Learning sparse representations of static and time-varying natural images

Bruno A. Olshausen

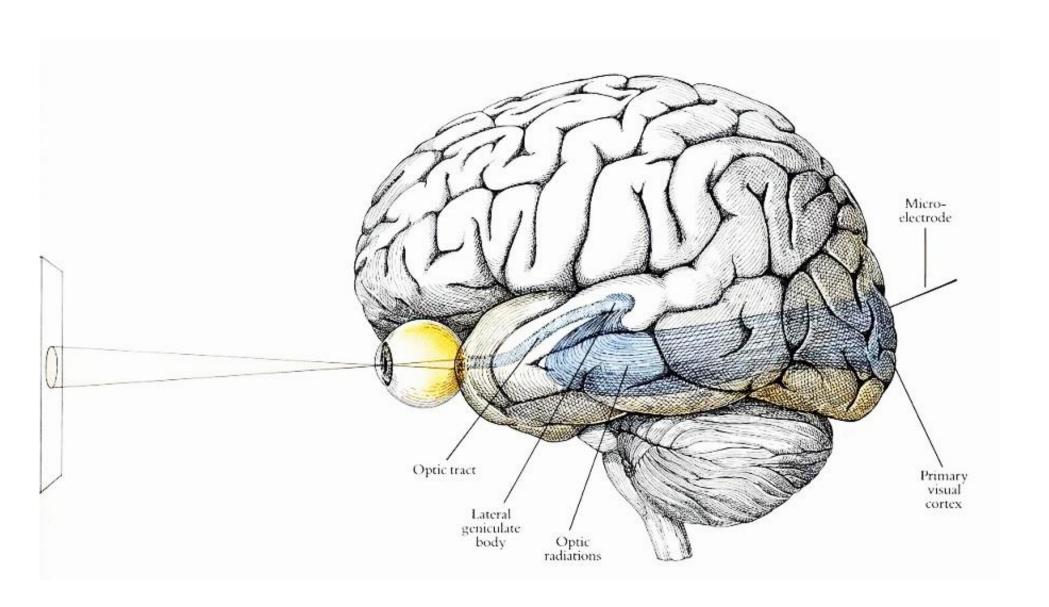
Center for Neuroscience, U.C. Davis

&

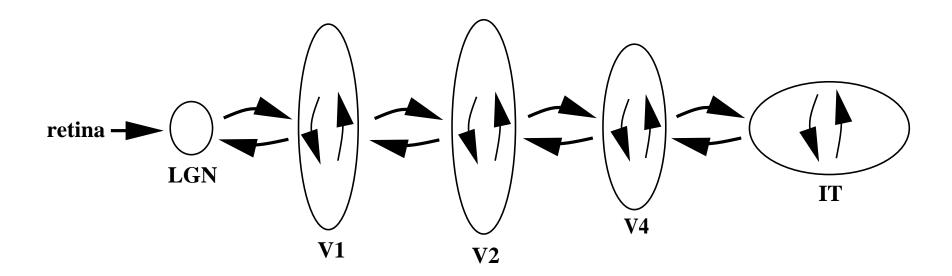
Redwood Neuroscience Institute, Menlo Park, CA

Main Points

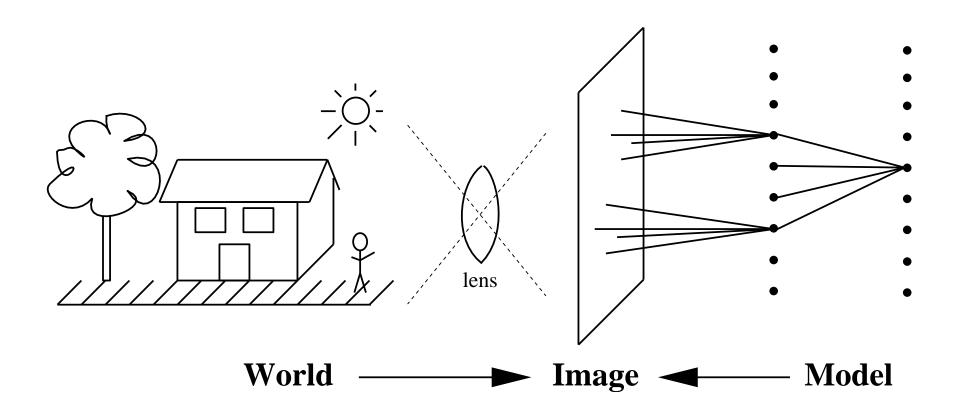
- Vision as inference
- Learning sparse, overcomplete image representations
- Sparse coding in V1
- Learning shiftable basis functions



