Robust Uncertainty Principles and Optimally Sparse Decompositions

Justin Romberg, California Institute of Technology

Collaborators: Emmanuel Candès (Caltech), Terence Tao (UCLA)

Uncertainty Principles

- Heisenberg (1927) Uncertainty principle for continuous-time signals \hat{f} \boldsymbol{f} σ_{t} σ $\boldsymbol{\sigma_t \sigma_\omega} \geq \frac{1}{4\pi}$
- Limits *joint resolution* in time and frequency

Uncertainty Principles

• Donoho and Stark (1989) Discrete uncertainty principle for \mathbb{C}^N

- Implications: recovery from partial information, unique sparse decompositions
- Generalization to pairs of bases B_1, B_2 [Donoho,Huo,Elad,Bruckstein,Gribonval,Nielsen]

Dirac Comb

The discrete uncertainty principle is *exact*.

- \sqrt{N} spikes spaced \sqrt{N} apart
- Invariant under Fourier transform $(f = \hat{f})$
- $|T| + |\Omega| = 2\sqrt{N}$

Sparse Representations

• Decompose *f* as a superposition of spikes and sinusoids

$$f(s) = \sum_{t \in T} \alpha_t \delta(t - s) + \sum_{\omega \in \Omega} \alpha_\omega e^{i\omega s}$$

T = locations of spikes, Ω = frequencies of sinusoids

• Matrix form:

$$\Phi oldsymbol{lpha} = oldsymbol{f} \quad \Leftrightarrow \quad igg(oldsymbol{I} \quad oldsymbol{F}^st igg) igg(oldsymbol{lpha}_t \ oldsymbol{lpha}_{oldsymbol{\omega}} igg) = oldsymbol{f}$$

• Many solutions exist, we want the *sparsest*.

Example

spikes

t
ightarrow

Image Processing and Sparse Representations

- Geometrical structure and texture are separate phenomena
- Each is sparse in a certain "basis"
- See also Geometric Separation of Donoho et. al, edge/texture separation of Starck et. al.

ℓ_0 -minimization

• Dictionary Φ : columns are spikes and sinusoids

$$\Phi oldsymbol{lpha} = oldsymbol{f} \quad \Leftrightarrow \quad igg(oldsymbol{I} \quad oldsymbol{F}^* igg) igg(oldsymbol{lpha}_t \ oldsymbol{lpha}_{\omega} igg) = oldsymbol{f}$$

- Observed signal f
- Sparsest representation: solve (combinatorial problem)

$$\min \|\boldsymbol{\alpha}\|_{\boldsymbol{\ell}_0}$$
($\boldsymbol{\ell}_0$ -min)
s.t. $\Phi \boldsymbol{\alpha} = \boldsymbol{f}$

- $\|\alpha\|_{\ell_0} = |\operatorname{supp} \alpha|$ = number of non-zero terms
- When is ℓ_0 -min unique?

Uncertainty Principles and Sparsity [Donoho,Huo (2001)]

Fact: Say α is a sparse decomposition of f $\|\alpha\|_{\ell_0} = |\operatorname{supp} \alpha| < \sqrt{N}$.

$$f = \Phi \alpha$$

then α is the *only* sparse decomposition.

Reason: Uncertainty Principle

 $|\operatorname{supp} f| + |\operatorname{supp} \hat{f}| \ge 2\sqrt{N}$

Say $\Phi \alpha' = f$ as well: $\alpha' = \alpha + \gamma$ with $\Phi \gamma = 0$

Consequence: α is the *unique* ℓ_0 minimizer.

Dirac Comb

The "Dirac comb" has two representations of size \sqrt{N} .

Sharp Uncertainty Principle: N Prime [Tao (2004)]

- For N prime, evenly spaced signals like the Dirac comb are impossible.
- The uncertainty principle is *significantly* more relaxed:

 $|\operatorname{supp} f| + |\operatorname{supp} \hat{f}| > N$

• Key: minors of the Fourier matrix have full rank

$$oldsymbol{A} = oldsymbol{R}_\Omega oldsymbol{F} oldsymbol{R}_T^st$$

 R_T, R_Ω are restriction operators.

