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Main Points

• Vision as inference

• Learning sparse, overcomplete image representations

• Sparse coding in V1

• Learning shiftable basis functions





Recurrent computation is pervasive throughout cortex
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Vision as inference

lens

ImageWorld Model



How do you interpret an edge?





Lightness perception depends on 3D scene layout



Bayes’ rule

P (E|D) ∝ P (D|E)︸ ︷︷ ︸
how data is
generated by

the environment

× P (E)︸ ︷︷ ︸
prior beliefs
about the

environment

E = the actual state of the environment

D = data about the environment



Sparse coding

ai

I(x,y)

• Provides a simple description of images

• Makes image structure explicit → Grouping

• Makes it easier to learn associations

• Field’s (1987) analysis of simple-cell receptive fields suggests they have
been optimized for sparseness.



Image model

I(x, y) =
∑

i

ai φi(x, y) + ν(x, y) .

P (a|I, θ) ∝ P (I|a, θ) P (a|θ)

P (I|θ) =
∫

P (I|a, θ) P (a|θ) da

Goal: Find a set of basis functions {φi} for representing natural images
such that the coefficients ai are as sparse and statistically independent as
possible.



Prior

• Factorial: P (a|θ) =
∏

i P (ai|θ)

• Sparse: P (ai|θ) = 1
ZS

e−S(ai)

ai

P(ai)



Objective functions for inference and learning

Inference (perception):

P (a|I, θ) ∝ P (I|a, θ) P (a|θ)

Learning:

〈log P (I|θ)〉 =
〈

log
∫

P (I|a, θ) P (a|θ) da
〉



Energy function

E = log P (a|I, θ)

=
λN

2

∑
x,y

[
I(x, y)−

∑
i

aiφi(x, y)

]2

+
∑

i

S(ai) + const.



Dynamics

ȧi ∝ −∂E
∂ai

:

τ ȧi = bi −
∑

j

Cijaj − S′(ai)

bi = λN

∑
x,y

φi(x, y) I(x, y)

Cij = λN

∑
x,y

φi(x, y)φj(x, y)



Network implementation

I(x)

ai

φi(x)

−S’−Cij



Learning

∆φi ∝ −
〈

∂E
∂φi

〉
:

∆φi(x, y) = η 〈ai r(x, y)〉

r(x, y) = I(x, y)−
∑

i

aiφi(x, y)



Learned basis functions (200, 12x12)



Sparsification
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Tiling properties
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Scale space cross-section of a fractal contour



Space-time image model

I(x, y, t) =
∑

i

ai(t) ∗ φi(x, y, t) + ν(x, y, t)

. . .

t

t

ai(t)

τ
x

y

x

y

t’

φi(x,y,t−t’)

I(x,y,t)

Goal: Find a set of space-
time basis functions {φi} for
representing natural images such
that the time-varying coefficients
ai(t) are as sparse and statistically
independent as possible over both
space and time.



Learned space-time basis functions (200, 12× 12× 7)

Training set: nature documentary



V1 space-time receptive field

(Courtesy of Dario Ringach)



Basis function properties
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Spike encoding and reconstruction
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“Standard model” of V1 simple-cells

Image

I(x,y,t)

K(x,y,t)

Receptive field
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Evidence for sparse coding

Data from Gray lab (J. Baker and S. Yen)
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Responses of nearby units are heterogeneous
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Context in natural scenes sparsifies responses

Vinje & Gallant (2000, 2002)

metabolic load by lowering mean spike rates. Furthermore, these
three findings suggest that nCRF stimulation reduces the effective
bandwidth of single neurons, thereby restricting the range of
stimuli that they represent.

nCRF stimulation increases information
transmission rate
Does this shrinkage in effective bandwidth reduce the amount of
information represented by V1 neurons? If information is lost,
then the stimulus representation will be coarsened rather than
made sparser (Foldiak and Young, 1995; Olshausen and Field,
1997; Barlow, 2001). Information must be preserved if nCRF
stimulation truly increases sparseness. Information transmission
can be preserved in numerous ways. One possibility is that the
overall information transmission rate might be preserved at the
level of individual neurons. Alternatively, some neurons may
increase their information transmission rates while other neurons
transmit less information.

Information transmission rates (bits per second) for our sample
of V1 neurons are shown in Figure 6A–D. For each neuron at
each stimulus size, we compared information rates observed with
and without nCRF stimulation. Neurons with significantly in-
creased information rates are shown in black, while those with sig-
nificantly decreased rates are shown in white (p � 0.01). The effects
of natural nCRF stimulation vary across neurons. Some exhibit
decreases in information transmission rates, whereas others exhibit
increases. Interestingly, significant increases in information trans-
mission rates occur more frequently than significant decreases. The
ratio of significant increases to significant decreases is 3.8:1 at 2 �
CRF, 3.4:1 at 3 � CRF, and 3.7:1 at 4 � CRF.

For our sample of neurons, the average information transmis-
sion rate also increases with stimulus size (Fig. 6E). The increase
in mean rate is modest but statistically significant for stimulus
sizes of 2 � CRF and 3 � CRF (p � 0.05) and is marginally
significant for stimuli of 4 � CRF diameter (p � 0.07).

