JBEAM: Multi-scale Curve Coding via Beamlets

Xiaoming Huo

School of Industrial and Systems Engineering Georgia Institute of Technology 9 / 23 / 2004

w. Jihong Chen

Objective

- Coding linear and curvilinear features
- Combine Beamlet and Zero-tree Coding
- Outperform existing industrial standards?
- Variations/Improvements/Software

Wavelet ←→ Image Coding Beamlet ←→ Curve Coding

Outline for JBEAM

- I. Motivations
- II Preparation:
 - Coding Single Beamlet
 - Beamlet representation
- III. Beamlet coder (JBEAM)
 - Rate-Distortion Optimized Representation
 - Zero-tree Coding
- IV. Simulation / Discussion
- V. Conclusion

Video object-based coding

Recent publications in IEEE Trans. I.P.

Motivation (2) Line Images

Line drawings

mon	
hard	

II. Prep.-1: Coding a Single Beamlet

Number of bits that are required

Coded beamlets with partial bit stream

Coding Scheme for a beamlet

- Is X covered? 0/1.
- Coding two ends 0/1, 0/1.
- Recursion

A Progressive Scheme to Code Single Beamlets

- 1) For a 2^s by 2^s image, it takes 2s + 3 bits to code EXACTLY.
- While 2k(k ≤ s + 1) bits are available, the MAX distortion is 2^{s+1-k}, which is lower bound in IT.
- 3) Partial bits, partial reconstruction, as in illustration.

Illustrations

1111

9/23/04

II. Prep.-2: Beamlet Representation

9/23/04

A Re-list of Beamlet Representation

III. JBEAM Overview of Beamlet Coder

9/23/04

Rate-Distortion-Optimized Representation

 $\min_{\mathcal{P}} R(\mathcal{P}), \qquad \text{ subject to } D(y, \mathcal{P}) \leq \overline{D},$

• Use Lagrange multiplier to solve

 $\min_{\mathcal{P}} R(\mathcal{P}) + \tau D(y, \mathcal{P}).$

Bottom-up Tree pruning algorithm, fast

Pruning a Quad-tree

1. A complete quad-tree

3. An admissible subtree with beamlet decoration

2. An admissible sub-tree

Distortion

- Two components in distortion:
 - Sum of square of Euclidean distance from image to beamlet representation (~ Hausdorff distance)
 - Degree of overlapping

$$d_S(y,b) = L_1(y \cap S, b) + \lambda \cdot L_2(y \cap S, b)$$

Zero-Tree Coding

Q, Q, N, N, B, 1, 0, 0, N, N, B, B, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0.

Q, Q, N, N, B, $B_1(1)$, $B_1(2)$, $B_1(3)$, N, N, B, B, $B_1(4)$, $B_1(5)$, $B_2(1)$, $B_2(2)$, $B_2(3)$, $B_3(1)$, $B_3(2)$, $B_3(3)$, ... $B_1(2J)$, $B_1(2J+1)$, $B_2(2J-2)$, $B_2(2J-1)$, $B_3(2J-2)$, $B_3^2(2J-1)$.

9/23/04

IV. Simulation Results: Comparison with JBIG

		JBIG 2	JBEAM	JBEAM
Country	Pixels	(lossless)	(lossless)	(lossy)
Belgium	1233	7888	6114	3098
Belize	822	5768	4391	2021
Canada	2911	15224	14555	7366
Switzerland	845	6088	4171	2135
China	813	5792	4609	2041
Cuba	658	4360	3303	1542
Germany	871	5792	4916	2138
Denmark	1350	7992	6780	3735
France	920	6448	5300	2339

No CAE and PWC...

9/23/04

Effects of Distortion

Simulation: Rate-distortion tradeoff

min D+ τR

- Distortion decreases.
- Rate increases.

