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Motivations

Want sparse data representation (compression) =⇒

Fast decay of the expansion coefficients

Want a data representation as less statistically
dependent among blocks as possible =⇒ No overlaps
among blocks

Want to develop a local signal analysis tool that can
distinguish intrinsic singularities from the artificial
discontinuities created by local windowing =⇒ many
potential applications

Want to efficiently represent regions of more general
shapes other than rectangular blocks
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Life on an Interval (or a Domain)

If data are periodic and smooth, the Fourier basis is very
efficient:

Fast decay of the Fourier coefficients

Smoothness estimate (e.g., the Lipschitz/Hölder
exponents)

However, most signals and images of interest have compact

supports, and are neither periodic nor smooth. What to do?
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Life on an Interval (or a Domain) . . .

Design special wavelets (“wavelets on intervals”);

Use “multiwavelets” of Alpert and Rokhlin (segmented
orthogonal polynomials);

Use “Prolate Spheroidal Wave Functions”;

Use the “Continuous Boundary Local Fourier
Transform” (CBLFT) that periodizes the signal nicely
and expand it into a periodic basis; or

Use the “Polyharmonic Local Trigonometric Transform”
(PHLTT) and its generalizations
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Basic Ideas of PHLTT

Split the domain Ω into a set of subregions (often
rectangular blocks) {Ωj}j and cut the data/function f

into pieces using the characteristic functions, fj = χΩj
f

fj is decomposed into two parts uj + vj

uj is a solution of the polyharmonic equations ∆mu = 0

with Dirichlet/Neumann boundary conditions

vj is a residual fj − uj, which are expanded into the
multiple Fourier series (either complex exponentials,
sines, or cosines)

Sines and cosines are eigenfunctions of the Laplacian
on a rectangular box

MGAWS1: Sep. 21, 2004 – p.6



Basic Ideas of PHLTT

Split the domain Ω into a set of subregions (often
rectangular blocks) {Ωj}j and cut the data/function f

into pieces using the characteristic functions, fj = χΩj
f

fj is decomposed into two parts uj + vj

uj is a solution of the polyharmonic equations ∆mu = 0

with Dirichlet/Neumann boundary conditions

vj is a residual fj − uj, which are expanded into the
multiple Fourier series (either complex exponentials,
sines, or cosines)

Sines and cosines are eigenfunctions of the Laplacian
on a rectangular box

MGAWS1: Sep. 21, 2004 – p.6



Basic Ideas of PHLTT

Split the domain Ω into a set of subregions (often
rectangular blocks) {Ωj}j and cut the data/function f

into pieces using the characteristic functions, fj = χΩj
f

fj is decomposed into two parts uj + vj

uj is a solution of the polyharmonic equations ∆mu = 0

with Dirichlet/Neumann boundary conditions

vj is a residual fj − uj, which are expanded into the
multiple Fourier series (either complex exponentials,
sines, or cosines)

Sines and cosines are eigenfunctions of the Laplacian
on a rectangular box

MGAWS1: Sep. 21, 2004 – p.6



Basic Ideas of PHLTT

Split the domain Ω into a set of subregions (often
rectangular blocks) {Ωj}j and cut the data/function f

into pieces using the characteristic functions, fj = χΩj
f

fj is decomposed into two parts uj + vj

uj is a solution of the polyharmonic equations ∆mu = 0

with Dirichlet/Neumann boundary conditions

vj is a residual fj − uj, which are expanded into the
multiple Fourier series (either complex exponentials,
sines, or cosines)

Sines and cosines are eigenfunctions of the Laplacian
on a rectangular box

MGAWS1: Sep. 21, 2004 – p.6



Basic Ideas of PHLTT

Split the domain Ω into a set of subregions (often
rectangular blocks) {Ωj}j and cut the data/function f

into pieces using the characteristic functions, fj = χΩj
f

fj is decomposed into two parts uj + vj

uj is a solution of the polyharmonic equations ∆mu = 0

with Dirichlet/Neumann boundary conditions

vj is a residual fj − uj, which are expanded into the
multiple Fourier series (either complex exponentials,
sines, or cosines)

Sines and cosines are eigenfunctions of the Laplacian
on a rectangular box MGAWS1: Sep. 21, 2004 – p.6



1D Case

In 1D, each uj is a low order algebraic polynomial (e.g.,
line, cubic poly.)

vj is a trigonometric polynomial

These two compensate the shortcomings of each
other:

High order algebraic polynomial =⇒ Runge
phenomenon

Trigonometric polynomial on an interval =⇒ Gibbs
phenomenon
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1D Example: Compression Ratio ≈ 6
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Polyharmonic Global Sine Transform on a Rectangle

Consider a function f ∈ C2m(Ω), where m = 1, 2, . . .,
and Ω ⊂ R

n (e.g., Ω = [0, 1]n), but not periodic.