Recurrent computation is pervasive throughout cortex

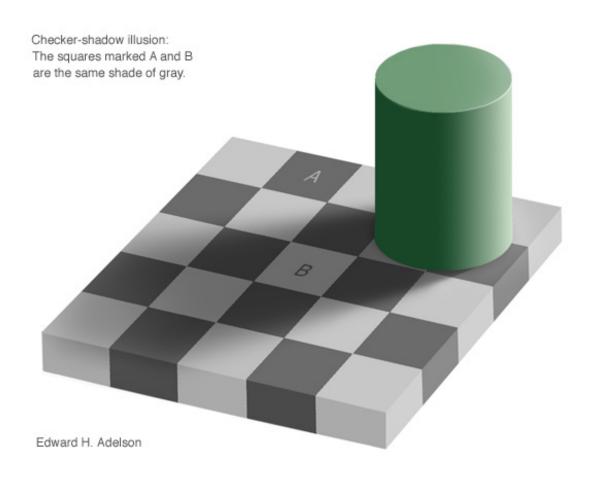


Vision as inference



How do you interpret an edge?

Lightness perception depends on 3D scene layout



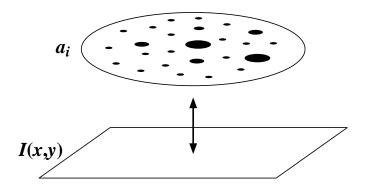
Bayes' rule

$$P(E|D) \propto \underbrace{P(D|E)}_{\text{how data is}} \times \underbrace{P(E)}_{\text{prior beliefs}}$$
 generated by
 about the
 the environment

E = the actual state of the environment

D = data about the environment

Sparse coding



- Provides a simple description of images
- ullet Makes image structure explicit o Grouping
- Makes it easier to learn associations
- Field's (1987) analysis of simple-cell receptive fields suggests they have been optimized for sparseness.

Image model

$$I(x,y) = \sum_{i} a_i \phi_i(x,y) + \nu(x,y) .$$

$$P(\mathbf{a}|\mathbf{I}, \theta) \propto P(\mathbf{I}|\mathbf{a}, \theta) P(\mathbf{a}|\theta)$$

$$P(\mathbf{I}|\theta) = \int P(\mathbf{I}|\mathbf{a}, \theta) P(\mathbf{a}|\theta) d\mathbf{a}$$

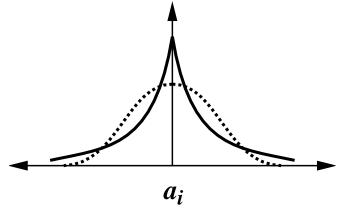
Goal: Find a set of basis functions $\{\phi_i\}$ for representing natural images such that the coefficients a_i are as sparse and statistically independent as possible.

Prior

• Factorial:
$$P(\mathbf{a}|\theta) = \prod_i P(a_i|\theta)$$

Sparse:

$$P(a_i|\theta) = \frac{1}{Z_S}e^{-S(a_i)}$$



 $P(a_i)$

Objective functions for inference and learning

Inference (perception):

$$P(\mathbf{a}|\mathbf{I}, \theta) \propto P(\mathbf{I}|\mathbf{a}, \theta) P(\mathbf{a}|\theta)$$

Learning:

$$\langle \log P(\mathbf{I}|\theta) \rangle = \left\langle \log \int P(\mathbf{I}|\mathbf{a}, \theta) P(\mathbf{a}|\theta) d\mathbf{a} \right\rangle$$

Energy function

$$E = \log P(\mathbf{a}|\mathbf{I}, \theta)$$

$$= \frac{\lambda_N}{2} \sum_{x,y} \left[I(x,y) - \sum_i a_i \phi_i(x,y) \right]^2 + \sum_i S(a_i) + \text{const.}$$

