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Beamlets & 
Beamlet Dictionary

scale=0 scale=1

scale=2 scale=3

Donoho, Ann. of 
Stat. 1999

Donoho & Huo, 
2001, 2002, etc.
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Objective

Coding linear and curvilinear features
Combine Beamlet and Zero-tree Coding
Outperform existing industrial standards?
Variations/Improvements/Software

Wavelet Image Coding
Beamlet Curve Coding
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Outline for JBEAM

I.    Motivations
II Preparation:

Coding Single Beamlet
Beamlet representation

III. Beamlet coder (JBEAM)
Rate-Distortion Optimized Representation
Zero-tree Coding

IV. Simulation / Discussion 
V.  Conclusion
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I. Motivation 
(1) Shape Coding

Video object-based coding

Recent publications in IEEE Trans. I.P.
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Motivation (2) Line Images

Line drawings
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II. Prep.-1: Coding a Single 
Beamlet

Number of bits 
that are 
required

Coded beamlets 
with partial bit 
stream
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Coding Scheme for a beamlet

Beamlets to intervals.
Is X covered? 0/1.
Coding two ends 0/1, 0/1.
Recursion
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A Progressive Scheme to Code 
Single Beamlets
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Illustrations

4 bits 8 bits
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II. Prep.-2: Beamlet
Representation
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A Re-list of Beamlet 
Representation

Geometry
Bits, locations of beamlets
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III. JBEAM
Overview of Beamlet Coder

Binary shape image

Zerotree algorithm (Shapiro,93; 
Said & Pearlman)

The bit-stream includes 
information in order of 
importance: Msb first and 
Lsb last.

Beamlet 
transform

Reconstruction

Beamlet representation

Zerotree
coding

Decoding

Bit stream

Entropy Coding
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Rate-Distortion-Optimized 
Representation

Use Lagrange multiplier to solve

Bottom-up Tree pruning algorithm, fast
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Pruning a Quad-tree

1. A complete 
quad-tree

3. An admissible sub-
tree with beamlet 
decoration

2. An admissible 
sub-tree
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Distortion

Two components in distortion:
Sum of square of Euclidean distance from image 
to beamlet representation (~ Hausdorff distance)
Degree of overlapping
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Zero-Tree Coding

• Representation
• Symbol Stream
• Rule that generates 

the symbol stream



9/23/04 IPAM Sep. 04 18/71

IV. Simulation Results:
Comparison with JBIG

No CAE and PWC…
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Effects of Distortion
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Simulation: 
Rate-distortion tradeoff

min D+τR

Distortion decreases.
Rate increases.
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Simulation: 
Progressive Reconstruction
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Rate & Distortion Analysis

Polygonal, or model with finite number of 
parameters, an oracle can do:

JBEAM:

Horizon model (    )
versus

JBEAM Best 
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Discussion

Multiscale curve representation: Strip Trees, 
70’s; and many more; no beamlets, no zero-
tree, no R-D optimization
Recent works in image compression, e.g. 
wedgeprint, bandelets, curvelets, ridgelets,
contourlets, etc
Partial progressivity versus full progressivity?
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Discussion (2)

Shape coding versus curve 
coding

Hidden Markov Model
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Discussion (3)

More innovative way to take 
advantage of SPIHT.

Target
Coarse scale beamlet
Fine scale beamlets

Many many more…
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V. Conclusion

Combining zero-tree algorithm and beamlet.
Numerical experiments show promises.
First multiscale curve coder.
Software, more research.

Beamlets: Multiscale,
Curves: Geometry.
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What is a Connect-The-Dots 
(CTD) Problem?

Size of maximum subset of dots on a function from 
a given functional class.

Maximum number of dots on a Lipschitz graph
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Why CTD Problem

Test the Uniformality

N = 256, C = 1 
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Other Classes

Convex functions Vectors; Connect-the-darts
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Applications (1)

Illusory contour (Psychophysics)
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This talk…

Different formulation, due to different motivations 
– CTD problems
Efficient dynamic programming algorithms to solve 
these problems.
Simulations / Insights / Software.
Main objective: Fundamental understanding 
(asymptotic distributions). 



9/23/04 IPAM Sep. 04 33/71

Outline

I. Classes of problems and dynamic 
programming approaches
II. Complexity
III. Theoretical Insights
IV. Software
V. Conclusion
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I. Classes of Problems & DP 
Approaches

Increasing, Unimodal, Lipschitz
Extra variable: convex, Holder-2
High-dimensional cases

Increasing
Lipschitz
Holder-2

Connect-the-Darts
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I. Increasing Functions

Incr. Function

M(i) = maximum number 
of point on an incr. func. 
up to point i.

