Morse Theory: 3D Object
Representation for
Classification...

Hamid Krim,
ECE Dept.
NCSU, Raleigh.
Thanks due to NSF and AFOSR
Acknowledge: S. Baloch, A. Ben Hamza, A. Gunduz
Collaborators:M. Genton, I. Kogan, W. Mio, A. Srivastava, T. Yezzi, D. Zenkov

Outline

- Motivation/Background
 - 3D Shape Modeling
 - Topological encoding/Graph
 - Height function/Reeb graph
 - Distance functions
 - Geometric encoding
 - Graph weighting
 - Curve modeling
- Conclusions/Perspectives
Motivation

- Generalized framework for classification and recognition
- Biomedical imaging (surgery assistance)
- Compression of objects for storage/retrieval
- CAD applications, Art archival, terrain modeling

[Shinagawa et. al., Schroeder, Edelsbrunner, Schmidt et. al., Andres et. al., …]

Central Idea…..
Object 3D Representation

- Challenge of 3D representation
 - Sheer size of object (mesh representation)
 - Intertwined information

Proposed approach

- Capture both topology and geometry
 - Topology through a skeletal graph
 - Geometry via weight assignment

- Weighted graphs
 - For recognition/storage
 - Complete representation of shape
 - A compact object representation (Compression)
Previous work

- **Topology modeling**
 - **Reeb graph**
 - Height function
 - Shinagawa et al. 1991
 - Ben Hamza et al. 2002
 - Geodesic distance
 - Lazarus et al. 1999
 - Hilaga et al. 2001
 - Schmidt et al. 2004
 - Shape distributions
 - Osada et al. 2002
 - Ben Hamza et al. 2003
 - Reflective symmetry descriptors
 - Kazhdan et al. 2002

Topology

- **Goal**: Represent a surface/manifold in subparts which may be glued together

- Information in Topology
- How to capture topology?
 - Critical points
Critical Points of a Curve

- Critical point
- Possible Change in topology/inflection
- Topologically uniform

- Theory Dynamical Systems

Characterization of topology

- Interest in detecting topological changes
- Tantamount to localizing critical points
- Fast and simple means of exploring surface
Morse theory

- Consider a smooth real value function defined on M
 \[f : M \rightarrow \mathbb{R} \]
- $p_0 = (u_0, v_0)$ is a critical point of f if
 \[\nabla (f \circ x(u_0, v_0)) = 0 \]
- $f(p_0)$ is called a critical value of f

- Analogy with a control system

Morse Function

- Existence of such a function is generically guaranteed by unity partition theorem, i.e.
 \[A \cap B = \emptyset, A, B \subset \mathbb{R}^n, \exists \phi \text{ on } \mathbb{R}^n / \]
 \[\phi(\{ x : x \in A \}) = 1 \text{ and } \phi(\{ x : x \in B \}) = 0 \]
 and $0 \leq \phi(x) \leq 1$ elsewhere

Definition: A Morse function is a smooth function on a smooth manifold and its critical points are non-degenerate
Morse function

- A critical point \(p_0 = (u_0, v_0) \) is degenerate if the Hessian of \(f \) is singular
 - Degenerate critical points are unstable
- A smooth function \(f \) defined on a smooth manifold \(\mathcal{M} \) is Morse if all of its critical points are non-degenerate

\[
y^2 - x^2 = 0
\]

Height Function

- A height function \(h : \mathcal{M} \to \mathbb{R} \) on smooth manifold is a real valued function such that
 \[
h(x, y, z) = z, \forall (x, y, z) \in \mathcal{M}
\]
Handle decomposition

\[M = \{ p \in \mathcal{M} : f(p) \leq t \} \]

\[L_0 = \{ p \in \mathcal{M} : f(p) = t \} \]

Reeb Graph
Reeb graph may alternatively be described as a quotient space M / \sim where the equivalence relation \sim is defined as:

- $p \sim q$ iff $h(p) = h(q)$ \Rightarrow $p \in \text{ConnComp}(\text{Levelset}(q)) = h^{-1}(h(q))$

$$[p] = \{q \in M : q \sim p\}$$

Not invariant to rotation.

About height function...