Dynamics

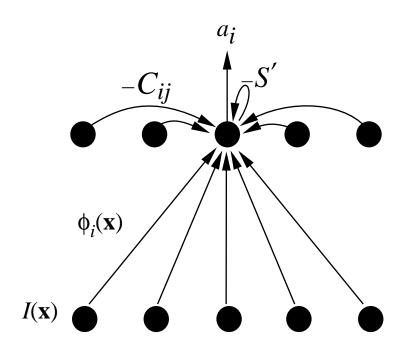
$$\dot{a}_i \propto -\frac{\partial E}{\partial a_i}$$
:

$$\tau \dot{a}_i = b_i - \sum_j C_{ij} a_j - S'(a_i)$$

$$b_i = \lambda_N \sum_{x,y} \phi_i(x,y) I(x,y)$$

$$C_{ij} = \lambda_N \sum_{x,y} \phi_i(x,y) \phi_j(x,y)$$

Network implementation



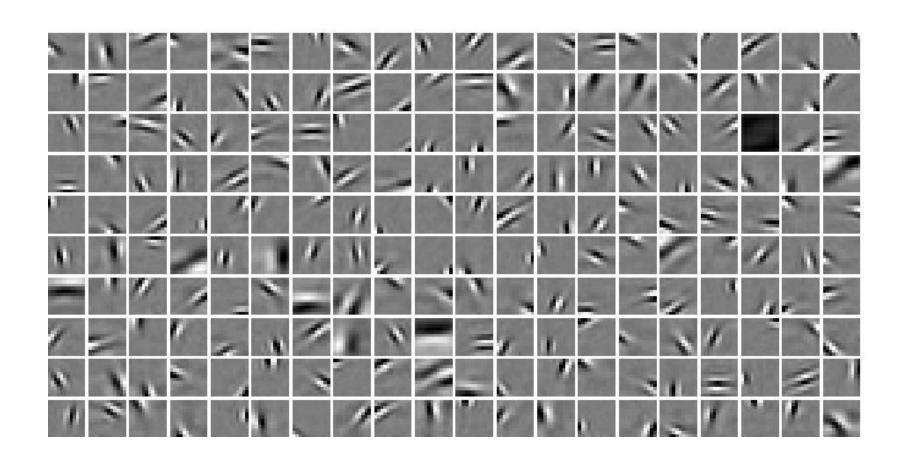
Learning

$$\Delta \phi_i \propto -\left\langle \frac{\partial E}{\partial \phi_i} \right\rangle$$
:

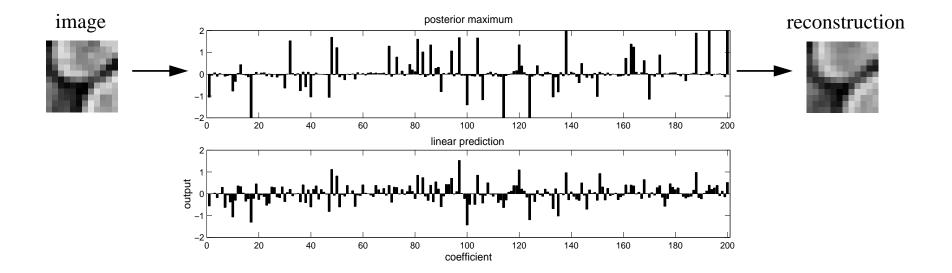
$$\Delta \phi_i(x,y) = \eta \langle a_i r(x,y) \rangle$$