Simulation: Progressive Reconstruction # of bits:858 # of bits:437 # of bits:608 # of bits:658 9/23/04 IPAM Sep. 04 21/71

Rate & Distortion Analysis

- Polygonal, or model with finite number of parameters, an oracle can do: $D(R) \sim C_1 2^{-C_2 R}$
- JBEAM:

$$D(R) \sim C_3 2^{-C_4 \sqrt{R}}$$

• Horizon model (C²) $D(R) \sim \log_2^2(R) \cdot R^{-2}$ versus $D(R) \sim R^{-2}$ JBEAM Best

9/23/04

Discussion

- Multiscale curve representation: Strip Trees, 70's; and many more; no beamlets, no zerotree, no R-D optimization
- Recent works in image compression, e.g. wedgeprint, bandelets, curvelets, ridgelets, contourlets, etc
- Partial progressivity versus full progressivity?

Discussion (2)

Shape coding versus curve coding

Hidden Markov Model

9/23/04

Discussion (3)

• More innovative way to take advantage of SPIHT.

V. Conclusion

- Combining zero-tree algorithm and beamlet.
- Numerical experiments show promises.
- First multiscale curve coder.
- Software, more research.

Beamlets: Multiscale, Curves: Geometry.

"Connect-the-dots" Problems and Dynamic Programming Solutions

Xiaoming Huo

School of Industrial and Systems Engineering Georgia Institute of Technology

Joint work with David L. Donoho, Craig Tovey, and Ery Arias-Castro 9/23/2004

What is a Connect-The-Dots (CTD) Problem?

 Size of maximum subset of dots on a function from a given functional class.

Maximum number of dots on a Lipschitz graph

Why CTD Problem

Test the Uniformality

N = 256, C = 1

Other Classes

Vectors; Connect-the-darts

9/23/04

Applications (1)

Illusory contour (Psychophysics)

This talk...

- Different formulation, due to different motivations
 CTD problems
- Efficient *dynamic programming* algorithms to solve these problems.
- Simulations / Insights / Software.
- Main objective: Fundamental understanding (asymptotic distributions).

Outline

- I. Classes of problems and *dynamic* programming approaches
- II. Complexity
- III. Theoretical Insights
- IV. Software
- V. Conclusion

I. Classes of Problems & DP Approaches

- Increasing, Unimodal, Lipschitz
- Extra variable: convex, Holder-2
- High-dimensional cases
 - Increasing
 - Lipschitz
 - Holder-2
- Connect-the-Darts

I. Increasing Functions

Incr. Function

 $x < x' \Rightarrow f(x) \le f(x').$

 M(i) = maximum number of point on an incr. func. up to point i.

$$M(i) = 1 + \max_{(j < i, y_j \le y_i)} M(j)$$

• *DP* approach

Fast Algorithm for Incr. Functions

- There is an O(n log(n)) time and O(n) space algorithm to solve CTD problem with increasing functions, Fredman 1975.
- While the data are ordinal, there is an O(n log log(n)) time and O(n) space algorithm, Bespamyatnikh and Segal (2000).
- We will extend it to high dimensions.

Unimodal

- Non-decreasing up to a point, then nonincreasing
- Solve it by running the algorithm for Incr. twice.
- Fast algorithms have the same complexity

Lipschitz

- Lipschitz function $|f(x) - f(x')| \le C|x - x'|$
- Convert it into Incr. function problem.

$$(x'_i, y'_i) = (x_i, y_i) \begin{pmatrix} \frac{1}{2}\sqrt{1+C^2} & \frac{1}{2}\sqrt{1+C^2} \\ -\frac{1}{2C}\sqrt{1+C^2} & \frac{1}{2C}\sqrt{1+C^2} \end{pmatrix}$$

$$|y_1 - y_2| \le C|x_1 - x_2| \qquad \longrightarrow \qquad x'_1 \le x'_2 \quad \text{and} \quad y'_1 \le y'_2.$$
Lipschitz Increasing
$$y'_{23/04} \qquad \qquad \text{IPAM Sep. 04} \qquad \qquad 38/71$$

Lipschitz (2)

Illustration of the previous transform

 Solving CTD for Lipschitz functions is as hard as for increasing functions.

