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–– Topological encoding/GraphTopological encoding/Graph

Height function/Height function/ReebReeb graphgraph
Distance functionsDistance functions

–– Geometric encodingGeometric encoding
Graph weightingGraph weighting
Curve modelingCurve modeling
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MotivationMotivation

Generalized framework for classification and Generalized framework for classification and 
recognitionrecognition
Biomedical imaging (..surgery assistance)Biomedical imaging (..surgery assistance)
Compression of objects for storage/retrievalCompression of objects for storage/retrieval
CAD applications, Art archival, terrain CAD applications, Art archival, terrain 
modelingmodeling

[Shinagawa et. al., Schroeder, [Shinagawa et. al., Schroeder, EdelsbrunnerEdelsbrunner, , 
Schmidt et. al., Andres et. al., Schmidt et. al., Andres et. al., ……]]

Central IdeaCentral Idea……..
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Object 3D RepresentationObject 3D Representation

Challenge of 3D representationChallenge of 3D representation
–– Sheer size of object (mesh representation)Sheer size of object (mesh representation)
–– Intertwined information     Geometry Intertwined information     Geometry 

Topology Topology 

Proposed approachProposed approach

Capture both topology and geometryCapture both topology and geometry
–– Topology through a Topology through a skeletal graph
–– Geometry via Geometry via weight assignmentassignment

Weighted graphsWeighted graphs
–– For recognition/storageFor recognition/storage
–– Complete representation of shapeComplete representation of shape
–– A compact object representation (A compact object representation (Compression))

W1

W2 W3
W4

W5 W6

W7
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Previous workPrevious work
Topology modelingTopology modeling
–– ReebReeb graphgraph

Height functionHeight function
–– Shinagawa Shinagawa et al. et al. 19911991
–– Ben Hamza Ben Hamza et al. et al. 20022002

Geodesic distanceGeodesic distance
–– Lazarus Lazarus et al.et al. 19991999
–– HilagaHilaga et al. et al. 20012001
–– Schmidt Schmidt et al. 2004et al. 2004

Shape distributionsShape distributions
–– OsadaOsada et al. et al. 20022002
–– Ben Hamza Ben Hamza et al.et al. 20032003

Reflective symmetry descriptorsReflective symmetry descriptors
–– KazhdanKazhdan et al.et al. 20022002

TopologyTopology
GoalGoal: : Represent a surface/manifold in subparts Represent a surface/manifold in subparts 

which may be glued togetherwhich may be glued together

InformationInformation in Topologyin Topology
How to capture topology?How to capture topology?

– Critical pointspoints
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Critical Points of a CurveCritical Points of a Curve

Critical point

Topologically 
uniform 

Possible Change in 
topology/inflection 

Theory Dynamical Systems

Characterization of topologyCharacterization of topology

Interest in detecting topological changesInterest in detecting topological changes
Tantamount to localizing critical pointsTantamount to localizing critical points
Fast and simple means of exploring Fast and simple means of exploring 
surfacesurface
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Morse theoryMorse theory

Consider a smooth real value function defined on MConsider a smooth real value function defined on M

is a critical point of  f if is a critical point of  f if 
is called a critical value of  f is called a critical value of  f 

Analogy with a control systemAnalogy with a control system

:f →\M

( )0 0( , ) 0f u v∇ =xD

fM R

0 0 0p =(u ,v ) 

0f(p ) 

Morse FunctionMorse Function

Existence of such a function is generically Existence of such a function is generically 
guaranteed by unity partition theorem, guaranteed by unity partition theorem, i.e.i.e.

Definition:Definition: A Morse function is a smooth A Morse function is a smooth 
function on a smooth manifold and its critical function on a smooth manifold and its critical 
points are nonpoints are non--degeneratedegenerate

, , , /
({ : }) 1 ({ : }) 0

0 ( ) 1

n nA B A B on
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Morse functionMorse function

A critical point pA critical point p00=(u=(u00,v,v00) is ) is degenerate if the Hessian if the Hessian 
of             is singularof             is singular

Degenerate critical points are unstableDegenerate critical points are unstable
A smooth function A smooth function f  f  defined on a smooth manifolddefined on a smooth manifold MM

is is Morse if all of its critical points are nonif all of its critical points are non--degeneratedegenerate

f xD

x

y = x2

0

x

y = x3

0

Height FunctionHeight Function
A height function A height function on smooth manifold is a real valued on smooth manifold is a real valued 
function such that function such that 