$$r(x,y) = I(x,y) - \sum_i a_i \phi_i(x,y)$$

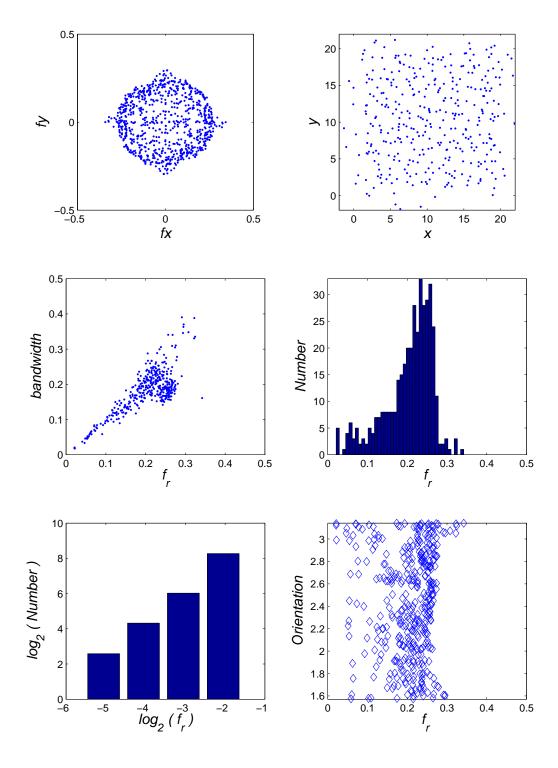
Learned basis functions (200, 12x12)