Convex function

$$f(\lambda x + (1 - \lambda)x') \le \lambda f(x) + (1 - \lambda)f(x'),$$

• DP with additional variable

 Mi(s) = max. number of points up to i-th point with left slope s. (s is an additional variable)

• DP algorithm:

$$\forall x_k < x_i : M_i(s_{ki}) = 1 + \max_{x_j < x_i} M_j(s_{ji}) \mathbf{1} (s_{ji} \le s_{ki}),$$

$$s_{ji} \equiv \frac{y_i - y_j}{x_i - x_j} : x_j < x_i$$

Where

$$L_N(\text{Conv.}) = \max_i \max_s M_i(s)$$

Convex (3)

There is an O(n n log(n)) algorithm to solve the CTD for convex functions.

9/23/04

42/71

Holder-2

Holder-2 function

 $\mathcal{G}_2 = \{f: [0,1] \to [0,1]: |f'(t) - f'(s)| \le C \cdot |t-s|\}$

• DP approach

$$V_{i+1}(z,t) = 1_{z=y_{i+1}} + \max_{(x_j,y,s) \in R_{i+1}(z,t)} V_j(y,s)$$

$$V_{j}(y,s)$$

$$V_{j}(y,$$

Holder-2(2)

- Essence of the derivation
 - Solving a variational problem
 - Computing influential intervals
- Complexity: unclear, but empirically, it seems polynomial.

Sample size	Run time	Ave. no. of	Max. no. of
(N)	(sec.)	break points	break points
16	0.125	16.2	31
32	0.734	20.8	36
64	4.437	32.2	53
128	28.28	53.6	99
256	175.2	80.3	168

44/71

High-dimensional

- Longest increasing subsequence in k-dimension.
- ◆ We designed an O(N log^K N) algorithm.
- Example when k=3, N=8.

Illustrate k-D increasing subsequences

High-Dimensional Lipschitz and Holder

- Modified DP approach works for high dimensional Lipschitz functions
- Modified DP approach works for high dimensional Holder-2 functions

Connect-the-Darts

Test of Randomness

- Similar approach as in Holder-2
- Knowing the angle `saves' many computing, connection in psychophysics.

9/23/04

II. Complexity

Case Description	Complexity
Increasing	$O(N \log(N))$
Unimodal	$O(N \log(N))$
Lipschitz 1-graph in \mathcal{R}^2	$O(N \log(N))$
Convex	$O(N^2 \log(N))$
Increasing in \mathcal{R}^d	$O(N(\log(N))^{d-1})$
Lipschitz 1-graph in \mathcal{R}^d , $d > 2$	$O(N^2d)$
Vector Field under $(C1)$	$O(N^2)$
Finite Length Curve	NP-hard

III. Insights

- Limit distributions
- Asymptotic rates
- Concentration of measures
- Typical cases

III-1. Limit Distributions

- Consistent with known theory in geometric probability.
- Tracy & Widom
 (2001) law.

Limit Distributions (2)

- New cases
 - Lipschitz
 - Holder-2
 - High dimension
 - Connect the darts

III-2. Asymp. Rates

For increasing functions, we have

$$\lim_{N\to\infty}\frac{L_N(\mathcal{F})}{2\sqrt{N}}=1, \quad \text{w.p. 1}$$

• In general, we have

$$L_N(\mathcal{F}) \asymp \text{Constant} \cdot N^{\rho}$$

Case Description	Slope	Predicted Rate
increasing	0.5182	1/2
unimodal	0.5282	1/2
Lipschitz in \mathcal{R}^2	0.5065	1/2
convex	0.4387	1/3
Hölder-2	0.3087	1/3
1		52/7

0.5

log(sample size)

0.7

0.6

0.5

log(median) 0.3

0.2

0.1

Ō

9/23/04

IPAM Sep. 04

increase unimodal Lipschit

convex

Holder-2

1.5

 \bigcirc

III-3. Concentration of Measure

- What is concentration of measure? Log(IQR) < .5 log(median).
- The square root seems to be true in all cases.