Table 1 shows the average information rate as a function of
stimulus size and time-bin duration. In general, the average rate
increases as time-bin duration decreases. From 50 msec to 4.6
msec, the information transmission rate increases by �250%. The
increase in information rates for short binning times is commonly
observed in neurophysiological data sets (Strong et al., 1998) and

occurs because H(r) increases more rapidly than H(r�s) as bin
duration shrinks.

Our second prediction is that the average information trans-
mission rate should not decrease as stimulus size increases. Our
results demonstrate that information transmission actually in-
creases with stimulus size. This is consistent with the predicted
preservation of information. It also suggests that nCRF stimula-
tion may be necessary to fully realize the information-processing
potential of V1 neurons.

nCRF stimulation increases information per spike
As discussed in the introductory remarks, sparse coding offers
several potential advantages to the nervous system. It may sim-
plify development of neural connections, increase learning rates,
and increase memory capacity (Barlow, 1961, 2001). Sparse cod-
ing also reduces the number of action potentials required to
represent a scene and thereby decreases the metabolic demands
of information processing (Srinivasan et al., 1982; Laughlin et al.,
1998). If the system is to maintain the fidelity with which a scene
is represented, this reduction in spiking activity must be accom-
panied by an increase in the average amount of information each
spike provides about the stimulus. Thus, natural nCRF stimula-
tion should increase the average information carried by each
spike.

The average information that a spike transmits about the stim-
ulus is found by simply dividing the information per second by the
mean number of spikes per second: Ispike � Isec/�, where � is the
mean spike rate of the neuron for all stimuli of a given size.

Information transmission per spike is shown in Figure 7A–D.
Figure conventions are identical to those used in Figure 6. Stim-
ulation of the nCRF can increase or decrease the information per
spike, but the trend is strongly toward increasing the information
content of spikes. The ratio of neurons with significant increases
to those with significant decreases is 6.5:1 at 2 � CRF and 26:1 at
3 � CRF. For data obtained with stimuli of 4 � CRF diameter,
all significantly modulated neurons show increases in their infor-
mation transmission per spike.

The mean information per spike also increases substantially as
a function of stimulus size (Fig. 7E, black circles). For stimuli of
4 � CRF diameter, the mean information per spike is 1.85 times
larger than that of the value obtained with CRF-sized stimuli. All

Figure 4. The nCRF modulates responses dur-
ing natural vision. A, PSTH obtained from one
V1 neuron in response to a natural-vision movie
confined to the CRF. Responses are weakly mod-
ulated by the simulated fixations (information per
second, 13.1 bits/sec; information per spike, 0.18
bits/spike; efficiency, 10%; selectivity index, 13%).
B, Responses of the same cell to a natural-vision
movie composed of the CRF stimulation used in
A plus a circular surrounding region. The overall
stimulus size was 4 � CRF diameter. Stimulation
of the nCRF dramatically increases variation of
responses across fixations (information per sec-
ond, 28.4 bits/sec; information per spike, 0.67 bits/
spike; efficiency, 26%; selectivity index, 51%). Re-
sponses to some stimuli are significantly enhanced
(black bins; p � 0.01). For this neuron, enhance-
ment is concentrated in the onset transients oc-
curring at the beginning of simulated fixations.
Other responses are strongly suppressed (white
bins; p � 0.01). The under-bar highlights those
time bins where significant enhancement and sup-
pression occur.

Vinje and Gallant • nCRF Stimulation Increases Efficiency of V1 Cells J. Neurosci., April 1, 2002, 22(7):2904–2915 2909



Extreme sparse coding

• Gilles Laurent - mushroom body, insect

• Michael Fee - HVC, zebra finch

• Tony Zador - auditory cortex, mouse

• Bill Skaggs - hippocampus, primate

• Harvey Swadow - motor cortex, rabbit

• Michael Brecht - barrel cortex, rat

• Christof Koch - inferotemportal cortex, human



Hahnloser RHR, Kozhevnikov AA, Fee MS (2002) An ultra-sparse code

underlies the generation of neural sequences in a songbird. Nature, 419,

65-70.





Review article

Olshausen BA, Field DJ (2004) Sparse coding of sensory inputs. Current
Opinion in Neurobiology, 14, 481-487.

http://redwood.ucdavis.edu/bruno



Problems with the current model

• Sparsification: small changes in the image could lead to drastic changes
in the output representation.

• Factorial prior: coefficients exhibit strong dependencies, so the factorial
prior is wrong.

• Linear model: how to extend to a hierarchical model?





Image model with ‘shiftable’ basis functions

I(x) =
∑

i

<{zi φi(x)}

zi = ai e
j αi

φi(x) = φR
i (x) + j φI

i (x)

I(x) =
∑

i

ai [cos αi φR
i (x) + sin αi φI

i (x)]



Learned complex basis functions (144, 12 × 12 patches)

real imag

animate!



Local phase is important

Original image



Local phase is important

Magnitudes only



Local phase is important

Phases only



Conclusions

• V1 neurons represent time-varying natural images in terms of sparse
events.

• Joint dependencies among coefficients may be modeled with shiftable
basis functions → neurons carry both amplitude and phase?



Further information and details

baolshausen@ucdavis.edu
http://redwood.ucdavis.edu/bruno


