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Statistics of “Natural Images”

In recent years, there has been a growing interest in studying the
statistics of natural images:
1/f-power law, high kurtosis, scale invariance, high-order structures, ...

Ruderman and Bialek 87, 94
Fields 87, 94

Zhu and Mumford 95-96

Chi and Geman 97-98

Lee, Mumford and Gidas 00-02
Simoncelli etc 98-03

i

Natural Images often refer to the scenes that
contain objects in continuous scales.
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Research Stream 1. Seeking Scale Invariant Image Models

Rational:
Let p be a probability measure on generic images 1(x,y), then p should be
scale-invariant, because images are observed at arbitrary scales, i.e.

p((x,y)) = pd(ox,0y)) c>0

Such probability does not exist, instead people look for models that are
approximately scale invariant, including Markov random fields and generative models.

. o

]

(Zhu and Mumford 1996) (Lee and Mumford 1997) (Chi and Geman 1998)
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But Statistics Change over Scales

When we zoom out from a natural scene, the image entropy rate
increases (assuming the images are renormalized).

Entropy rate (bits/pixel)

Comparnsan of DX entrogy. jpeg 2000 coding and matching pursut

c
s

e

Y

Ze coding rate and mp

Do entropy.

Sobd DX antropy
1} Deshed jpeg2000 codng rate

Dotied nurnber of DOOG bases when reaching 30% MSE

1 2 4 -
chstance

Fall, 2004 GRC on Sensory Coding and IPAM on Multiscale Geometric Analysis Song-Chun Zhu




Research Stream 2. Seeking Fundamental Image Elements

Sparse coding, Olshausen and Felds, 95

X-lets, Donoho School 98-04

Transformed Component Analysis, Frey and Jojic 00

Textons, Leung and Malik 99, Guo, Zhu and Wu, 01,02, (Dated back to Julesz)
Image primitives, Guo, Zhu and Wu, ICCV, 03 (Dated back to Marr)
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But Image Elements (Dictionary) Change Over Scales

MSE vs. base number MSE vs. base number

Solid bne: with DOOG bases
Dashed kne. with primitves

Solid bne: with DOOG bases
Dashed kne. with primitves

Solid bne: with DOOG bases
Dashed kne. with primitves
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MEan Square emor per pixel
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Two Dictionaries Used

DOOG bases Image Primitives
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Our Perception Changes Over Scales!

Our perception of visual patterns jumps (both mild and catastrophic)
over scales, so should the statistical models!
Such transition is not accounted for in the scale-space theory or pyramids.

This picture contains leaves
at four ranges of distance, over
which our perception changes.

A: see individual leaves with
sharp edge/boundary
(occlusion model)

B: see leaves but blurry edge
(additive model)

C: see a texture impression
(MRF)

D: see constant area
(iid Gaussian)
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A Theoretical Problem:
Gap Between Two Theoretical Foundations

How do we represent/mix two different patterns consistently?
and what trigger the perceptual transition (jump)?

a). Markov random fields,
from statistical physics.

b). Image coding, wavelet et al,
from harmonic analysis.
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Theory 1: MRF for Modeling Texture Patterns

A texture=O(h)={1I: lim % > h(le.p)=h,, [h,|=k}
(Lj)eA
H, are histograms of Gaborﬁlters, i.e. marginal distributions (zhu, Wu, Mumford, 1996-01)

For images I drawn in
-~ the ensemble, any local
patch follows a Markov
random field model
(FRAME),

I~ Q(h) k=0

I ~Q(h) k=1

I~ Q(h) k=4 I ~ Q(h) k=7

I ~Q(h) k=3
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Theory 2: Image COdIng I:Zajbj+n, Dis a dictionary

jeb

matching
pursuit
(Mallat-Zhang 93)
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Comparison of the Two Theories

1. Markov Random Fields --- Descriptive model h(I)=h,

Statistical Physics
Effective on texture but not structures

Implies population coding (pooling)

2. Image Coding --- Generative model [=g(W; D)
Harmonic Analysis

Effective on structures but not texture
Implies winner-take-all (lateral inhibition)

They work on different entropy regimes!
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Definition: Image Complexity

Let I~ p(I) defined on lattice A  the image complexity — H(I) :
is defined as the entropy of p(I)

H(D) ==Y p(Dlogp(T)

Image Complexity Rate (per pixel) is:

—HQO)
H()=——
@D A

Down-scaling = local smoothing + down-sampling
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Local Smoothing Theorem

Suppose we smooth image I to J by kernel K. 1

Theorem 1: The smoothing operator decreases the entropy rate

ﬁ(])—ﬁ(l)";zz)jlog |k(w)|dw <0

~

k(w) Fourier transform of kernel k

[1og [k(w)| dw <0

Image complexity rate is decreasing with local smoothing (by a constant
related to the kernel).