Decompose this function into the following two
components:

f(x) = u(x) + v(x),

u(x) satisfies the following polyharmonic equation:

∆mu = 0 in Ω.

MGAWS1: Sep. 21, 2004 – p.9



Polyharmonic Global Sine Transform on a Rectangle

Consider a function f ∈ C2m(Ω), where m = 1, 2, . . .,
and Ω ⊂ R

n (e.g., Ω = [0, 1]n), but not periodic.

Decompose this function into the following two
components:

f(x) = u(x) + v(x),

u(x) satisfies the following polyharmonic equation:

∆mu = 0 in Ω.

MGAWS1: Sep. 21, 2004 – p.9



Polyharmonic Global Sine Transform on a Rectangle

Consider a function f ∈ C2m(Ω), where m = 1, 2, . . .,
and Ω ⊂ R

n (e.g., Ω = [0, 1]n), but not periodic.

Decompose this function into the following two
components:

f(x) = u(x) + v(x),

u(x) satisfies the following polyharmonic equation:

∆mu = 0 in Ω.

MGAWS1: Sep. 21, 2004 – p.9



PHGST on a Rectangle . . .

The boundary condition for u is:

∂p`u

∂ νp`
=

∂p`f

∂ νp`
on Γ = ∂Ω, ` = 0, . . . ,m − 1,

where p` is the order of the normal derivatives to be
specified (p0 ≡ 0 ⇔ u = f on Γ).

Now set v(x) = f(x) − u(x), which we will call the
residual component with

∂p`v

∂ νp`
= 0 on Γ, ` = 0, . . . ,m − 1.
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A Specific Example: m = 1 (Laplace) Case







∆u = 0 in Ω,

u = f on Γ.

Variational formulation =⇒ minimum gradient interpolation:

min
u∈H1(Ω)

∫

Ω

|∇u|2 dx subject to the above boundary condition.

Note that in 1D, this is simply a line.
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A Specific Example: m = 2 (Biharmonic) Case







∆2u = 0 in Ω,

u = f,
∂2u

∂ ν2
=

∂2f

∂ ν2
on Γ.

Variational formulation =⇒ minimum curvature
interpolation:

min
u∈H2(Ω)

∫

Ω

(

∆u + 2
∑

j 6=k

∂j∂ku

)2

dx,

subject to the above boundary condition.

Note that in 1D, this is simply a cubic polynomial.
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PHGST on a Rectangle . . .

The polyharmonic component u is smooth inside the
domain Ω, and its values (and possibly its normal
derivatives) matches those of data.

The u component can be represented only by the
boundary values f |Γ. =⇒ No need to store the whole
u.

The residual component v becomes 0 at the boundary
Γ.

MGAWS1: Sep. 21, 2004 – p.13



PHGST on a Rectangle . . .

The polyharmonic component u is smooth inside the
domain Ω, and its values (and possibly its normal
derivatives) matches those of data.

The u component can be represented only by the
boundary values f |Γ. =⇒ No need to store the whole
u.

The residual component v becomes 0 at the boundary
Γ.

MGAWS1: Sep. 21, 2004 – p.13



PHGST on a Rectangle . . .

The polyharmonic component u is smooth inside the
domain Ω, and its values (and possibly its normal
derivatives) matches those of data.

The u component can be represented only by the
boundary values f |Γ. =⇒ No need to store the whole u.

The residual component v becomes 0 at the boundary
Γ.

MGAWS1: Sep. 21, 2004 – p.13



PHGST on a Rectangle . . .

Therefore, the v component is suitable for Fourier
analysis. In fact, if Ω = [0, 1]n and p` = 2`,
` = 0, . . . ,m − 1, then the Fourier sine analysis should
be used to get the matching normal derivatives up to
order 2m − 1 by odd reflection at the boundaries.

The frequency content (in particular, mid to high
frequency range) of the original is retained in the
residual =⇒ textures remain in v; shading is captured
by u.

We can get the decay rate as follows:
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Theorem

Let Ω = [0, 1]n, and f ∈ C2m(Ω), but non-periodic. Assume
further that ∂2m+1

i f , i = 1, . . . , n, exist and are of bounded
variation. Furthermore, let f = u + v be the PHLST
representation where the polyharmonic component u is the
solution of the polyharmonic equation of order m with the
boundary condition

∂2`u

∂ ν2`
=

∂2`f

∂ ν2`
on Γ, ` = 0, . . . ,m − 1.

