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Uncertainty Principles

• Heisenberg (1927)
Uncertainty principle for continuous-time signals

f f̂

σtσω ≥
1

4π

• Limits joint resolution in time and frequency
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Uncertainty Principles
• Donoho and Stark (1989)

Discrete uncertainty principle for CN

f f̂

supp f = T supp f̂ = Ω

|T | + |Ω| ≥ 2
√

N

• Implications: recovery from partial information, unique sparse
decompositions

• Generalization to pairs of bases B1, B2

[Donoho,Huo,Elad,Bruckstein,Gribonval,Nielsen]
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Dirac Comb

The discrete uncertainty principle is exact.

f f̂

↔

t → ω →

•
√

N spikes spaced
√

N apart

• Invariant under Fourier transform (f = f̂ )

• |T | + |Ω| = 2
√

N
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Sparse Representations

• Decompose f as a superposition of spikes and sinusoids

f(s) =
∑
t∈T

αtδ(t − s) +
∑
ω∈Ω

αωeiωs

T = locations of spikes, Ω = frequencies of sinusoids

• Matrix form:

Φα = f ⇔
(
I F ∗

) αt

αω

 = f

• Many solutions exist, we want the sparsest.
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Example

coeffs α signal f = Φα

spikes freqs t →
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Image Processing and Sparse Representations

• Geometrical structure and texture are separate phenomena

• Each is sparse in a certain “basis”

• See also Geometric Separation of Donoho et. al, edge/texture separation
of Starck et. al.



8



9

`0-minimization

• Dictionary Φ: columns are spikes and sinusoids

Φα = f ⇔
(
I F ∗

) αt

αω

 = f

• Observed signal f

• Sparsest representation: solve (combinatorial problem)

min ‖α‖`0

s.t. Φα = f
(`0-min)

• ‖α‖`0 = | supp α| = number of non-zero terms

• When is `0-min unique?
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Uncertainty Principles and Sparsity
[Donoho,Huo (2001)]

Fact: Say α is a sparse decomposition of f ‖α‖`0 = | supp α| <
√

N .

f = Φα

then α is the only sparse decomposition.

Reason: Uncertainty Principle

| supp f | + | supp f̂ | ≥ 2
√

N

Say Φα′ = f as well: α′ = α + γ with Φγ = 0

(
I F ∗

) γ1

γ2

 → γ1 + F ∗γ2 = 0 ⇒ γ =

 γ1

−γ̂1

 ⇒ ‖γ‖`0 ≥ 2
√

N

⇒ ‖α′‖`0 = ‖α + γ‖`0 >
√

N

Consequence: α is the unique `0 minimizer.
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Dirac Comb

The “Dirac comb” has two representations of size
√

N .

f f̂

↔

t → ω →

sum of
√

N spikes —or— sum of
√

N sinusoids
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Sharp Uncertainty Principle: N Prime
[Tao (2004)]

• For N prime, evenly spaced signals like the Dirac comb are impossible.

• The uncertainty principle is significantly more relaxed:

| supp f | + | supp f̂ | > N

• Key: minors of the Fourier matrix have full rank

A = RΩFR∗
T

RT , RΩ are restriction operators.

• Compare to general UP: N vs. 2
√

N
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`0 uniqueness: N Prime

Theorem: Let N be prime. Say α] is supported on T ∪ Ω with

Φα] = f |T | + |Ω| = ‖α]‖`0 < N/2.

Then for all α′, Φα′ = f , α′ 6= α

‖α′‖`0 > N/2

⇒ α] is the unique `0 minimizer.

• Follows directly from relaxed UP

• Compare to general `0 uniqueness result: N/2 vs.
√

N
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“Typical” Signals

• Robust UP: For an overwhelming percentage of T, Ω with

|T | + |Ω| ∼
N

√
log N

it is impossible to find an f with supp f = T, supp f̂ = Ω.

• `0-uniqueness: Given “generic” α on T ∪ Ω, solving

min ‖α′‖`0 s.t. Φα′ = f

will recover α exactly.

• Tractability: If T, Ω are slightly smaller

|T | + |Ω| ∼
N

log N

then there is a tractable algorithm to recover α from f .

• Similar results hold for pairs of bases B1, B2.
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Probabilistic Framework

1. Generate T , Ω with Bernoulli sequences

χ(t), χ(ω) =

1 w/ prob τ

0 w/ prob 1 − τ

T = {t : χ(t) = 1}

Ω = {ω : χ(ω) = 1}

We will have |T |, |Ω| ∼ τN .

2. Generate α on T ∪ Ω from a continuous distribution.

We derive bounds that hold with very high probability.
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A Quantitative Robust Uncertainty Principle

Draw sets T, Ω at random with τ = CM/
√

log N :

|T |, |Ω| ≈ CM

N
√

log N

Then with probability 1 − O(N−M ), for any f with

supp f = T

most of the energy of f̂ lies outside of Ω:∑
ω∈Ω

|f̂(ω)|2 ≤
1
2
‖f̂‖2.

• No f ∈ CN exists with supp f = T, supp f̂ = Ω.

• For relatively large sets T ,Ω, it is impossible to concentrate
f on T and f̂ on Ω.
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Key Estimate

• Again, A = RΩFR∗
T plays a key role.