	-		
Case Description	increasing	unimodal	Lipschitz in \mathcal{R}^2
Slope	0.6378	0.4733	0.6582

III-4. Typical Cases

- Increasing, consistent with current literature.
- Deuschel & Zeitouni. (1995,1999)

IV. Software

- CTDLab.
- Implementation of all algorithms
- Demos for the figures
- Documentation

V. Conclusion

- Introducing CTD problems.
- Dynamic programming approach for a set of CTD problems New algorithms, with low computational complexity.
- Theoretical insights.
- Applications: hypothesis testing, data analysis, fundamental detection theorems, ...

Multi-scale Significance Run Algorithm

Xiaoming Huo

School of Industrial and Systems Engineering Georgia Institute of Technology

Joint work with David L. Donoho, Ery Arias-Castro 9/23/2004

I. Introduction — The Problem

What's the problem?

---- Detecting the presence of a filament (or a filament-like feature) in a noisy picture.

9/23/04

II. Multiscale Analysis and Significance Run

- Multiscale components:
 - Axoids
 - Beamlets
- Significance run and detection
- Fundamental theory in detecting filamentary structures
- Most powerful test!
- Scan statistics

Multiscale Analysis

Axoids

Beamlets

Significance Run

Significance run and Bernoulli Table (significance graph)

Significance Run

Longest significance run

Statistical Theorems

Fundamental theorem in detecting filamentary structures in point clouds

Theorem 3.1 There is a single choice of thresholds N^* and $(L_n^*)_n$ so that for every $\alpha \in (1, 2]$ and $\beta > 0$, there is $T_*(\alpha, \beta, \rho, S)$ so that, for each $\tau > T_*$

 $P\{ \text{ Test rejects } \mathbf{H}_0 \mid \mathbf{H}_1(\alpha, \beta, S, \tau) \} \to 1 \text{ as } n \to \infty;$

at the same time

 $P \{ \text{ Test rejects } \mathbf{H}_0 \mid \mathbf{H}_0 \} \to 0 \text{ as } n \to \infty.$

In words, under \mathbf{H}_0 the longest significant path is overwhelmingly unlikely to be substantially longer than L_n^* for large n, while under each indicated \mathbf{H}_1 , the longest significant path is overwhelmingly likely to be substantially longer than L_n^* . The threshold T_* is within a constant factor T_*/T_- of the optimal detection threshold; this shows that, up to constants, we can adaptively test for existence of fragments of C^{α} graphs.

• Most powerful test in significance runs

If there is a test with power \sim 1, then MSRA will have that power.

9/23/04

Noisy images with an underlying trigonometric curve having a range of amplitudes (provided in the titles). It shows that the proposed method can detect an underlying feature which is not obviously visible

Table 4: Detections out of 10 simulations for a trigonometric curve while n = 64 and t = 1.

$A_n =$	0	2.000	2.333	2.666	3.000	4.000
Detected Cases	0	0	4	7	9	10

The random images that are used in the experiments that are reported in Table 5. The thickness of the underlying feature is t = 8.

Table 5: Detections out of 10 simulations for a trigonometric curve while n = 128 and t = 8.

$$A_n = 1/4 \quad 1/2 \quad 3/4 \quad 1$$

Detected Cases 0 10 10 10

The random images that are used in the experiments that are reported in Table 6. The thickness of the underlying feature is t = 1.

Table 6: Detections out of 10 simulations for a trigonometric curve while n = 128 and t = 1.

 $A_n = \begin{array}{ccccc} 1 & 2 & 3 & 4 \\ \text{Detected Cases} & 0 & 3 & 10 & 10 \end{array}$

9/23/04

Simulations

Illustration of an increment of length of the longest run when an underlying feature (a trigonometric function for (a) and (b), and a beam for (c) and (d)) is present. When there is an underlying feature, the length of the longest run is significantly larger.

IV. Conclusion

- Multiscale detection
- Automatic adaptation
- Fast algorithms
- Length of the longest significance run; limit distribution

Multiscale + Geometry