Then, the Fourier sine coefficient bk of the residual v is of

O
(

‖k‖−2m−1
)

for all k 6= 0, where k = (k1, . . . , kn), and ‖k‖

is the usual Euclidean (i.e., `2) norm of k.
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Polyharmonic Local Sine Transform

Now, consider a decomposition of Ω into a disjoint set of
subdomains {Ωj}, i.e., Ω = ∪J

j=1Ωj. A typical example is
Ω = (0, 1)n, and Ωj is a dyadic subcube. Then, restrict f on
Ωj, i.e., for each j, we decompose f locally as follows:

fχΩj
= fj = uj + vj,

where we follow the same recipe locally as in the global
case. We call this decomposition of f into {uj , vj}

Polyharmonic Local Sine Transform (PHLST).
For m = 1: Laplace Local Sine Transform (LLST);

For m = 2: Biharmonic Local Sine Transform (BLST).
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Polyharmonic Local Sine Transform . . .
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Polyharmonic Local Sine Transform . . .
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Polyharmonic Local Sine Transform . . .

No spatial overlaps

Decay of the Fourier sine coefficients are fast if Ωj

does not contain any singularity

Can distinguish intrinsic singularities from the artificial
discontinuities at Γj imposed by local windowing
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Remarks on the Laplace Solver

A fast and accurate (no finite difference approximation
of the Laplace operator) algorithm (for both 2D and 3D)
exists via FFT if Ω and Ωj are dyadic cubes (Averbuch,
Braverman, Israeli, and Vozovoi, 1998)

The u component can be computed as:

u(x, y) = p(x, y) +
∑

k≥1

{b
(1)
k hk(x, 1 − y) + b

(2)
k hk(y, 1 − x)

+ b
(3)
k hk(x, y) + b

(4)
k hk(y, x)},

where . . .
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Remarks on the Laplace Solver

p(x, y) is a harmonic polynomial that agrees with
f(x, y) at the four corner points of the domain, e.g.,

p(x, y) = a3xy + a2x + a1y + a0,

hk(x, y) is defined as:

hk(x, y)
∆
= sin(πkx)

sinh(πky)

sinh(πk)
,

where b
(j)
k are the kth 1D Fourier sine coefficients of

the boundary data of f − p.

The computational cost of u is O(4N 2 log N).
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Remarks on PHLST

Need to store the boundary values =⇒ can compress
them using the lower dimensional version of PHLST

Can use complex exponentials, wavelets, etc., instead
of sines with potentially slower decay

Can do in the frequency domain =⇒ better wavelet
packets

Can be generalized to other geometries (e.g., discs,
spheres, star shapes, general smooth boundaries)

Useful for interpolation and local feature computation
(e.g., gradients, directional derivatives, etc.)
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f = u + v Models: Interpretation of PHLTT

f = u + v models of Yves Meyer (2001):

u ≡ objects (e.g., ∈ BV (Ω))

v ≡ textures and noise

In PHLTT, the polyharmonic component u is what is
predictable from only using the boundary behavior of a
function.

The residual component v is what is unpredictable
using the boundary information.

Yet another interpretation is: u: trend, v: fluctuation.
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f = u + v Models: Interpretation of PHLTT . . .

Many possible ideas here once we view this as
predicition from the available data:

A. Cohen et al. uses inpainting algorithm for predicting
u components

Relationship with geometric harmonic analysis of
Coifman & Lafon

Other inverse boundary problems . . .
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LLST Approximation Experiment

Comparison with DCT, the fixed folding local cosine
(LCT), and Wavelet (Coiflet 12).

Split into a set of squares of 32 × 32 pixels or 16 × 16

pixels

Select the largest 1% and 5% of coefficients.

Compression using quantization is in progress.
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LLST Approximation Experiment: Top 1%
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Zoomed up images: Top 1%
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LLST Approximation Experiment: Top 5%
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Zoomed up images: Top 5%
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Approximation Test: Smooth Function
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Approximation Test: Piecewise Smooth Function
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Approximation Test: Oscillatory Function
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Approximation Test: Oscillatory Function with Discontinuity
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Extension to 3D

Boundary data contains more information compared to
1D and 2D

Fast 3D Laplace solver exists (the ABIV algorithm with
our new organization of data): O(12N 3 log N)

Nicely recursive: corners; edges; faces; body contents

Many possibilities: hierarchical decomposition,
parallelization, 3D feature extraction, . . .

Promising applications include analysis and
compression of 3D seismic, medical, and video data,
. . .
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Extension to General Shape Domains

Consider a general-shaped domain Ω ⊂ R
n.

Want to analyze the frequency information inside of the
object.

Want to avoid the Gibbs phenomenon due to Γ.

=⇒ Smoothly extend the function defined on Ω to the out-

side!
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Object-Oriented Image Analysis

(a) Original (b) Background

(c) Object (d) AnomaliesMGAWS1: Sep. 21, 2004 – p.35



Object-Oriented Image Analysis . . .

