Discrete Geometrical Image Processing using the Contourlet Transform

Minh N. Do

Department of Electrical and Computer Engineering
University of Illinois at Urbana-Champaign

Joint work with Martin Vetterli (EPFL and UC Berkeley), Arthur Cunha, Yue Lu, Jianping Zhou (UIUC), and Duncan Po (Mathworks).
Outline

1. Motivation

2. Discrete-domain construction using filter banks

3. Contourlets and directional multiresolution analysis

4. Contourlet approximation and directional vanishing moments

5. Applications
What Do Image Processors Do for Living?

Compression: At 158:1 compression ratio...

1. Motivation
What Do Image Processors Do for Living?

Denoising (restoration/filtering)

Noisy image

Clean image

1. Motivation
What Do Image Processors Do for Living?

Feature extraction (e.g. for content-based image retrieval)

1. Motivation
Fundamental Question: Efficient Representation of Visual Information

A random image

A natural image

Natural images live in a very tiny part of the huge “image space”
(e.g. $\mathbb{R}^{512 \times 512 \times 3}$)

1. Motivation
Mathematical Foundation: Sparse Representations

Fourier, Wavelets... = construction of bases for signal expansions:

\[f = \sum_{n} c_n \psi_n, \quad \text{where} \quad c_n = \langle f, \psi_n \rangle. \]

Non-linear approximation:

\[\hat{f}_M = \sum_{n \in I_M} c_n \psi_n, \quad \text{where} \quad I_M = \text{indexes of } M \text{ most significant components}. \]

Sparse (efficient) representation: \(f \in \mathcal{F} \) can be (nonlinearly) approximated with few components; e.g. \(\|f - \hat{f}_M\|_2^2 \sim M^{-\alpha}. \)
Wavelets and Filter Banks

1. Motivation
The Success of Wavelets

- Wavelets provide a sparse representation for piecewise smooth signals.
- Multiresolution, tree structures, fast transforms and algorithms, etc.
- Unifying theory ⇒ fruitful interaction between different fields.

1. Motivation
Fourier vs. Wavelets

Non-linear approximation: \(N = 1024 \) data samples; keep \(M = 128 \) coefficients

1. Motivation
Is This the End of the Story?
Wavelets in 2-D

- **In 1-D:** Wavelets are well adapted to abrupt changes or singularities.
- **In 2-D:** Separable wavelets are well adapted to point-singularities (only). But, there are (mostly) line- and curve-singularities...
The Failure of Wavelets

Wavelets fail to capture the geometrical regularity in images.

1. Motivation
Edges vs. Contours

Wavelets cannot “see” the difference between the following two images:

- **Edges**: image points with discontinuity
- **Contours**: edges with localized and regular direction [Zucker et al.]
Goal: Efficient Representation for Typical Images with Smooth Contours

Key: Exploring the intrinsic geometrical structure in natural images.

⇒ Action is at the edges!
And What The Nature Tells Us...

- **Human visual system:**
 - Extremely efficient: 10^7 bits \rightarrow 20-40 bits (per second).
 - Receptive fields are characterized as **localized**, **multiscale** and **oriented**.

- **Sparse** components of natural images (Olshausen and Field, 1996):

 16 x 16 patches from natural images

![Search for Sparse Code](image)
Wavelet vs. New Scheme

For images:

- **Wavelet scheme**... see edges but not smooth contours.
- **New scheme**... requires challenging non-separable constructions.
Recent Breakthrough from Harmonic Analysis: Curvelets [Candès and Donoho, 1999]

• Optimal representation for functions in \mathbb{R}^2 with curved singularities.

For $f \in C^2/C^2$:

$$\|f - \hat{f}_M\|_2^2 \sim (\log M)^3 M^{-2}$$

• Key idea: parabolic scaling relation for C^2 curves:

$width \propto length^2$
“Wish List” for New Image Representations

- Multiresolution ... successive refinement
- Localization ... both space and frequency
- Critical sampling ... correct joint sampling
- Directionality ... more directions
- Anisotropy ... more shapes

Our emphasis is on discrete framework that leads to algorithmic implementations.
Outline

1. Motivation

2. Discrete-domain construction using filter banks

3. Contourlets and directional multiresolution analysis

4. Contourlet approximation and directional vanishing moments

5. Applications
Challenge: Being Digital!

Pixelization:

Digital directions:

2. Discrete-domain construction using filter banks
Proposed Computational Framework: Contourlets

In a nutshell: contourlet transform is an efficient directional multiresolution expansion that is digital friendly!

\[
\text{contourlets} = \text{multiscale, local and directional contour segments}
\]

- Contourlets are constructed via filter banks and can be viewed as an extension of wavelets with directionality ⇒ Inherit the rich wavelet theory and algorithms.

- Starts with a discrete-domain construction that is amenable to efficient algorithms, and then investigates its convergence to a continuous-domain expansion.

- The expansion is defined on rectangular grids ⇒ Seamless transition between the continuous and discrete worlds.
Discrete-Domain Construction using Filter Banks

Idea: Multiscale and Directional Decomposition

- **Multiscale step:** capture point discontinuities, followed by...
- **Directional step:** link point discontinuities into linear structures.
Analogy: Hough Transform in Computer Vision

Challenges:

- Perfect reconstruction.
- Fixed transform with low redundancy.
- Sparse representation for images with smooth contours.

