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e Heisenberg (1927)

Uncertainty Principles

Uncertainty principle for continuous-time signals

f

i

b

Ot0 2 —
47

e Limits joint resolution in time and frequency



Uncertainty Principles

e Donoho and Stark (1989)
Discrete uncertainty principle for C¥Y

T+ |9 =2 2vN

e Implications: recovery from partial information, unique sparse
decompositions

e Generalization to pairs of bases B, B
[Donoho,Huo,Elad,Bruckstein,Gribonval,Nielsen]



Dirac Comb

The discrete uncertainty principle is exact.
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e /N spikes spaced v/ N apart

e Invariant under Fourier transform (f = f)

o |T|+10| =2vN



Sparse Representations

e Decompose f as a superposition of spikes and sinusoids

f(s) = Z ad(t — s) + Z o, e'®

teT wel
T = locations of spikes, (2 = frequencies of sinusoids

e Matrix form:
(81
s o (e () s
(8 79%)

e Many solutions exist, we want the sparsest.
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Example

sighal f = ¢«

spikes
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Image Processing and Sparse Representations
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IS Sparse In a cer

e See also Geometric Separation of Donoho et. al, edge/texture separation
of Starck et. al.

e Geometrical structure and texture are separate phenomena

e Each






£o-minimization

Dictionary ®: columns are spikes and sinusoids

it
da=f < (I F*) =
(8 7%

Observed signal f
Sparsest representation: solve (combinatorial problem)

min ||ef]g,

o
sit. da=f (£o-min)

|||e, = | supp «| = number of non-zero terms

When is £,-min unique?

f
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Uncertainty Principles and Sparsity
[Donoho,Huo (2001)]

Fact.: Say o is a sparse decomposition of f |la||le, = | supp a| < vV N.
f = o«

then « is the only sparse decomposition.

Reason: Uncertainty Principle

| supp f| + | supp f| > 2vV'N

Say da’ = faswell: o’ = a+ v with &y =0

(1 F) (7) P05y (”1 ) = vl > 2VN

Y2 —1
= [|&’|le, = llae +lley > VN

Consequence: « is the unique £, minimizer.



Dirac Comb

The “Dirac comb” has two representations of size v/ IN.

~h;

f
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sum of v/ IN spikes —Or— sum of /N sinusoids
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Sharp Uncertainty Principle: N Prime
[Tao (2004)]

For N prime, evenly spaced signals like the Dirac comb are impossible.

The uncertainty principle is significantly more relaxed:
| supp f| + | supp f| > N
Key: minors of the Fourier matrix have full rank
A = RqoFR

Rr, R, are restriction operators.

Compare to general UP: N vs. 2V N
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£, unigueness: IN Prime

Theorem: Let N be prime. Say af is supported on T U 2 with
bl = f  |T|+ Q] = [la¥]le, < N/2.
Then forall o/, ®a’ = f, o # «
|||y > N/2

= ot is the unique £, minimizer.

e Follows directly from relaxed UP

e Compare to general £, uniqueness result: N/2 vs. v N



“Typical” Signals

Robust UP: For an overwhelming percentage of 7', 2 with

T + [€f ~

N
viog N
it is impossible to find an f with supp f = T, supp f = .
£y-uniqueness: Given “generic” a on T' U €2, solving
min ||’ ||, s.t. da’ = f

will recover o exactly.

Tractability: If T, €2 are slightly smaller

T+ 19] ~ —
log N

then there is a tractable algorithm to recover o from f.

Similar results hold for pairs of bases B;, B-.
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Probabilistic Framework

1. Generate T, () with Bernoulli sequences

)1 w/prob T

X8 x(w) = {O w/prob 1 — 7
T = {t:x() =1}
1 = {w:x(w)=1}

We will have |T'|, || ~ TIN.

2. Generate a on T U £ from a continuous distribution.

We derive bounds that hold with very high probability.

15
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A Quantitative Robust Uncertainty Principle

Draw sets T', 2 at random with 7 = Cp;s /+/log IN:

N
\V'1og N
Then with probability 1 — O(IN—M), for any f with

|T|9 |Q| ~ CM

supp f =T
most of the energy of f lies outside of Q:
. 5 Lo g
Yo IF@)IP < IR
wel
e No f € CN exists with supp f =T, supp f = Q.

e For relatively large sets T',(}, it is impossible to concentrate
fonT and f on Q.



e Again, A = RqF R% plays a key role.

Key Estimate

Sincesupp f =T, R f|r = f, where f|r = Rrf.