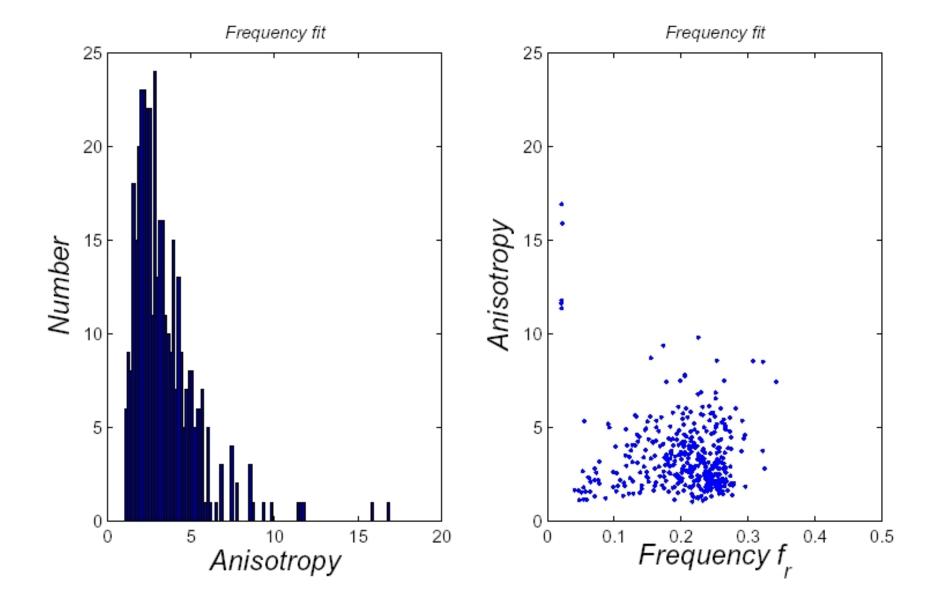


Sparsification

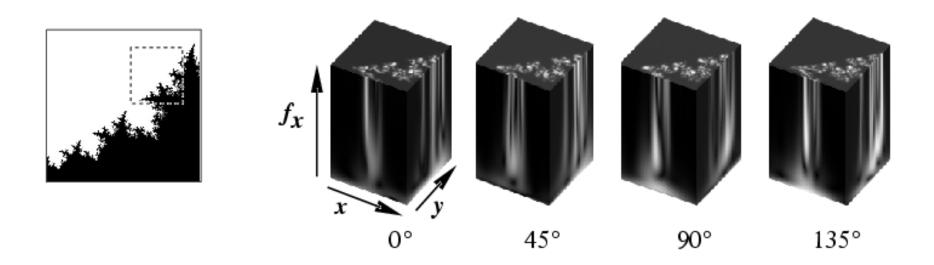


Tiling properties



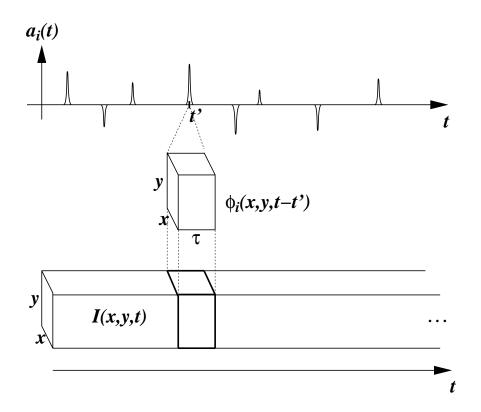


Scale space cross-section of a fractal contour



Space-time image model

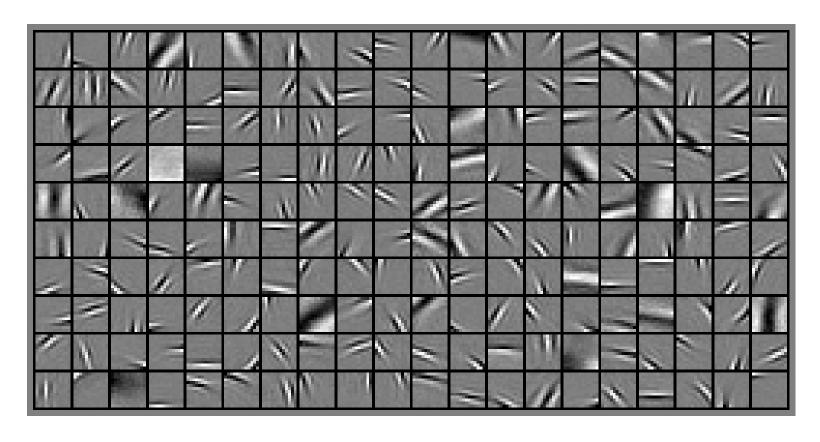
$$I(x, y, t) = \sum_{i} a_i(t) * \phi_i(x, y, t) + \nu(x, y, t)$$



Goal: Find a set of space-time basis functions $\{\phi_i\}$ for representing natural images such that the *time-varying* coefficients $a_i(t)$ are as sparse and statistically independent as possible *over both space and time*.

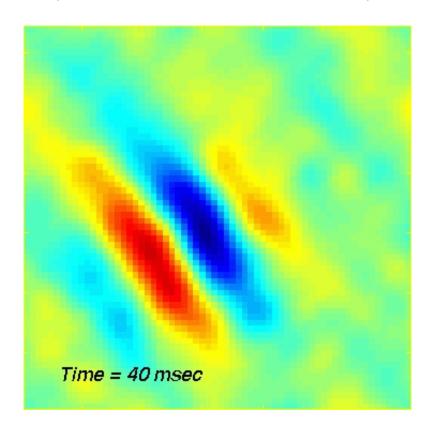
Learned space-time basis functions (200, $12 \times 12 \times 7$)

Training set: nature documentary

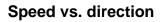


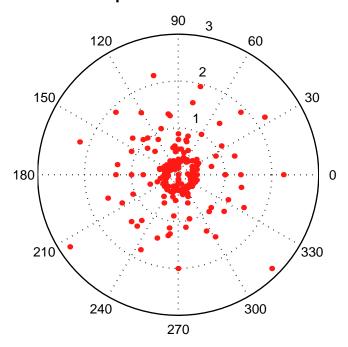
V1 space-time receptive field

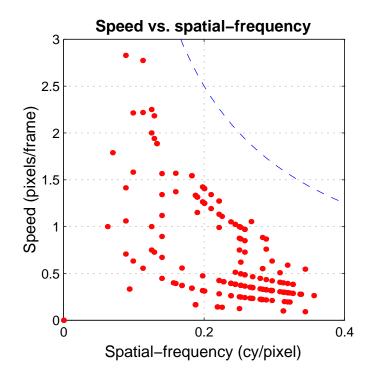
(Courtesy of Dario Ringach)



