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Introduction

• functional imaging : delineation of functional anatomy in terms of
spatial and temporal organization

René Descartes De homine (1662)
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Functional brain imaging : blood flow

• hemodynamic changes induced by neuronal activity when a subject is
submitted to sensory or cognitive stimulations.
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Detection devices
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PET/fMRI

PET, fMRI : neuronal activity requires energy. Local increases in blood flow,
and metabolism can be measured.
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Oxygen concentration changes in the microcirculation

• Initial increase in oxygen consumption
created by metabolic demand

• Increase in cerebral blood flow :
oversupply of oxygenated blood

• oxygenated hemoglobin induces a
difference in magnetic susceptibility
relative to the surrounding

• imbalance between oxygen metabolism
and oxygen supply is at the origin of the
BOLD contrast Microvascular oxygen concentration

[Vanzetta and Grinvald, 1999].
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Functional Magnetic Resonance Imaging (fMRI)

vvoxel

fMRI signal

time

v
y  (t)

x (t)stimulus

• Goal of the analysis : detect “activated” voxels v where changes in the
fMRI signal y are triggered by the stimulus x.
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Analysis of fMRI data : Univariate statistical models

1. General Linear Model [Friston et al., 1995]

yv = Xβ + ε, ε ∼ N (0, Σ) (1)

limitations :

• ε(t) correlated

• var(ε) varies as a function of v [Chen et al., 2003]

2. Linear Time Invariant Model

yv = hv ∗ x (2)

[Lange and Zeger, 1997, Genovese, 2000]
limitations :

• hv haemodynamic response function depends on brain region,
subject, etc.

• nonlinear relationship between yv and x [Friston et al., 1998,
Miller et al., 2001, Rees et al., 1997, Vazquez and Noll, 1998].
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Analysis of fMRI data : Exploratory methods

1. principal component analysis
[Lai and Fang, 1999, Gabbay et al., 2000]
limitations :

• components need to be orthogonal

• interpretation of the components ?

2. independent component analysis
[B.B.Biswal and Ulmer, 1999, McKeown, 2000]
limitations :

• component maps need to be independent

• interpretation of the components ?

3. Clustering of the time series yv
[Baumgartner et al., 1998, Golay et al., 1998, Meyer and Chinrungrueng, 2004]
limitations :

• performed in the time domain (R128 !)
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Goal of this work

• search for projections of the fMRI time series on a low dimensional
subspace :

→ reveal the presence of activated time series.

background voxels

activated voxels

• probability distribution of the projections (coefficients) :
finite mixture of multivariate Gaussian densities

• estimate the parameters of the mixture, number of components, and
interpret their physiological roles.

IPAM, MGA 2004 12



What type of projections ?

properties of the fMRI time series :

• non stationary → analyze transients, local features

• long range dependence (1/ f spectral behavior)
[Zarahn et al., 1997, Fadili and Bullmore, 2002]
→ whiten the time series, stationary

good properties of the projections :

• rich library of waveforms well localized in time and in frequency

• fast search in the library

→ library of wavelet packets
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What can we learn from the wavelet packet coefficients of fMRI time series ?

• background signal: yv(t) = constant → αv ' 0
αv ∼ N (0, σ2

b ) [Chen et al., 2003]

• activated signal: yv(t) = response triggered by stimulus
if ψ is well chosen then αv ∼ N (µk, σ2

k ) [Meyer and Shen, 2004]

• strength µk may vary as a function of v

• αv stationary, uncorrelated

corr(α(j, k), α(j′, k′)) ∼ O(|2−jk − 2−j′k′|γ−2p−1),

p vanishing moments
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Joint distribution of the wavelet packet coefficients

• choose a small number K of wavelet packets ψγk
, (e.g. K = 3)

• for v all over the brain, compute αv(γk)

• joint distribution of vector of coefficients α = [α(γ0), · · · , α(γK−1)]T

• α ∼ finite mixture of M multivariate Gaussian densities

p(α) =
M

∑
m=1

πmφ(α, µm, Σm). (3)

φ : K-multivariate normal density,
πm : mixing parameters πm ≥ 0, ∑ πm = 1

• voxels with a similar activation strength are grouped together in the
same component (irrespective of their relative spatial proximity).
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Estimation of the parameters of the mixture

• maximum likelihood estimates µ̂m, Σ̂m and π̂m

• Expectation Minimization (EM) algorithm
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How to find good a projection ?