Suppose its boundary Γ is already detected explicitly.

Let f ∈ C2(Ω) ∩ C(Ω).

Let S be a rectangular domain containing Ω.

Then, we will find a smooth extension ṽ to the entire S

from Ω and the harmonic function u in Ω:

∆ṽ =







∆f in Ω,

0 in S\Ω,

ṽ = 0 on ∂S.
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from Ω and the harmonic function u in Ω:

∆ṽ =
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Motivations for ṽ

ṽ is essentially the same as f in Ω modulo some
harmonic function (in fact, this harmonic function
becomes the u component);

ṽ is harmonic (i.e., very smooth) in S\Ω (outside of Ω);

can show ṽ ∈ C1(S)

can also show ṽ|S\Γ ∈ C2(S\Γ)

ṽ|∂S = 0 =⇒ suitable for Fourier sine series expansion,
with decay rate O(‖k‖−3).
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can also show ṽ|S\Γ ∈ C2(S\Γ)
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ṽ is harmonic (i.e., very smooth) in S\Ω (outside of Ω);

can show ṽ ∈ C1(S)
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How to compute ṽ

Introduce the potential function:

P (x)
∆
=

∫

Ω

∆f(y)Φ(x,y) dy for x ∈ R
n.

where

Φ(x,y)
∆
=







1
2π

log ‖x − y‖ if n = 2,
‖x−y‖2−n

(2−n)ωn
if n > 2,

is the so-called fundamental solution of the Laplace
equation.

MGAWS1: Sep. 21, 2004 – p.38



How to compute ṽ . . .

Can show that P satisfies the above Poisson equation:

∆P =







∆f in Ω,

0 in S\Ω,

But the boundary condition at the outside box is not
satisfied, i.e., P |∂S 6= 0.
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How to compute ṽ . . .

Introduce now a boundary correction function Q:

∆Q = 0 in S,

Q = −P on ∂S;

Finally set ṽ(x) = P (x) + Q(x), which satisfies the
desired conditions.
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How to compute ṽ . . .

Can write the solution via single layer and double layer
potentials as:

P (x) = χ̃Ω(x)f(x)+

∫

Γ

(

∂f

∂ν
(y)Φ(x,y) − f(y)

∂Φ(x,y)

∂νy

)

ds(y),

where

χ̃Ω(x) =















1 if x ∈ Ω;

1/2 if x ∈ Γ;

0 if x ∈ R
n\Ω.
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Object-Oriented Image Analysis . . .

The u component satisfies:

∆u = 0 in Ω,

u = f − ṽ on Γ.

u can be recovered from f |Γ,
∂f

∂ν

∣

∣

∣

Γ
, and ṽ via Fast

Multipole Method (just potential evaluation, no need to
solve the Laplace equation).
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1D Example
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2D Example
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2D Example . . .
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The Fourier Transform Magnitudes (log-scale)
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The Fourier Transform Magnitudes (log-scale)
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Another example

100 200 300 400 500 600

50

100

150

200

250

300

350

400

450

MGAWS1: Sep. 21, 2004 – p.47



Another example . . .
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Related Previous Work

Whitney (1934): Smooth extensions of Cm(Ω) functions in
R

n, and the Whitney decomposition

Zygmund (1935): Removable discontinuities

Lanczos (1938,1966): Trigonometric interpolation with
linear/polynomial component removal

Kantrovich & Krylov (1958): Rapidly convergent
trigonometric series by polynomial removal

Briggs (1974): Minimum curvature surface interpolation

Grimson (1981): Visual surface reconstruction

Terzopoulos (1983): Multilevel visual surface reconstruction
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Related Previous Work . . .

Leclerc (1989): Image segmentation using MDL and local
polynomials

Wahba (1990): Variational formulation/multivariate splines

Dimitrov (1996): Polyharmonic functions for quadratures

Kounchev (1993-2001): Theory of polysplines

Casas & Torres (1996): Two-stage coding

Caselles, Morel, & Sbert (1998): Axiomatic interpolation

All of them except Lanczos mainly focus on the u-component.

Lanczos explored neither higher dimensions nor multiscale set-

ting. MGAWS1: Sep. 21, 2004 – p.50



Conclusions

PHLTT and its generalizations:

Provide a compact image/data representation scheme

Proactive use of boundary information

Can get faster decay expansion coefficients

Allow object-oriented image analysis & synthesis

Variety of applications: segmentation, compression,
interpolation, local feature computation, 3D, . . .
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Comments

This general area is a “meeting ground” of image
processing, harmonic analysis, PDEs, and shape
optimization

A large possibility for prediction operators from
boundary

Anisotropy and many interesting issues

Reliability of boundary information and noise is an
issue
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Thank you very much for your attention!
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