Fall, 2004 GRC on Sensory Coding and IPAM on Multiscale Geometric Analysis Song-Chun Zhu




Image Down-Sampling

I:(I(l) 1@ 1® I(4))

4
%Zﬁ(p_m) ~HDH =M1V, 12,12,19) > 0
k=1

M(...): mutual information
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Down-Sampling Theorem

Theorem 2:

Image complexity decreases with down-sampling.

H(I¥)<H(), k=12,3,4

(a down-sampled image has less information than the original image)

Image complexity rate increases with down-sampling.

%iﬁa(})) > H(I)

(there is less mutual information between pixels in a down-sampled image,
and thus it looks more random.)
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Complexity Scaling Law

Image complexity rate changes by M-K with down-scaling.

Ye 21 [?_ﬁ LAY ::‘, 1, ﬁ : "l'r v

Down-
sampling |-
I g 70
1 & — — i
—> HJ¥)-H®D M-K
413
Scale Invariant if M= M(I(l) 19 1® 1(4))
M~K

KE-J.logllAi(w)ldw
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Example: zooming out with natural scene
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Entropy rate (bits/pixel) over distance

Comparison of DX entropy, jpeg 2000 coding and matching pursuit
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Synthetic Example: Down Scaling
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Synthetic Complexity Rate

D entropy vs. downscaling
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Definition: Perceptibility Scaling

Let W be the description of the scene (world), W ~ p(W)

Assume: generative model [ = g(W)

1. Scene Complexity is defined as the entropy of p(W)
H(W) = =) p(W)logp(W)
w

2. Imperceptibility is defined as the entropy of posterior p(W|I)
H(W 1) =~ p(W)logp(W | I) = H(W) —H(I)
w

Imperceptibility = Scene Complexity — Image complexity
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Perceptibility Scaling Law

Theorem 3: Imperceptibility increases with down-scaling.
If W~p(W), I=g(W), I =R(I) by down-scaling
Then HW |1 )>H(W|I)

1 statistical W
-+
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A Simplified Physical Model

Let a scene W consists of N iid distributed planar objects, N=10%3.

This is called a micro-canonical ensemble in physics and a marked point process in statistics

H:{(Xpyi,ri,li), izl,Z,...,N. },
x,y,))~unif, A, =t |~ f(A), Ae[d,,A

min > “ “max ]

Suppose we view the scene at scale o,
a pixel r covers a domain r(x,y) with a resolution 2.
a patch R covers a domain with 5x8 pixels,
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The effects of scaling

After scaling and down-sampling, we obtain a new process.

Ha = {(XjaYi>rian)a i= 152’---5N}’ (X’ Y, I) ~ unifa
A=t | ~ £, (4)=2% £,(27 4)

\
o ()
N :
N '
NG £,(4)
Apalfh Amﬂx max Ia
220
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A 5x8 Patch Model

1= a;b;, D={k: Rnr #4},

jeD
a. =1, b (x,y)=|r(x,y)Nr, |is abase by
1= by =lrxyon] 0.00, 0.00, 0.00
. | | 0.19, 0.65, 0.08
(] _ 0.10, 0.27, 0.04
h 0.00, 0.00, 0.00
(] [
o0 © () ® °
. - -
< 0 \ 0 - 0 0 b
L 2N k
o (] 0.0, 0.0, 0.0
f \ 0.0, 0.05, 0.0
0 < _ ‘ ) ‘ 0.0, 0.0, 0.0
<0 @ | b,
' 0.0, 0.0, 0.0, 0.0
Y | 0.0, 0.41, 0.28, 0.0
() \ | 17, 0.0
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A Patch Model

Now we can divide the set D (objects overlapping patch R) into three subsets

1= a,b+ Y a,b+ > a.b, D=D, uD,uUD,

ieD; jeD, keD;

1. D, includes objects whose size (at least in 1 dimension) is larger than the patch.
D, ={i: dim(r,) > dim(R), 1, eI1}, n, = D,|

If n,<2, then it is non-sketchable. If n,>=2, then sketchable n, is the degree of the primitive
2. D, includes objects whose size is smaller than the patch but bigger than pixel
D, ={j: dim(r) <dim(r;) < dim(R), 1, €[1}, n, =D, |
Such objects may not cause noticeable structures, but generate pixel correlations and textures.