Since supp f = T , R∗
T f |T = f , where f |T = RT f .∑

ω∈Ω

|f̂(ω)|2 = 〈RΩF ∗R∗
T f |T , RΩFR∗

T f |T 〉

= 〈f |T , A∗Af |T 〉

= ‖A∗A‖ · ‖f‖2

• Need to show ‖A∗A‖ ≤ 1/2 (bound the largest eigenvalue).
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Generic `0 Uniqueness

Theorem: Let T, Ω be sets for which the robust uncertainty principle holds,

|T | + |Ω| ≈ CM

N
√

log N
.

Choose α on T ∪ Ω from a continuous distribution.
Then given f = Φα, α is the unique minimizer to

min ‖α′‖`0 s.t. Φα′ = f

with probability 1.

• The uncertainty principle is fundamental, but the uniqueness is not
immediate.
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`1 minimization

• `0-min is highly non-convex
→ combinatorial algorithm required to solve it in general.

• Instead, consider the convex program

min ‖α‖`1

s.t. Φα = s
(`1-min)

• `1 norm also a sparsity measure

• `1-min convex

• When are the solutions to min-`0 and min-`1 the same?
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Previous Work

• Donoho, Stark: uncertainty principles, sparse recovery via `1-min

• Donoho, Huo: `1-min for | supp α| ≤
√

N
2

• Bruckstein, Elad: general basis pairs, `1-min for | supp α| ≤ .9
√

N

• Gribonval, Nielsen, Donoho, Elad: general dictionaries

• Tropp: greedy algorithms, robust recovery

• Gilbert, Strauss et al. (sparse Fourier approx, random algorithm)
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Generic `1 recovery

Theorem: Draw sets T, Ω at random with τ = CM/ log N

|T | + |Ω| ≈ CM

N

log N
.

Choose α on T ∪ Ω from a continuous distribution with uniform phase.
Then given f = Φα, α is the unique minimizer to

min ‖α′‖`1 s.t. Φα′ = f

with probability 1 − O(N−M ).

We can recover “sparse” decompositions with

|T | + |Ω| ∼ N/ log N

(compare to ∼
√

N )
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Duality

min ‖α‖`1

s.t. Φα = f
(`1-min)

• α] solves `1-min ⇔ ∃ λ such that for P (k) = (Φ∗λ)(k)

P (k) = sgn(α])(k) on T ∪ Ω (1)

|P (k)| < 1 on (T ∪ Ω)c. (2)

• Sufficient: construct min-energy λ s.t. (1) is satisfied.
Check:

– if it exists

– if (2) holds

• See also Fuchs (04)
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Example

coeffs α dual vector P = Φ∗λ

spikes freqs spikes freqs
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Constructing the Dual Vector

P (k) ∈ Range(Φ∗)

P (k) = sgn(α])(k) on Γ := T ∪ Ω

|P (k)| < 1 on (T ∪ Ω)c.

• Minimum energy λ with RΓΦ∗λ = RΓ sgn(α]) (”least squares”):

λ = ΦR∗
Γ(RΓΦ∗ΦR∗

Γ)−1RΓ sgn(α])

• Need to invert

(RΓΦ∗ΦR∗
Γ)−1 =

I A∗

A I

−1

, ‖(RΓΦ∗ΦR∗
Γ)−1‖ =

1

1 −
√

‖A∗A‖

with A = RΩFR∗
T .

• Eigenvalues of A∗A again play a key role
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A∗A = RT F ∗R∗
ΩRΩFR∗

T |T | × |T |

Rewrite

A∗A =
Ω
N

I −
1
N

H

where H is the random matrix

H(t, t′) =

0 t = t′

−
∑

ω∈Ω eiω(t−t′) t 6= t′

How big can we make |T | and |Ω| and keep the eigenvalues under control?

‖H‖ << |Ω|
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|P (k)| < 1

P = Φ∗ΦR∗
Γ(RΓΦ∗ΦR∗

Γ)−1RΓ sgn(α])

• (RΓΦ∗ΦR∗
Γ)−1 is very well conditioned

• For |T |, |Ω| ∼ N/ log N , the vector (RΓΦ∗ΦR∗
Γ)−1RΓ sgn(α]) has small

norm

• Use simple large deviation theory for Φ∗Φ acting on a “small” vector
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Example

coeffs α signal f = Φα

spikes freqs t →

• In practice, we can recover “sparse” decompositions of size ∼ N/2 (!!)
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Example
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Recovery Curves

spikes/sinusoids sufficient condition
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Pairs of Bases

Orthogonal bases B1, B2, Φ =
(
B∗

1 B∗
2

)
.

Define

µ =
√

N · max |〈b1, b2〉| b1 ∈ B1, b2 ∈ B2.

With high probability:

• RUP: For f = B1α1, B2α2, we have

| supp α1| + | supp α2| ∼
N

µ2(log N)p

• `0 uniqueness: Given α :=
(
α1 α2

)
supported on Γ = Γ1 ∪ Γ2, set

f = Φα. For

|Γ| ∼
N

µ2(log N)p

α will be the unique `0 minimizer.

• `1 equivalence: For Γ as above, α will also be the unique minimizer of the
convex `1 program.
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Other Examples

• B1 = spikes, B2 = sinusoids

• B1 = wavelets, B2 = sinusoids
at fine scales, wavelets look like spikes

• B1 = spikes, B2 = random basis
performance is very close to spikes and sinusoids
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Conclusions

• Sparse decompositions are unique

– we can recover them from an observation of the signal

• Key: uncertainty principles

• The recovery is performed via convex optimization (min-`1)

• ”Typical” case bounds (∼ N/ log N ) much more lenient than worst case
(∼

√
N )

• Derivation: show when the dual vector exists

• Bounds can be generalized to pairs of bases

Email: jrom@acm.caltech.edu


