−4 33 385
10−5 50 390
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Comments

• MADNESS (R. Harrison et. al, ORNL) is faster (but we are very close right now).
Both codes are based on the same mathematics but differ algorithmically (our code is
adaptive). We shoud reach and, hopefully, exceed the speed of MADNESS code.

• Already competitive with multigrid codes, especially for small ε, where multigrid slows
down dramatically.

• Need to test against FMM-adaptive results in 2d (Greengard & Etheridge 2001).

• Python overhead is measured at a small percentage of the total time.
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The Separated Representation

The standard separation of variables: f(x1, x2, . . . , xd) = φ1(x1) ·φ2(x2) · . . . ·φd(xd)

Definition: For a given ε, we represent a matrix A = A(j1, j
′
1; j2, j

′
2; . . . ; jd, j

′
d) in

dimension d as
r

∑

l=1

slA
l
1(j1, j

′
1)A

l
2(j2, j

′
2) · · ·Al

d(jd, j
′
d),

where sl is a scalar, s1 ≥ · · · ≥ sr > 0, and Al
i are matrices with entries Al

i(ji, j
′
i) and

norm one. We require the error to be less than ε:

||A −
r

∑

l=1

sl A
l
1 ⊗ A

l
2 ⊗ · · · ⊗ A

l
d|| ≤ ε.

We call the scalars sl separation values and the rank r the separation rank.

The smallest r that yields such a representation for a given ε is the optimal separation
rank.
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Condition number of separated representation

Definition:

We call the ratio

κ =

∑r
l=1 sl

||A|| ,

the condition number of separated representation.

It is a natural definition since ||sl Al
1 ⊗ Al

2 ⊗ · · · ⊗ Al
d|| = sl.

We need to maintain κµ||A|| ≤ ε, where µ is the machine roundoff.
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Similarities and differences with SVD

If d = 2 then the separated representation can be obtained via SVD.

(Actually, we use a much simpler algorithm since we do not insist on orthogonality between
vectors in a given direction).

If d ≥ 3 then the analogy with SVD breaks down: by changing ε we change all terms in
the representation rather than add/delete terms

Many attempts to treat separated representation as a generalization of SVD but the
construction depends on ε !
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Multiparticle Schrödinger operator

The Hamiltonian for the multiparticle Schrödinger operator is the sum of three terms

H = −
N

∑

i=1

∆i −
N

∑

i=1

Vi +
N−1
∑

i=1

N
∑

m=i+1

Wim,

where the 3D Laplacian corresponding to electron i is defined as ∂2

∂x2
i

+ ∂2

∂y2
i

+ ∂2

∂z2
i
, the

nuclear potential Vi is operator of multiplication by 1/ri and the electron-electron potential
Wim is multiplication by 1/|ri − rm|.
T = −∆1 ⊗ I2 ⊗ · · · ⊗ IN − I1 ⊗ ∆2 ⊗ · · · ⊗ IN − . . .− I1 ⊗ I2 ⊗ · · · ⊗ ∆N

V = −V1 ⊗ I2 ⊗ · · · ⊗ IN − I1 ⊗ V2 ⊗ · · · ⊗ IN − . . .− I1 ⊗ I2 ⊗ · · · ⊗ VN

W = . . . has O(N2) terms.

Thus, the nominal separation rank grows as O(N 2).

It turns out that ...
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Separation rank of the Schrödinger operator

Theorem:

The representation of T + V to within ε in the operator norm has separation rank

r=O(
log(N || − ∆1 − V1||/ε)

log(1/µ) − log(N || − ∆1 − V1||/ε)
).

Let us symmetrically separate Wim =
∑rw

k=1W
k
i W

k
m + O(ε). For each value of k the

operator has the form A =
∑N−1

i=1

∑N
m=i+1Ai Am.

Theorem:

The representation of A to within ε in the operator norm has separation rank

r=O(
log(N2 ||A1||2/ε)

log(1/µ) − log(N2 ||A1||2/ε)
).

Thus, the separation rank of the Schrödinger operator grows only as log(N)
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Constructive proof

Consider

G(t) = || − ∆1 − V1||
N

⊗

i=1

(Ii + t
−∆i − Vi

|| − ∆1 − V1||
),

and note that G′(0) = T + V. Using finite difference formula of order r, we approximate

G
′(0) ≈

r
∑

j=1

αjG
′(tj).

Similarly, we using Ai instead of −∆i − Vi in the definition of G, we note that
G′′(0) = 2A/||A1|| and use the same approach.

(This approximation was first discovered numerically).
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Antisymmetry

Since electrons are fermions, the wave function must be antisymmetric, e.g.,
ψ(γ2, γ1, γ3, . . .) = −ψ(γ1, γ2, γ3, . . .), where γ = ((x, y, z), σ) and σ is the spin.

Given a function of N variables, its“antisymmetrizer” is defined by

A =
1

N !

∑

p∈SN

(−1)pP,

where SN is the permutation group onN elements. If A is applied to a separable function,
then the result can be expressed as a Slater determinant,

A
N
∏

j=1

φj(γj) =
1

N !

∣

∣

∣

∣

∣

∣

∣

∣

φ1(γ1) φ1(γ2) · · · φ1(γN)
φ2(γ1) φ2(γ2) · · · φ2(γN)

... ... . . . ...
φN(γ1) φN(γ2) · · · φN(γN)

∣

∣

∣

∣

∣

∣

∣

∣

.
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Do we have a problem?

The number of terms in A∏N
j=1 φj(γj) grows exponentially fast and, although this

number can algebraically be reduced somewhat, are we in trouble?

If we care only about computing inner products with A∏N
j=1 φj(γj), then the so-called

Löwdin rules provide a solution,

〈A
N
∏

j=1

φj(γj),A
N
∏

j=1

φ̃j(γj)〉 =
1

N !

∣

∣

∣

∣

∣

∣

∣

∣

∣

〈φ1, φ̃1〉 〈φ1, φ̃2〉 · · · 〈φ1, φ̃N〉
〈φ2, φ̃1〉 〈φ2, φ̃2〉 · · · 〈φ2, φ̃N〉

... ... . . . ...

〈φN , φ̃1〉 〈φN , φ̃2〉 · · · 〈φN , φ̃N〉

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

Computing determinant costs at most O(N 3), but for large N the matrix is banded and
the cost is O(N), so that we are O.K.
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Example of computing the antisymmetric ground state

Separated rank, achieved approximation, and eigenvalue estimates for the separable (F0)
and main approximations to the wavefunction.

r ε ||AHF 〈AHF,AF〉
F0 1 3.4 · 10−3 322.6727395 322.3859013
F 2 10−4 321.8852595 321.8844158

φ1 φ2 φ3 φ4 φ5

The computed separable approximation F0 to the wave function.
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Structure of the antisymmetric ground state

i = 1 i = 2 i = 3 i = 4 i = 5

l = 1; 0.999350

l = 2; 0.033093
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Conclusions and future work

• Powerful method for multidimensional problems

• Lattice sums

• Operators in 3D (e.g., oscillatory Green’s functions)

• Operators in 6D for multiresolution quantum chemistry (two-electron models)

• We are attempting to solve the multiparticle Schrödinger equation

• Complete MADNESS (Multiresolution ADaptive NumErical Scientific Simulation)
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