3. D, includes objects whose size is smaller pixel, these objects produce the iid noises.
D, ={k: dim(r,) < dim(»), r, €eIl}, n,=D,]|
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Image patches at various entropy regimes
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Summary: Regimes of Image Models

Zooming out, we see more objects in a window until the biggest object size

Rax IS sSmaller than the window size.

Entropy rate
ans ”””””””” "”"”"" ”””””””””” : ”””””””” : ””””””””””””””””””

: d@iiql zooming |
1bis S T N— S
Piecewise const ‘Texture ~ “Natural’ images‘ GMRF ‘ iid noise
(one leaf) (ivy wall) iid noise const.
[one depth]  [one depth] [varying depth] image
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Primal Sketch : mixing three regimes of models
(Guo, Zhu and Wu iccv03)

yn imae synthesized textures sketch image
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Learned Image Primitive (non-linear)

Part of the image primitive dictionary (Guo, Zhu and Wu, ICCV 03)

Each primitive has
degree=d control points
warping the patch.

T
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Comparison with Image Coding

Symbolic sketch of Gabor/LoG bases
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Primal Sketch: two-level MRF

Gestalt (Markov random) Field

Texture (Markov random) Field
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The Primal Sketch Model

Koi
A :Ansk o Ask’ Ask = Ui:l Ask (egeo)

IASk (Xa Y) = Bé (X -0, y- Vi 9geo 4 epho )’ (X’ Y) < A;k (egeo)'
£ indexes the type.

IAnsk ~ p(IAnsk |IAsk; ﬂ)
is a FRAME model (MRF)

The sketch is a mixed Markov field with dynamic neighborhood
S=(V,E) ~p(V,E)
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Primal Sketch Experiments

inout sketching
pu pursuit
|
synthesized § primal
sketches
| ]

Fall, 2004 GRC on Sensory Coding and IPAM on Multiscale Geometric Analysis Song-Chun Zhu




Primal Sketch Experiments

input

synthesized
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Primal Sketch Experiments

synthesize

sketch pursuit
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Primal Sketch Experiments

sketch pursuit
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synthesized image sketches
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Primal Sketch Experiments

Input image

Sketch Reconstruction
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Primal Sketch Experiments

~
sketch pursuit
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Removing the Components in the horse riding image
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The Histogram Changes in Horse riding

After removing the structured (low entropy rate) patches, the
I, histogram approaches Gaussian.
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Kurtosis Changes in Horse riding Image

Fall, 2004

Kurtosis of DX histograms
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What Occurs in Image Scaling?

sl ™
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Experiment by Y.Z. Wang
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What occurs in perception when up-scaling?

1. Image sharpening on boundaries Sl -

N YY" "B an

e.g. birth of a sketch, or splitabarto 2 edges ' = ¢ g g~ /= o~

---- handled by graph grammar. rrErEreErerr
A LTI

3. Catastrophic transition EEEEmss s BB B =

e.g. from texture to 100s primitives FrerryYyyy
m——— 4
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Topologic changes over multi-scales

The current scale-space theory is _J |_ ‘ +
based on continuous Gaussian T |_
--Laplacian pyramids. While it is [

suitable for the retina and LGN,
it is wrong for V1.

We need a new scale-space theory
which is multi-layer of primal sketches 7L
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Example of hierarchic graph of face

Inputimage |+«——— Reconstructed i |mage over scales

ReconStrUCtloanSIdual . . . .
=
G over scales \/
(Xu, Chen and Zhu, 2004)

The sketch (graph) r
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Theory 1, Minimizing Shannon Entropy

Hp_/ log ﬁ)dI log |2,

The models are augmented by pursuing best features h,
so as to minimize the entropy or volume,

€2, Qo
2, |

Until the information gain of the best feature is statistically insignificant.

hy = argmax H, — =log
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