• Compare to general UP: N vs. $2\sqrt{N}$

ℓ_0 uniqueness: *N* Prime

Theorem: Let *N* be prime. Say α^{\sharp} is supported on $T \cup \Omega$ with

$$\Phi lpha^{\sharp} = f \qquad |T| + |\Omega| = \| lpha^{\sharp} \|_{\ell_0} < N/2.$$

Then for all α' , $\Phi \alpha' = f$, $\alpha' \neq \alpha$

 $\|\alpha'\|_{\boldsymbol{\ell}_0} > N/2$

 $\Rightarrow \alpha^{\sharp}$ is the *unique* ℓ_0 minimizer.

- Follows directly from relaxed UP
- Compare to general ℓ_0 uniqueness result: N/2 vs. \sqrt{N}

"Typical" Signals

• Robust UP: For an overwhelming percentage of T, Ω with

$$|T| + |\Omega| \sim rac{N}{\sqrt{\log N}}$$

it is *impossible* to find an f with supp f = T, supp $\hat{f} = \Omega$.

• ℓ_0 -uniqueness: Given "generic" α on $T \cup \Omega$, solving

$$\min \|\boldsymbol{\alpha'}\|_{\boldsymbol{\ell}_0} \qquad \text{s.t.} \qquad \Phi \boldsymbol{\alpha'} = \boldsymbol{f}$$

will recover α *exactly*.

• Tractability: If T, Ω are slightly smaller

$$|T| + |\Omega| \sim \frac{N}{\log N}$$

then there is a *tractable* algorithm to recover α from f.

• Similar results hold for pairs of bases B_1, B_2 .

Probabilistic Framework

1. Generate T, Ω with Bernoulli sequences

$$oldsymbol{\chi}(oldsymbol{t}),oldsymbol{\chi}(oldsymbol{\omega}) = egin{cases} 1 & extsf{w/prob} & au \ 0 & extsf{w/prob} & 1- au \ 0 & extsf{m/prob} & 1- au \end{cases}$$

$$egin{array}{rcl} m{T}&=&\{m{t}:m{\chi}(m{t})=1\}\ \ \Omega&=&\{m{\omega}:m{\chi}(m{\omega})=1\} \end{array}$$

We will have $|T|, |\Omega| \sim \tau N$.

2. Generate α on $T \cup \Omega$ from a continuous distribution.

We derive bounds that hold with very high probability.

A Quantitative Robust Uncertainty Principle

Draw sets T, Ω at random with $au = C_M / \sqrt{\log N}$:

$$|T|, |\Omega| pprox C_M rac{N}{\sqrt{\log N}}$$

Then with probability $1 - O(N^{-M})$, for any f with

 $\operatorname{supp} \boldsymbol{f} = \boldsymbol{T}$

most of the energy of \hat{f} lies outside of Ω :

$$\sum_{\boldsymbol{\omega}\in\Omega}|\hat{f}(\boldsymbol{\omega})|^2 \leq \frac{1}{2}\|\hat{f}\|^2.$$

• No $f \in \mathbb{C}^N$ exists with supp f = T, supp $\hat{f} = \Omega$.

For relatively large sets T,Ω, it is impossible to concentrate
 f on T and f on Ω.

Key Estimate

• Again,
$$A = R_{\Omega}FR_T^*$$
 plays a *key* role.

Since $\operatorname{supp} f = T$, $R_T^* f|_T = f$, where $f|_T = R_T f$.

$$egin{aligned} &\sum_{oldsymbol{\omega}\in\Omega} |\hat{f}(oldsymbol{\omega})|^2 &= & \langle R_\Omega F^* R_T^* f|_T, R_\Omega F R_T^* f|_T
angle \ &= & \langle f|_T, A^* A f|_T
angle \ &= & \|A^* A\| \cdot \|f\|^2 \end{aligned}$$

• Need to show $||A^*A|| \le 1/2$ (bound the largest eigenvalue).

Generic ℓ_0 Uniqueness

Theorem: Let T, Ω be sets for which the robust uncertainty principle holds,

$$|T|+|\Omega| pprox C_M rac{N}{\sqrt{\log N}}.$$

Choose α on $T \cup \Omega$ from a continuous distribution. Then given $f = \Phi \alpha$, α is the unique minimizer to

$$\min \|\boldsymbol{\alpha'}\|_{\boldsymbol{\ell}_0} \qquad \text{s.t.} \qquad \Phi \boldsymbol{\alpha'} = \boldsymbol{f}$$

with probability 1.