> @)

we

(RoF*"RL.f

<.f|T9A*Af
|A™A|l - || f

T RQFR;f|T>

T)

e Need to show ||A*A|l < 1/2 (bound the largest eigenvalue).
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Generic £, Uniqueness

Theorem: Let T, () be sets for which the robust uncertainty principle holds,

T| + |2 = Cnm

N
Viog N’
Choose a on T U ) from a continuous distribution.
Then given f = ®«, o Is the unigue minimizer to

min ||’ ||e, S.t. da’ = f

with probability 1.

e The uncertainty principle is fundamental, but the uniqueness is not
Immediate.



£, minimization

£4-min is highly non-convex

— combinatorial algorithm required to solve it in general.

Instead, consider the convex program

winflafe, o,
S.t. Pa=s

£1 norm also a sparsity measure
£1-min convex

When are the solutions to min-¢; and min-¢; the same?
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Previous Work

Donoho, Stark: uncertainty principles, sparse recovery via £;-min
Donoho, Huo: £;-min for | supp a| < @

Bruckstein, Elad: general basis pairs, £,-min for | supp o| < .9v N
Gribonval, Nielsen, Donoho, Elad: general dictionaries

Tropp: greedy algorithms, robust recovery

Gilbert, Strauss et al. (sparse Fourier approx, random algorithm)
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Generic £, recovery

Theorem: Draw sets T, (2 at random with 7 = Cps/ log N

T] + 1] ~ Crg—
= Mg N

Choose a on T U ) from a continuous distribution with uniform phase.

Then given f = ¢, « iIs the unique minimizer to
min ||a’||e, S.t. Pa’ = f

with probability 1 — O(N—M),

We can recover “sparse” decompositions with
|T| + |2] ~ N/log N

(compare to ~ v/ N)

21
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Duality

min ||eelle,

/- -mi
st. da=f (£1-min)

e of solves £;-min < 3 X such that for P(k) = (®*\)(k)

P(k) = sgn(a®)(k) on TuUQ (1)
|

IP(k) < 1 on (T UQ)°. (2)

e Sufficient. construct min-energy A s.t. (1) is satisfied.
Check:

— if it exists

— If (2) holds

e See also Fuchs (04)
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dual vector P = &*\

spikes

fregs

spikes fregs
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Constructing the Dual Vector

P(k) € Range(®")
P(k) = sgn(a®) (k) on T:=TuUQ
IP(k) < 1 on (T UQ)-.

e Minimum energy A with Rr®*\ = Rr sgn(a?) ("least squares”):
A =R (Rr®*®R}:) ' Rrsgn(at)

e Need to invert

—1
(Rr®*®R:) ™1 A |(Rr®*®R:) ™| !
I — I —
' A 1)’ ' 1 —/[[A*A]]

with A = RoFR%.

e Eigenvalues of A* A again play a key role
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A*A = RrF*R.RoFR: |T| x |T|

Rewrite
Q 1
A*A= —1— —H
N N
where H is the random matrix

0 t=1t

N __

How big can we make |T'| and |2| and keep the eigenvalues under control?

[H| << [
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IP(k)| <1

P = ®*®R}:(Rr®*®R) ™! Ry sgn(a)
e (Rr®*®Ry)~ ! is very well conditioned

o For |T|, || ~ N/log N, the vector (Rr®*®R*)~! Rr sgn(at) has small
norm

e Use simple large deviation theory for ®*® acting on a “small” vector
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Example

coeffs o signal f = ¢«

A .l T Al A I A I

NN

spikes fregs t —

e In practice, we can recover “sparse” decompositions of size ~ N/2 (!
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Example
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Pairs of Bases
Orthogonal bases B, By, ® = (B;‘ B;).
Define
H — vV N - max |<b1,b2>| blEBl, bQEBQ.
With high probability:
e RUP: For f = By, Boas, We have

N
p?(log N)P

| supp a1 | + | supp az| ~

e /y uniqueness: Given o := (a1 a2> supportedonI' =1y U Ty, set
f = ®a. For

a Will be the unique £, minimizer.

e /1 equivalence: For I' as above, a will also be the unique minimizer of the
convex £, program.



Other Examples
e B, = spikes, B, = sinusoids

e B, = wavelets, B, = sinusoids
at fine scales, wavelets look like spikes

e B, = spikes, B, = random basis
performance is very close to spikes and sinusoids
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Conclusions

e Sparse decompositions are unique

— we can recover them from an observation of the signal
e Key: uncertainty principles
e The recovery is performed via convex optimization (min-£;)

e "Typical’ case bounds (~ N/ log IN) much more lenient than worst case

(~ v N)
e Derivation: show when the dual vector exists

e Bounds can be generalized to pairs of bases

Email: jrom@acm.caltech.edu