:h → \M

( , , ) , ( , , )h x y z z x y z= ∀ ∈M

\

Z

z1

z2
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Handle decompositionHandle decomposition
{ : ( ) }t f t= ∈ ≤p pM M

{ : ( ) }t f t= ∈ =p pL M

Mc + ε0

p0

D2

0-Handle

D1

D1

1-Handle

D2

2-Handle

Lt
f

b

a

Mt

M

t

ReebReeb Graph Graph 
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ReebReeb graph graph (Reeb 1946)

–– ReebReeb graph may alternatively be described as a graph may alternatively be described as a quotient space
MM / ~  / ~  where the where the equivalence relation ~~ is defined as:is defined as:
–– pp ~ ~ qq iffiff

h h ( ( p p ) = ) = h h ( ( q q ))

/ : {[ ] : }= ∈p p∼M M [ ] { }= ∈p q q p∼M :

( )1ConnComp (Levelset( )) = ( )h h−∈p q q

Not invariant to
•Rotation

About height functionAbout height function……

Morse functionMorse function
Easily computedEasily computed
Rotationally varyingRotationally varying
Scale dependentScale dependent
Non unique graphNon unique graph
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Geodesic DistanceGeodesic Distance

Given a mesh                   as a set of vertices  Given a mesh                   as a set of vertices  
and trianglesand triangles
Characterize surface by an intrinsic featureCharacterize surface by an intrinsic feature

[[OsadaOsada et. alet. al. (00)]. (00)]
Compute cumulative  Compute cumulative  ““geodesicgeodesic”” distance of distance of 
each vertex to all other verticeseach vertex to all other vertices

( , )v T=M

1 2

( ) || '( ) ||

( ) ( )

b

a

L t dt

a v and b v

γ γ

γ γ

=

= =

∫

MR MR ReebReeb GraphGraph

Morse!Morse!
Geodesic is rotationally invariantGeodesic is rotationally invariant
Graph  characteristic of objectGraph  characteristic of object
May be computationally intensive (e.g. May be computationally intensive (e.g. 
remeshingremeshing))
Lost notion of samplingLost notion of sampling
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A new approach to topological A new approach to topological 
representationrepresentation

Distance function Distance function 

Rotation, translation and  scale Rotation, translation and  scale invariance

Evolving sphere from Evolving sphere from ddminmin to to ddmaxmax in in K K steps steps 
((resolution))

( ) :
d
d

+→

p p p
\
6

: M
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max min

( ) :
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( )
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Localization of Critical Points Localization of Critical Points 
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Evolving/exploring spheresEvolving/exploring spheres

Evolving/exploring spheresEvolving/exploring spheres
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ExampleExample

Mesh ModelsMesh Models
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ExampleExample

Object RepresentationObject Representation

Geometric Encoding           Curve modeling Geometric Encoding           Curve modeling 
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Geometric ModelingGeometric Modeling

Different techniques have been Different techniques have been 
attemptedattempted
–– Node labeling and Node labeling and homotopyhomotopy modelingmodeling
[Shinagawa et. al., 92, 00][Shinagawa et. al., 92, 00]
-- Distance distribution Distance distribution 
[Ben Hamza et. al., 2002][Ben Hamza et. al., 2002]

Geometry of Curves and  Geometry of Curves and  
ModelingModeling

All geometric information along arc  captured All geometric information along arc  captured 
by topologically homogeneous curvesby topologically homogeneous curves
For object archiving applications, the fewer For object archiving applications, the fewer 
the curves, the more efficient the the curves, the more efficient the 
representation representation 
For object  reconstruction, the larger the For object  reconstruction, the larger the 
number of curves, the better the number of curves, the better the 
reconstruction reconstruction 
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How to Capture Geometry?How to Capture Geometry?