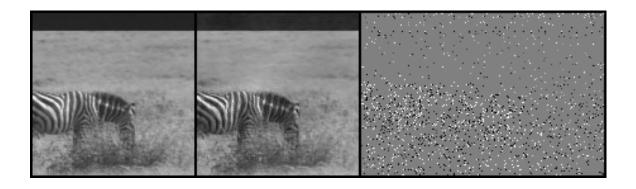
Basis function properties

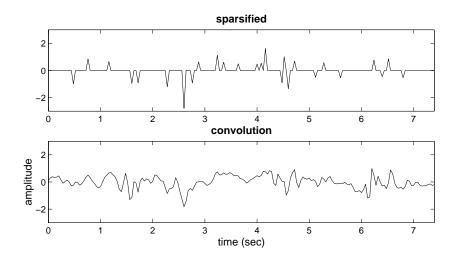




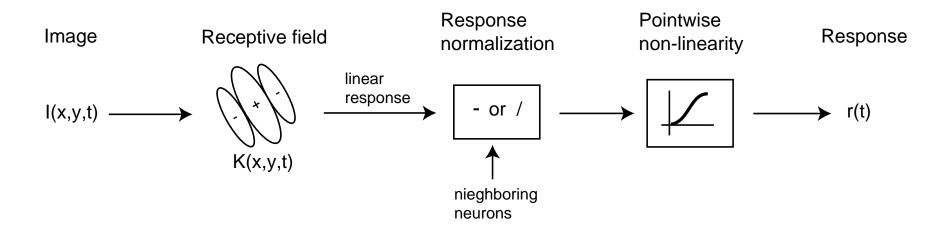


Spike encoding and reconstruction



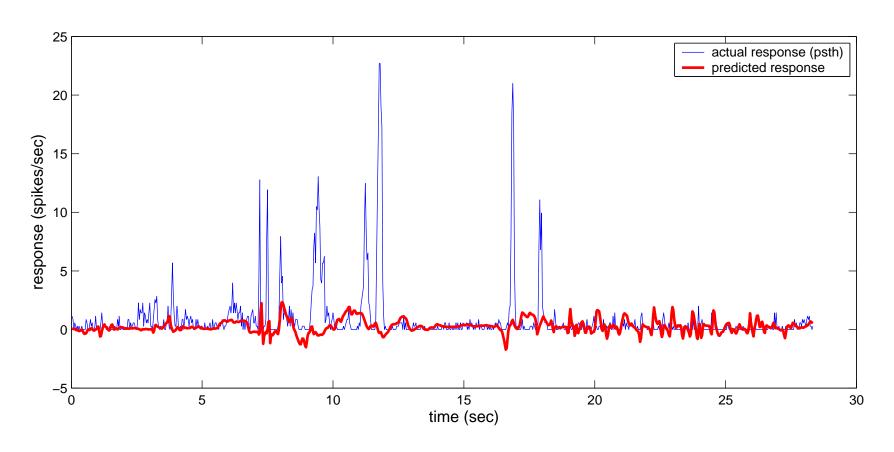


"Standard model" of V1 simple-cells

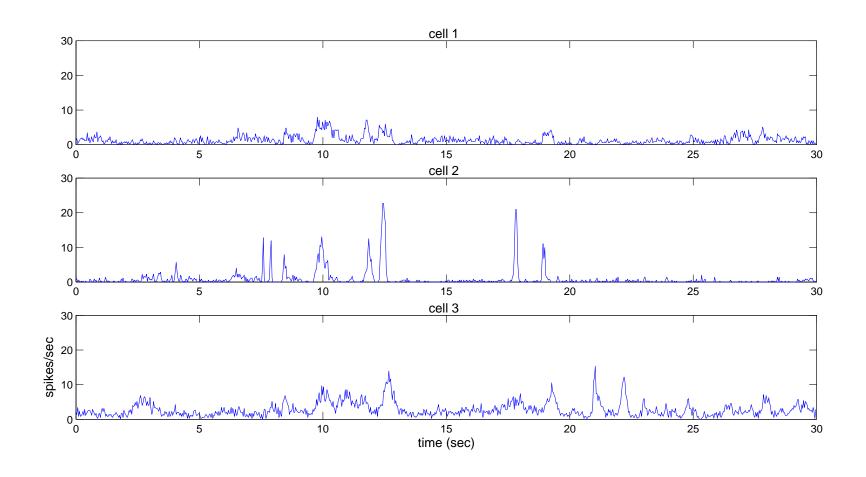


Evidence for sparse coding

Data from Gray lab (J. Baker and S. Yen)

