Morse Theory: 3D Object Representation for Classification...

Hamid Krim, ECE Dept. NCSU, Raleigh, Thanks due to NSF and AFOSR Acknowledge; S. Baloch, A. Ben Hamza, A. Gunduz Collaborators:M. Genton, I. Kogan, W. Mio, A. Srivastava, T. Yezzi , D. Zenkov

Given two curves ρ_1 and ρ_2 , respective tangent vectors v_1 and v_2

- **Displacement vector** d (ρ_1, ρ_2) = $\rho_2 \rho_1$
 - -~ Assume { v_1, v_2, d } form a linearly independent set
- Orthogonalize { v_1 , v_2 , d } to get { b_1 , b_2 , b_3 } $\subset \mathbb{R}^n$
- Project to { $\mathbf{v}_1, \mathbf{v}_2, \mathbf{d}$ } to \mathbb{R}^3 $\mathbf{w}_i = \langle \mathbf{v}_i, \mathbf{b}_1 \rangle \mathbf{e}_1 + \langle \mathbf{v}_i, \mathbf{b}_2 \rangle \mathbf{e}_2 + \langle \mathbf{v}_i, \mathbf{b}_3 \rangle \mathbf{e}_3, \quad i = 1, 2, 3$
- **Find** elasticæ α : $[0,1] \rightarrow \mathbb{R}^3$ that minimizes bending energy

 $E_{\alpha} = \int_{0}^{1} \kappa_{\alpha}^{2}(s) ds \quad \text{subject to} \qquad \begin{array}{l} \boldsymbol{\alpha}(0) = 0, \boldsymbol{\alpha}(1) = \mathbf{w}_{3}, \\ \dot{\boldsymbol{\alpha}}(0) = \mathbf{w}_{1}, \dot{\boldsymbol{\alpha}}(1) = \mathbf{w}_{2} \end{array}$

NC STATE UNIVERSITY

VISSTA

<section-header><section-header><section-header><section-header><text><text><text><text>

<section-header><section-header><text><text><image><image><image>