• projection = ψγ nondecimated wavelet packet

• ψγ is a good projection if the distribution of the coefficients αv(γ)
is asymmetric:

– many small coefficients (=background),

– few large coefficients (=activated region)

• maximize the skewness of the distribution of αv(γ) computed
over all v

E[(X − EX)3]/E[(X − EX)2]
3/2

(4)
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Skewness as a function of the translation index for a good projection
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• periodic stimulus

• if ψγ is properly aligned:

– response = large αv(γ) , background = small αv(γ)
→ asymmetric distribution

• misalignment:

– response = small αv(γ), background = small αv(γ)
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Skewness as a function of the translation index for a bad projection
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• for all translation indexes:
response = small αv(γ), background = small αv(γ)

→ symmetric distribution
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Skewness as a function of the translation index for a good projection
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• 3 random stimuli

• for the right translation indexes:
response = large αv(γ) , background = small αv(γ)
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A spatial prior

• spatial distribution of the pattern of activation :
not present in the mixture model

• activated patterns = small numbers of compact regions

• prior probability of the patterns of activation

• Markov random field

• detection of activation :

ai =

{
1 if vi is activated,

0 if vi is a background voxel.
(5)
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Parameter Estimation

• most likely activation pattern â :

â = argmax
(a0,··· ,a4)

p(a|α) (6)

• Bayes’ theorem
p(a|α) ∝ p(α|a)p(a) (7)

• coefficients conditionally independent given the activation map

p(α|a) = ∏
j

p(αvj|a) = ∏
j

p(αvj|aj) (8)

• p(αvj|aj) computed at each voxel vj from the mixture model

• p(a): spatial prior

• optimization: simulated annealing
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Experiments : synthetic data blended with in-vivo fMRI noise

• haemodynamic response [Glover, 1999] :

h(t) = A
{

a1(t − ts)5e−(t−ts)/t1 − 0.4 a2(t − ts)2e−(t−ts)/t2
}

(9)

• A = strength of the response

• fMRI signal = h ∗ stimulus + noise

• stimulus = 3 random events

• noise extracted from in vivo background time series
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The synthetic datasets

• 4 datasets with uniform strength: A = 1, 1.5, 2, 2.5,

• 1 dataset with different strengths: A varies with v

• 108 activated voxels (6.75% )

• gold standard: linear regression with perfect knowledge of h(t)
and the stimulus
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Time series
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Dataset 5: activation patterns
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Synthetic datasets: results
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Projections (K=3) background (blue) and
activated (red) time series (A = 1)
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Synthetic datasets: results

Classification between activated and background voxels (A = 1)
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Synthetic datasets: activation maps

Activation maps obtained with the linear regression
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Synthetic datasets: activation maps

Activation maps with our method (A = 1)
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Performance
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False alarm and missed activated voxels as a function of A.
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Experiments : in vivo data

• visual stimulus : periodic flashing checkerboard
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Time series from an activated voxel
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Experiments : in vivo data

10 20 30 40 50 60
Time Samples

wavelet packet 1
wavelet packet 2
wavelet packet 3

Projections (K=3) background (blue) and
activated (red) time series
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Visual stimulus: activation maps

Activation maps obtained with a linear model
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Visual stimulus: activation maps

Activation maps obtained with our method
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Experiments : in vivo data

• visual-mental imagery : random presentation
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Experiments : in vivo data
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Visual/Mental Imagery: activation maps

Linear model

Our method
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Conclusion

• projection of the fMRI time series on a low dimensional subspace :

– reveal the presence of activated time series.

– probability distribution of the projections (coefficients) :
finite mixture of multivariate Gaussian densities

– estimate the parameters of the mixture, number of components, and
interpret their physiological roles.

• spatial prior : activated voxels should be spatially clustered
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