- Morse function
- Easily computed
- Rotationally varying
- Scale dependent
- Non unique graph
Geodesic Distance

- Given a mesh $M=(v,T)$ as a set of vertices and triangles
- Characterize surface by an intrinsic feature
[Osada et. al. (00)]
- Compute cumulative “geodesic” distance of each vertex to all other vertices

$$L(\gamma) = \int_a^b \|\gamma'(t)\|\,dt$$
$$\gamma(a) = v_1 \text{ and } \gamma(b) = v_2$$

MR Reeb Graph

- Morse!
- Geodesic is rotationally invariant
- Graph characteristic of object
- May be computationally intensive (e.g. remeshing)
- Lost notion of sampling
A new approach to topological representation

- Distance function
 \[d : \mathcal{M} \rightarrow \mathbb{R}, \quad d(p) \cdot p \mapsto \| p \| \]
- Rotation, translation and scale invariance
 \[d_r(p) = \frac{d(p) - d_{\text{min}}}{d_{\text{max}} - d_{\text{min}}} \]
- Evolving sphere from \(d_{\text{min}}\) to \(d_{\text{max}}\) in \(K\) steps
 (resolution)

Localization of Critical Points
Evolving/exploring spheres
Example

Mesh Models
Example

Object Representation

- Geometric Encoding ↔ Curve modeling
Geometric Modeling

- Different techniques have been attempted
 - Node labeling and homotopy modeling
 [Shinagawa et. al., 92, 00]
 - Distance distribution
 [Ben Hamza et. al., 2002]

Geometry of Curves and Modeling

- All geometric information along arc captured by topologically homogeneous curves
- For object archiving applications, the fewer the curves, the more efficient the representation
- For object reconstruction, the larger the number of curves, the better the reconstruction
How to Capture Geometry?

- Submanifold along an arc is topologically homogeneous
- Model level curves on the submanifold independently to learn weights
- Assign unique weights to a graph arc to capture geometry of the submanifold corresponding to the arc

Interpolation

- Any curve may be viewed as a point in high dimensional space [Mio et. al., 03], [K-Mio-et. al., 04]
- A set of curves lies on a manifold
- Evolution between two curves
 \[\alpha : [0, L] \rightarrow \mathbb{R}^n \]
Modeling Geometry

- A level curve at level r lies in $\Lambda \times \mathbb{R}$.
 - Level curves are therefore in $\Lambda = [-\pi, \pi] \times [-\pi/2, \pi/2]$
 - Associate a distance field to a curve C, to get $\rho = (\rho_1, \ldots, \rho_n)$

\[
\rho(\theta, \phi) = \begin{cases}
+D((\theta, \phi), C), & \text{if } (\theta, \phi) \in [C'] \\
-D((\theta, \phi), C), & \text{if } (\theta, \phi) \in [C']^c
\end{cases} \\
\forall (\theta, \phi) \in \Lambda
\]

\[
D((\theta, \phi), C) = \min_{(u, v) \in C} \| (\theta, \phi) - (u, v) \|
\]

Vectorize $\{ \rho(\theta, \phi) \}$ to get $\rho = (\rho_1, \ldots, \rho_n)$

Complete Object Representation

- Evolution of level curves on a graph arc modeled by a trajectory in \mathbb{R}^3
 - Geometry completely captured by the trajectory

- Elastic coefficients uniquely determine the trajectory
 - Assign the coefficients as weights to the graph arc

- Alternatively, parameterize the trajectory as $a(t) : t \mapsto (\alpha(t), \alpha(t), \alpha(t))$
 - $t \in [a, b]$

- $r \in [r_1, r_2]$ is mapped to $t \in [a, b]$

- Model $\alpha(i), i = 1, 2, 3$ with their respective Taylor series

- Fewer coefficients (weights)
Modeling

- Given m curves C_1, \ldots, C_m, at levels r_1, \ldots, r_m
 \[p(C_i) = \rho_i \quad i = 1, \ldots, m \]

- Optimal trajectory $p(t) \in \mathbb{R}$ minimizes some energy functional subject to
 \[p(0) = \rho_0 \]
 \[p(1) = \rho_1 \]
 \[p(0) = v_0 \]
 \[p(1) = v_1 \]