SubmanifoldSubmanifold along  an arc is along  an arc is topologically topologically 
homogeneoushomogeneous
Model level curves on the Model level curves on the submanifoldsubmanifold independently independently 
to learn weightsto learn weights
Assign unique weights to a graph arc to capture Assign unique weights to a graph arc to capture 
geometry of the geometry of the submanifoldsubmanifold corresponding to the arccorresponding to the arc

InterpolationInterpolation

Any curve may be viewed as a point in high Any curve may be viewed as a point in high 
dimensional space [Mio dimensional space [Mio et. alet. al., 03], [K., 03], [K--MioMio--
et. alet. al., 04] ., 04] 
A set of curves lies on a manifoldA set of curves lies on a manifold
Evolution between two curvesEvolution between two curves

:[0, ] nLα → \
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A level curve at level A level curve at level rr lies inlies in

–– Level curves are therefore  inLevel curves are therefore  in

Associate a distance field to a curve Associate a distance field to a curve CC,  ,  

VectorizeVectorize { { ρρ( ( θθ, , φφ ) } to get ) } to get ρρ = ( = ( ρρ11,,……, , ρρnn ) ) 

Modeling GeometryModeling Geometry

[ , ] [ / 2, / 2]π π π πΛ = − × −

+Λ×\

:ρ Λ→ \
(( , ), ),    if ( , )

( , ) ,   ( , )
(( , ), ),    if ( , )

D
D

θ φ θ φ
ρ θ φ θ φ

θ φ θ φ
⎧+ ∈⎡ ⎤⎪ ⎢ ⎥= ∀ ∈Λ⎨− ∈⎢ ⎥⎪ ⎣ ⎦⎩

C C
C C

( , )
(( , ), ) min (( , ), ( , ))

u v
D D u vθ φ θ φ

∈
= �

C
C

: nΛ→ρ \

Evolution of level curves on a graph arc modeled by a trajectoryEvolution of level curves on a graph arc modeled by a trajectory in in 
–– Geometry completely captured by the trajectory Geometry completely captured by the trajectory 

ElasticElasticææ coefficients uniquely determine the trajectorycoefficients uniquely determine the trajectory
–– Assign the coefficients as weights to the graph arcAssign the coefficients as weights to the graph arc

Alternatively, parameterize the trajectory as Alternatively, parameterize the trajectory as 

–– is mapped to is mapped to 
–– Model        Model        with their respective with their respective Taylor series
– Fewer coefficients (weights)

Complete Object RepresentationComplete Object Representation

3:[ , ]a b →α \

3\

( )1 2 3( ) : ( ), ( ), ( )t t t t tα α αα 6

( ), 1, 2,3i t iα =
1[ , ]i ir r r +∈ [ , ]t a b∈

a

b c

d

e f

g
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ModelingModeling

Given Given mm curves curves CC11,,……,,CCm m , , at levels at levels rr11,,……,,rrmm

Optimal trajectory              minimizes some energy Optimal trajectory              minimizes some energy 
functional subject tofunctional subject to

( ) ,     1, ,i i i m= =ρ ρ "C

( ) nt ⊂ρ \

1

2

1

2

(0)
(1)
(0)
(1)

=
=
=
=

ρ ρ
ρ ρ
ρ v
ρ v
�
�

H 

Curve InterpolationCurve Interpolation
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Given two curves Given two curves ρρ1 1 and and ρρ22 , respective tangent vectors , respective tangent vectors vv1 1 and and vv22

–– Displacement vector Displacement vector dd ( ( ρρ11, , ρρ2 2 ) = ) = ρρ22 -- ρρ11

–– Assume { Assume { vv11, , vv2 2 , , d d } form a linearly independent set} form a linearly independent set

–– OrthogonalizeOrthogonalize { { vv11, , vv2 2 , , d d } to get { } to get { bb11, , bb2 2 , , bb33 }}

–– Project to { Project to { vv11, , vv2 2 , , d d } to } to 

Find Find elasticæ that minimizes that minimizes bending energy

subject tosubject to

Dimension reductionDimension reduction

1 1 2 2 3 3, , , ,       1, 2,3i i i i i= + + =w v b e v b e v b e

n⊂ \
3\

3:[0,1]→α \

3

1 2

(0) 0, (1) ,
(0) , (1)

= =
= =

α α w
α w α w� �

1
2

0

( )E s dsκ= ∫α α

ExamplesExamples

Given curves

Evolution of curves

Reconstructed surface
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ExampleExample

With basis rotation

Curvature profile

Level curves

Trajectory

ExampleExample

α1(t) – 20 coefficients

Taylor series representation of the trajectoryTaylor series representation of the trajectory

α2(t) – 20 coefficients α3(t) – 5 coefficients

α( t ) = (α1(t), α2(t), α3(t))
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Sphere evolved from Sphere evolved from rrminmin to to rrmaxmax in in KK stepssteps

KK determines resolution of determines resolution of ReebReeb graphgraph
–– Large Large K  K  