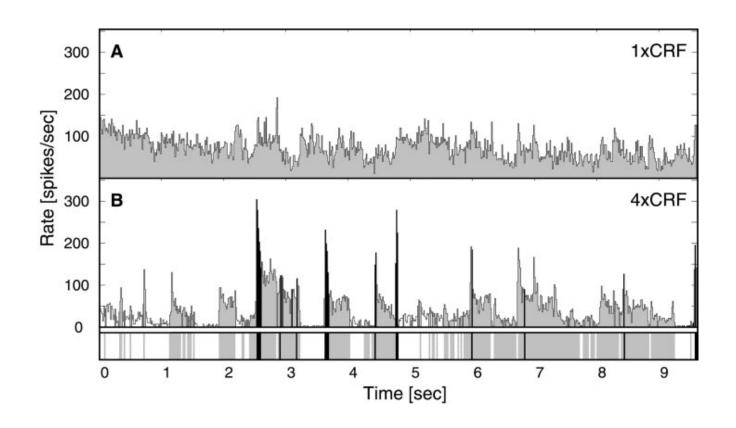


Responses of nearby units are heterogeneous



Context in natural scenes sparsifies responses

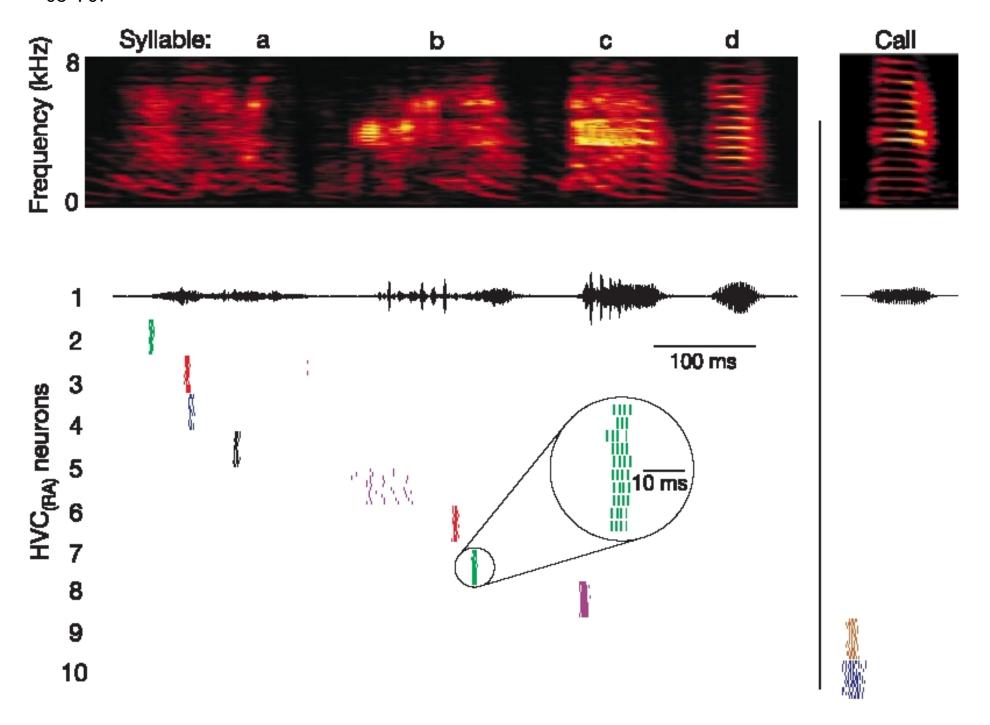
Vinje & Gallant (2000, 2002)



Extreme sparse coding

- Gilles Laurent mushroom body, insect
- Michael Fee HVC, zebra finch
- Tony Zador auditory cortex, mouse
- Bill Skaggs hippocampus, primate
- Harvey Swadow motor cortex, rabbit
- Michael Brecht barrel cortex, rat
- Christof Koch inferotemportal cortex, human

Hahnloser RHR, Kozhevnikov AA, Fee MS (2002) An ultra-sparse code underlies the generation of neural sequences in a songbird. *Nature*, 419, 65-70.