Curve Interpolation
Dimension reduction

- Given two curves ρ_1 and ρ_2, respective tangent vectors v_1 and v_2
 - Displacement vector $d(\rho_1, \rho_2) = \rho_2 - \rho_1$
 - Assume $\{v_1, v_2, d\}$ form a linearly independent set
 - Orthogonalize $\{v_1, v_2, d\}$ to get $\{b_1, b_2, b_3\} \subset \mathbb{R}^3$
 - Project to $\{v_1, v_2, d\}$ to \mathbb{R}^3

- Find elastic $\alpha : [0,1] \rightarrow \mathbb{R}^3$ that minimizes bending energy

\[E_a = \int_0^1 k_0^2(s) ds \quad \text{subject to} \quad \alpha(0) = 0, \alpha(1) = w_1, \]
\[\alpha(0) = w_1, \alpha(1) = w_2 \]

Examples

- Given curves
- Evolution of curves
- Reconstructed surface
Example

Taylor series representation of the trajectory

\[\alpha(t) = (\alpha_1(t), \alpha_2(t), \alpha_3(t)) \]
Redundancy in Geometric Information

- Sphere evolved from r_{min} to r_{max} in K steps
- K determines resolution of Reeb graph
 - Large K
 - Critical points captured well
 - Redundant geometry information
- Two approaches for removing redundancy
 - Curvature minimization
 - Correlation

Experimental Results

- Example 1
Experimental Results

- Example
 - Taylor series representation of the trajectory

\[\alpha(t) = (\alpha_1(t), \alpha_2(t), \alpha_3(t)) \]

- Example 2

Level curves

Reconstructed surface
Experimental Results

Example 3

Given 108 level curves
Reconstructed from 14 curves

Conclusions/Perspectives

- Overview of methodologies
- Applications in classification
- Other applications
 - GIS applications
 - Human tracking (e.g. training and rehabilitation)
 - Aids to physically challenged
 - Data base archiving and retrieval
Curve Modeling

Let $\alpha : [0, L] \rightarrow \mathbb{R}^n$

- Given points $p, q \in \mathbb{R}^n$ and unit vectors $\tilde{v}, \tilde{w} \in \mathbb{R}^n$, find a unit-speed curve $\alpha \in \mathbb{R}$ of scale-invariant elastic energy (Mumford, and others) with p, q as initial and terminal points, and \tilde{v}, \tilde{w} as initial and terminal velocity vectors.

$$\min \left(\int \kappa^2(s) ds \mid \kappa(s) = \| \dot{\alpha}(s) \| \right)$$

Each point is a curve

Interpolation of curves

- Constraints yield a formulation of fitting a smooth curve through two end points
 - Minimum curvature
 - Satisfying the boundary conditions as described by the two curves
NL Interpolation

- Marching cube Algorithm

Curve Modeling

- May be best solution to accurately capture geometry
- Classification applications of 3D objects requires representation parsimony
- Other weight optimization under investigation
Multiresolution Reeb Graph

- Use a MR technique to construct graph

Comprehensive description

- Statistical characterization of geodesics
 [Ben Hamza et al., 2002]
Information Theoretic Distance

- Jensen-Shannon divergence

\[D(p, q) = H\left(\frac{p+q}{2}\right) - \frac{H(p) + H(q)}{2} \]

[Y. He, et. al. 2002]

Classification
Example

Visualization of Distance Function

- Easily implemented
Implementation

To isotropically explore a surface, let v be a fixed point in space, define

$$d : M \to \mathbb{R}$$

For any v in space

$$\forall p \in M, d_v(p) = |p - v|^2$$

Let v be the centroid of M and carry it to the origin

[Aysegul et. al., 2003]

$$d(p) = |p|^2$$

Morse Distance Function
Free Form Curve Representation

Let $\psi : \Omega \rightarrow \mathbb{R} \ (R \subseteq \Omega)$

\[
\psi((x,y)) = \begin{cases}
 d((x,y), C), & \text{if } (x,y) \in R; \\
 -d((x,y), C), & \text{if } (x,y) \notin R
\end{cases}
\]

Each curve is a field Ψ_i in \mathbb{R}^n

Trajectory modeling

- Constraints added to better model trajectory