• The uncertainty principle is fundamental, but the uniqueness is not immediate.

$\boldsymbol{\ell}_1$ minimization

• ℓ_0 -min is highly non-convex

 \rightarrow combinatorial algorithm required to solve it in general.

• Instead, consider the convex program

$$\min \|\boldsymbol{\alpha}\|_{\boldsymbol{\ell}_1}$$
 ($\boldsymbol{\ell}_1$ -min) s.t. $\Phi \boldsymbol{\alpha} = \boldsymbol{s}$

- ℓ_1 norm also a sparsity measure
- ℓ_1 -min *convex*
- When are the solutions to min- ℓ_0 and min- ℓ_1 the same?

Previous Work

- Donoho, Stark: uncertainty principles, sparse recovery via ℓ_1 -min
- Donoho, Huo: ℓ_1 -min for $|\operatorname{supp} \alpha| \leq \frac{\sqrt{N}}{2}$
- Bruckstein, Elad: general basis pairs, ℓ_1 -min for $|\operatorname{supp} \alpha| \leq .9\sqrt{N}$
- Gribonval, Nielsen, Donoho, Elad: general dictionaries
- Tropp: greedy algorithms, robust recovery
- Gilbert, Strauss et al. (sparse Fourier approx, random algorithm)

Generic ℓ_1 recovery

Theorem: Draw sets T, Ω at random with $au = C_M / \log N$

$$|T| + |\Omega| pprox C_M rac{N}{\log N}.$$

Choose α on $T \cup \Omega$ from a continuous distribution with uniform phase. Then given $f = \Phi \alpha$, α is the unique minimizer to

$$\min \|\boldsymbol{\alpha'}\|_{\boldsymbol{\ell}_1} \qquad \text{s.t.} \qquad \Phi \boldsymbol{\alpha'} = \boldsymbol{f}$$

with probability $1 - O(N^{-M})$.

We can recover "sparse" decompositions with

 $|T| + |\Omega| \sim N/\log N$

(compare to $\sim \sqrt{N}$)

Duality

$$\min \|\boldsymbol{\alpha}\|_{\boldsymbol{\ell}_1} \qquad (\boldsymbol{\ell}_1 \text{-min})$$

s.t. $\Phi \boldsymbol{\alpha} = \boldsymbol{f}$

• α^{\sharp} solves ℓ_1 -min $\Leftrightarrow \exists \lambda$ such that for $P(k) = (\Phi^*\lambda)(k)$

$$P(k) = \operatorname{sgn}(\alpha^{\sharp})(k)$$
 on $T \cup \Omega$ (1)
 $|P(k)| < 1$ on $(T \cup \Omega)^{c}$. (2)

- Sufficient: construct min-energy λ s.t. (1) is satisfied. Check:
 - if it exists
 - if (2) holds
- See also Fuchs (04)

Example

23

Constructing the Dual Vector

$$\begin{aligned} \boldsymbol{P}(\boldsymbol{k}) &\in \operatorname{Range}(\Phi^*) \\ \boldsymbol{P}(\boldsymbol{k}) &= \operatorname{sgn}(\boldsymbol{\alpha}^{\sharp})(\boldsymbol{k}) \quad \text{on} \quad \Gamma := \boldsymbol{T} \cup \Omega \\ \boldsymbol{P}(\boldsymbol{k})| &< 1 \qquad \text{on} \quad (\boldsymbol{T} \cup \Omega)^c. \end{aligned}$$

• Minimum energy λ with $R_{\Gamma} \Phi^* \lambda = R_{\Gamma} \operatorname{sgn}(\alpha^{\sharp})$ ("least squares"):

$$\boldsymbol{\lambda} = \Phi \boldsymbol{R}_{\Gamma}^{*} (\boldsymbol{R}_{\Gamma} \Phi^{*} \Phi \boldsymbol{R}_{\Gamma}^{*})^{-1} \boldsymbol{R}_{\Gamma} \operatorname{sgn}(\boldsymbol{\alpha}^{\sharp})$$

• Need to invert

$$(\boldsymbol{R}_{\Gamma}\Phi^{*}\Phi\boldsymbol{R}_{\Gamma}^{*})^{-1} = \begin{pmatrix} \boldsymbol{I} & \boldsymbol{A}^{*} \\ \boldsymbol{A} & \boldsymbol{I} \end{pmatrix}^{-1}, \qquad \|(\boldsymbol{R}_{\Gamma}\Phi^{*}\Phi\boldsymbol{R}_{\Gamma}^{*})^{-1}\| = \frac{1}{1-\sqrt{\|\boldsymbol{A}^{*}\boldsymbol{A}\|}}$$

with $A = R_{\Omega}FR_T^*$.