Critical points captured wellCritical points captured well
Redundant geometry informationRedundant geometry information

Two approaches for removing redundancyfor removing redundancy
–– Curvature minimizationCurvature minimization
–– CorrelationCorrelation

Redundancy in Geometric Redundancy in Geometric 
InformationInformation

Example 1Example 1

Experimental ResultsExperimental Results
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ExampleExample

Experimental ResultsExperimental Results

α1(t) – 20 coefficients

Taylor series representation of the trajectory

α2(t) – 20 coefficients α3(t) – 5 coefficients

α( t ) = (α1(t), α2(t), α3(t))

Example 2Example 2

Experimental ResultsExperimental Results

Level curves

Reconstructed 
surface
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Example 3Example 3
Experimental ResultsExperimental Results

Given 108 level 
curves

Reconstructed from 14 
curves

Conclusions/PerspectivesConclusions/Perspectives

Overview of methodologiesOverview of methodologies
Applications in classificationApplications in classification
Other applications Other applications 
–– GIS applicationsGIS applications
–– Human tracking (e.g. training and Human tracking (e.g. training and 

rehabilitation)rehabilitation)
–– Aids to physically challengedAids to physically challenged
–– Data base archiving and retrievalData base archiving and retrieval
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Curve ModelingCurve Modeling

  

nL e t  : [0 , L ]  Rα →

Each point is a curve

  ,     
 ,    ,     -  
   -   ( , )

 ,      ,    ,  
  

n

n

n

Given points p q R and unit
vectors v w R find a unit speed curve

R of scale invariant elastic energy Mumford and others
with p q as initial and terminal points and v w as
initial and

α

• ∈

∈

∈

G G

G G

{ 2 ''

  

min ( ) ( ) ( )

terminal velocity vectors

s ds with s sκ κ α=∫

Interpolation of curves Interpolation of curves 

Constraints yield a formulation of Constraints yield a formulation of 
fitting a smooth curve through two fitting a smooth curve through two 
end pointsend points
–– Minimum curvatureMinimum curvature
–– Satisfying the boundary conditions as Satisfying the boundary conditions as 

described by the two curvesdescribed by the two curves
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NL InterpolationNL Interpolation

Marching cube AlgorithmMarching cube Algorithm

Curve ModelingCurve Modeling

May be best solution to accurately May be best solution to accurately 
capture geometrycapture geometry
Classification applications of 3D objects Classification applications of 3D objects 
requires representation parsimonyrequires representation parsimony
Other weight optimization under Other weight optimization under 
investigationinvestigation
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MultiresolutionMultiresolution ReebReeb GraphGraph

Use a MR technique to construct graphUse a MR technique to construct graph

Comprehensive descriptionComprehensive description

Statistical characterization of geodesicsStatistical characterization of geodesics
[Ben Hamza et. al., 2002][Ben Hamza et. al., 2002]
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Information Theoretic Information Theoretic 
DistanceDistance

JensenJensen--Shannon divergenceShannon divergence

[Y. He, [Y. He, et. alet. al.  2002].  2002]

( ) ( )( , ) ( )
2 2

p q H p H qD p q H + +
= −

ClassificationClassification
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ExampleExample

Visualization of Distance Visualization of Distance 
FunctionFunction

Easily implemented Easily implemented 
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ImplementationImplementation

Morse Distance FunctionMorse Distance Function

To To isotropicallyisotropically explore  a surface, let  v  be a fixed point explore  a surface, let  v  be a fixed point 
in space, definein space, define

For any v in spaceFor any v in space

Let v be the Let v be the centroidcentroid of M and carry it to the originof M and carry it to the origin

[[AysegulAysegul et. al., 2003]et. al., 2003]

:d M → \

2( )  |   |d p p=

2, ( )  |   -   |vp M d p p v∀ ∈ =
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Free Form Curve Free Form Curve 
RepresentationRepresentation

d((x,y), C), if  (x,y) R;

((x,y))=
-d((x,y), C),  if (x,y)  R

.

ψ

⎧
⎪
⎨

∈

⎪

⎪
⎪⎩

∉

n
iEachcurveisa fieldΨ inR

Ω

: ( )Let Rψ Ω→ ⊆Ω\

Trajectory modelingTrajectory modeling

Constraints added to better model Constraints added to better model 
trajectorytrajectory

Point or curve/shape

Manifold M

α(1)

α(0)

α 

α

’(1)

’(0)