Review article

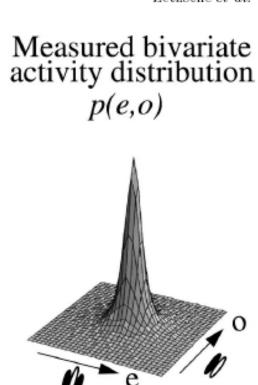
Olshausen BA, Field DJ (2004) Sparse coding of sensory inputs. Current Opinion in Neurobiology, 14, 481-487.

http://redwood.ucdavis.edu/bruno

Problems with the current model

- Sparsification: small changes in the image could lead to drastic changes in the output representation.
- Factorial prior: coefficients exhibit strong dependencies, so the factorial prior is wrong.
- Linear model: how to extend to a hierarchical model?

Predicted bivariate activity distribution $\hat{p}(e,o) = p(e) \cdot p(o)$ $\hat{p}(e,o)$



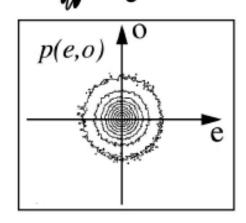


Image model with 'shiftable' basis functions

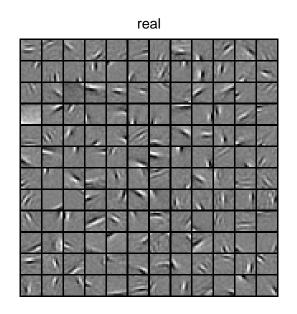
$$I(x) = \sum_{i} \Re\{z_{i} \phi_{i}(x)\}$$

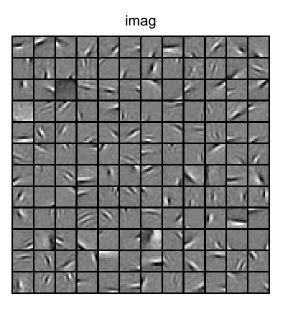
$$z_{i} = a_{i} e^{j \alpha_{i}}$$

$$\phi_{i}(x) = \phi_{i}^{R}(x) + j \phi_{i}^{I}(x)$$

$$I(x) = \sum_{i} a_{i} \left[\cos \alpha_{i} \phi_{i}^{R}(x) + \sin \alpha_{i} \phi_{i}^{I}(x)\right]$$

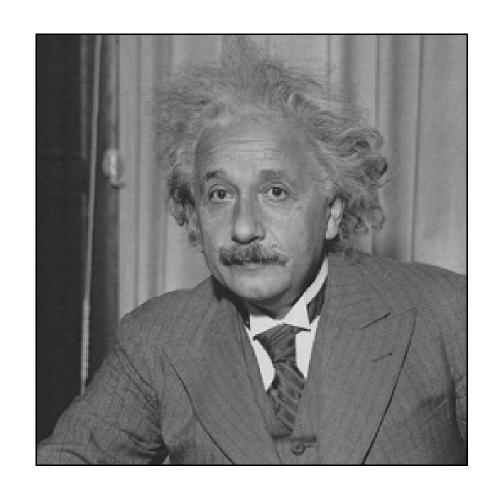
Learned complex basis functions (144, 12 imes 12 patches)





animate!

Local phase is important

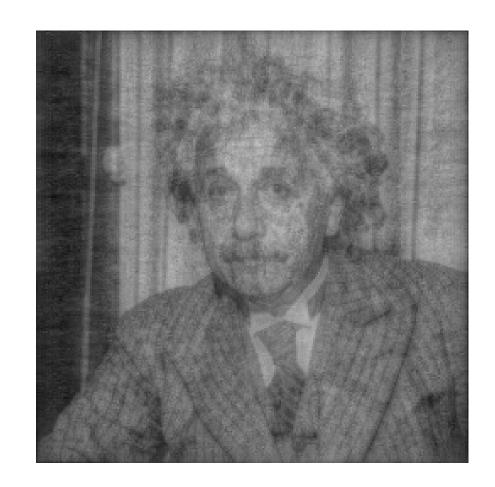


Original image

Local phase is important

Magnitudes only

Local phase is important



Phases only

Conclusions

- V1 neurons represent time-varying natural images in terms of sparse events.
- Joint dependencies among coefficients may be modeled with shiftable basis functions → neurons carry both amplitude and phase?

Further information and details

baolshausen@ucdavis.edu
http://redwood.ucdavis.edu/bruno