DP approach
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Fast Algorithm for Incr. 
Functions 

There is an O(n log(n)) time and O(n) space 
algorithm to solve CTD problem with 
increasing funtions, Fredman 1975.
While the data are ordinal, there is an       
O(n log log(n)) time and O(n) space 
algorithm, Bespamyatnikh and Segal 
(2000).

We will extend it to high dimensions.
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Unimodal

Non-decreasing up to a 
point, then non-
increasing
Solve it by running the 
algorithm for Incr. 
twice.
Fast algorithms have 
the same complexity
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Lipschitz

Lipschitz function

Convert it into Incr. function problem. 

Lipschitz Increasing
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Lipschitz (2)

Illustration of the previous transform

Solving CTD for Lipschitz functions is as 
hard as for increasing functions.
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Convex

Convex function

DP with additional variable
Mi(s) = max. number of points up to i-th point 
with left slope s. (s is an additional variable)
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Convex (2)

DP algorithm:

Where 

Hence
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Convex (3)

There is an O(n  n log(n)) algorithm to solve 
the CTD for convex functions.
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Holder-2

Holder-2 function

DP approach
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Holder-2 (2)

Essence of the derivation
Solving a variational problem
Computing influential intervals

Complexity: unclear, but empirically, it 
seems polynomial.
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High-dimensional

Longest increasing subsequence 
in k-dimension.
We designed an                         
algorithm.
Example when k=3, N=8.
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Illustrate k-D increasing 
subsequences

……
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High-Dimensional Lipschitz 
and Holder

Modified DP approach 
works for high dimensional 
Lipschitz functions
Modified DP approach 
works for high dimensional 
Holder-2 functions
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Connect-the-Darts

Test of Randomness

Similar approach as in Holder-2
Knowing the angle `saves’ many computing, 
connection in psychophysics.
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II. Complexity
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III. Insights

Limit distributions
Asymptotic rates
Concentration of measures
Typical cases
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III-1. Limit Distributions

Consistent with 
known theory in 
geometric 
probability.
Tracy & Widom 
(2001) law.
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Limit Distributions (2)

New cases
Lipschitz
Holder-2
High 
dimension
Connect the 
darts
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III-2. Asymp. Rates

For increasing 
functions, we have

In general, we have

w.p. 1
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III-3. Concentration of Measure

What is concentration of 
measure?
Log(IQR) < .5 log(median).

The square root seems to 
be true in all cases.
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III-4. Typical Cases

Increasing, 
consistent with 
current 
literature.
Deuschel & 
Zeitouni. 
(1995,1999)
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Typical Cases (2)

Unimodal Lipschitz Convex
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IV. Software

CTDLab.
Implementation of all algorithms
Demos for the figures
Documentation
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V. Conclusion

Introducing CTD problems.
Dynamic programming approach for a set of 
CTD problems - New algorithms, with low 
computational complexity.
Theoretical insights.
Applications: hypothesis testing, data 
analysis, fundamental detection theorems, …
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Multi-scale Significance Run Algorithm

Xiaoming Huo
School of Industrial and Systems Engineering 
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Joint work with David L. Donoho, Ery Arias-Castro
9 / 23 / 2004
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I. Introduction — The Problem

What’s the problem?
---- Detecting the presence of a filament (or a filament-like 
feature) in a noisy picture.
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II. Multiscale Analysis and Significance Run

Multiscale components: 
Axoids
Beamlets

Significance run and detection
Fundamental theory in detecting filamentary structures
Most powerful test!
Scan statistics
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Multiscale Analysis

BeamletsAxoids
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Significance Run

Significance run and Bernoulli Table (significance graph)
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Significance Run

Longest significance run
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Statistical Theorems

Fundamental theorem in detecting filamentary structures in 
point clouds

Most powerful test in significance runs
If there is a test with power ~ 1, then MSRA will have that power.
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III. Simulations — Some Figures

Noisy images with an underlying trigonometric curve having a range of 
amplitudes (provided in the titles). It shows that the proposed method 
can detect an underlying feature which is not obviously visible
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Simulations
Increased sample size

The random images that are used in the experiments that are reported in 
Table 5. The thickness of the underlying feature is t = 8.
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Simulations — more
Thinner objects

The random images that are used in the experiments that are reported in 
Table 6. The thickness of the underlying feature is t = 1.
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Simulations

Illustration of an increment of length of the longest run when an underlying feature (a 
trigonometric function for (a) and (b), and a beam for (c) and (d)) is present. When 
there is an underlying feature, the length of the longest run is significantly larger.
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IV. Conclusion

Multiscale detection
Automatic adaptation
Fast algorithms
Length of the longest significance run; limit 
distribution

Multiscale + Geometry
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