• Eigenvalues of A^*A again play a key role

$$A^*A = R_T F^* R^*_\Omega R_\Omega F R^*_T \qquad |T| imes |T|$$

Rewrite

$$oldsymbol{A}^{*}oldsymbol{A} = rac{\Omega}{oldsymbol{N}}oldsymbol{I} - rac{1}{oldsymbol{N}}oldsymbol{H}$$

where *H* is the *random matrix*

$$m{H}(m{t},m{t'}) = egin{cases} 0 & m{t} = m{t'} \ -\sum_{m{\omega}\in\Omega} e^{m{i}m{\omega}(m{t}-m{t'})} & m{t}
eq m{t'} \end{cases}$$

How big can we make |T| and $|\Omega|$ and keep the eigenvalues under control?

 $\|\boldsymbol{H}\|<<|\Omega|$

|P(k)| < 1

$$\boldsymbol{P} = \Phi^* \Phi \boldsymbol{R}^*_{\Gamma} (\boldsymbol{R}_{\Gamma} \Phi^* \Phi \boldsymbol{R}^*_{\Gamma})^{-1} \boldsymbol{R}_{\Gamma} \operatorname{sgn}(\boldsymbol{\alpha}^{\sharp})$$

- $(\mathbf{R}_{\Gamma}\Phi^{*}\Phi\mathbf{R}_{\Gamma}^{*})^{-1}$ is very well conditioned
- For $|T|, |\Omega| \sim N/\log N$, the vector $(R_{\Gamma} \Phi^* \Phi R_{\Gamma}^*)^{-1} R_{\Gamma} \operatorname{sgn}(\alpha^{\sharp})$ has small norm
- Use simple large deviation theory for $\Phi^*\Phi$ acting on a "small" vector

Example

• In practice, we can recover "sparse" decompositions of size $\sim N/2$ (!!)

Example

Recovery Curves

Pairs of Bases

Orthogonal bases $B_1, B_2, \Phi = \begin{pmatrix} B_1^* & B_2^* \end{pmatrix}$. Define

$$oldsymbol{\mu} = \sqrt{N} \cdot \max \, \left| \langle oldsymbol{b}_1, oldsymbol{b}_2
ight| \qquad oldsymbol{b}_1 \in oldsymbol{B}_1, \ oldsymbol{b}_2 \in oldsymbol{B}_2.$$

With high probability:

• RUP: For $oldsymbol{f}=oldsymbol{B}_1 oldsymbol{lpha}_1, oldsymbol{B}_2 oldsymbol{lpha}_2$, we have

$$|\operatorname{supp} lpha_1| + |\operatorname{supp} lpha_2| \sim rac{N}{\mu^2 (\log N)^p}$$

• ℓ_0 uniqueness: Given $\alpha := \begin{pmatrix} \alpha_1 & \alpha_2 \end{pmatrix}$ supported on $\Gamma = \Gamma_1 \cup \Gamma_2$, set $f = \Phi \alpha$. For $|\Gamma| \sim \frac{N}{\mu^2 (\log N)^p}$

$$\alpha$$
 will be the unique ℓ_0 minimizer.

• ℓ_1 equivalence: For Γ as above, α will also be the unique minimizer of the convex ℓ_1 program.

Other Examples

- $B_1 = spikes$, $B_2 = sinusoids$
- B₁ = wavelets, B₂ = sinusoids at fine scales, wavelets look like spikes
- B_1 = spikes, B_2 = random basis performance is very close to spikes and sinusoids

Conclusions

- Sparse decompositions are *unique*
 - we can recover them from an observation of the signal
- Key: uncertainty principles
- The recovery is performed via convex optimization (min- ℓ_1)
- "Typical" case bounds ($\sim N/\log N$) much more lenient than worst case ($\sim \sqrt{N}$)
- Derivation: show when the dual vector exists
- Bounds can be generalized to pairs of bases

Email: jrom@acm.caltech.edu