2. Discrete-domain construction using filter banks
Multiscale Decomposition using Laplacian Pyramids

- **Reason:** avoid “frequency scrambling” due to (↓) of the HP channel.
- Laplacian pyramid as a frame operator \rightarrow tight frame exists.
- New reconstruction: efficient filter bank for dual frame (pseudo-inverse).

2. Discrete-domain construction using filter banks
Directional Filter Banks (DFB)

• **Feature:** division of 2-D spectrum into fine slices using tree-structured filter banks.

![Diagram of directional filter banks]

• **Background:** Bamberger and Smith (’92) cleverly used quincunx FB’s, modulation and shearing.

• **We propose:**
 - a simplified DFB with fan FB’s and shearing
 - using DFB to construct directional bases
Multidimensional Sampling

Example. Downsampling by M: $x_d[n] = x[Mn]$

\[R_3 = \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix} \quad Q_1 = \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix} = R_0 D_0 R_3 \]

2. Discrete-domain construction using filter banks
Simplified DFB: Two Building Blocks

- Frequency splitting by the quincunx filter banks (Vetterli’84).

- Shearing by resampling

2. Discrete-domain construction using filter banks
Use two *separable* sampling matrices:

\[
S_k = \begin{cases}
\begin{bmatrix}
2^{l-1} & 0 \\
0 & 2
\end{bmatrix} & 0 \leq k < 2^{l-1} \quad (\text{"near horizontal" direction}) \\
\begin{bmatrix}
2^{l-1} & 0 \\
0 & 2
\end{bmatrix} & 2^{l-1} \leq k < 2^l \quad (\text{"near vertical" direction})
\end{cases}
\]
General Bases from the DFB

An l-levels DFB creates a local directional basis of $l^2(\mathbb{Z}^2)$:

$$\left\{ g^{(l)}_k [\cdot - S^{(l)}_k n] \right\}_{0 \leq k < 2^l, n \in \mathbb{Z}^2}$$

- $G^{(l)}_k$ are directional filters:
- Sampling lattices (spatial tiling):

2. Discrete-domain construction using filter banks
Discrete Contourlet Transform

Combination of the Laplacian pyramid (multiscale) and directional filter banks (multidirection)

Properties:

- Flexible multiscale and directional representation for images (can have different number of directions at each scale!)
- Tight frame with small redundancy (< 33%)
- Computational complexity: $O(N)$ for N pixels thanks to the iterated filter bank structures

2. Discrete-domain construction using filter banks
Wavelets vs. Contourlets

2. Discrete-domain construction using filter banks
Examples of Discrete Contourlet Transform

2. Discrete-domain construction using filter banks
Critically Sampled (CRISP) Contourlet Transform
[LuD:03]

- **Directional bandpass**: $3 \times 2^n \ (n = 1, 2, \ldots)$ directions at each level.

- Refinement of directionality is achieved via iteration of two filter banks.

2. Discrete-domain construction using filter banks
Contourlet Packets

- **Adaptive scheme** to select the “best” tree for directional decomposition.

- **Contourlet packets**: obtained by altering the depth of the DFB decomposition tree at different scales and orientations
 - Allow different angular resolution at different scale and direction
 - Rich set of contourlets with variety of support sizes and aspect ratios
 - Include wavelet(-like) transform
Nonsubsampled Contourlet Transform [Zhou, Cunha, ...]

Less stringent filter bank condition \rightarrow design better filters.

Key: "à trous" algorithm = efficient filtering "with holes" using the equivalent sampling matrices
Outline

1. Motivation
2. Discrete-domain construction using filter banks
3. Contourlets and directional multiresolution analysis
4. Contourlet approximation and directional vanishing moments
5. Applications
Multiresolution Analysis

\[V_{j-1} = V_j \oplus W_j, \]

\[L^2(\mathbb{R}^2) = \bigoplus_{j \in \mathbb{Z}} W_j. \]

\(V_j \) has an **orthogonal** basis \(\{ \phi_{j,n} \}_{n \in \mathbb{Z}^2} \), where

\[\phi_{j,n}(t) = 2^{-j} \phi(2^{-j} t - n). \]

\(W_j \) has a **tight frame** \(\{ \mu_{j-1,n} \}_{n \in \mathbb{Z}^2} \) where

\[\mu_{j-1,2n+k_i} = \psi_{j,n}^{(i)}, \quad i = 0, \ldots, 3. \]
Directional Multiresolution Analysis

\[
W_j = \bigoplus_{k=0}^{2^j - 1} W^{(l_j)}_{j,k}
\]

\(W^{(l_j)}_{j,k}\) has a tight frame \(\{\rho^{(l)}_{j,k,n}\}_{n \in \mathbb{Z}^2}\) where

\[
\rho^{(l)}_{j,k,n}(t) = \sum_{m \in \mathbb{Z}^2} g^{(l)}_{k}[m - S^{(l)}_{k} n] \mu_{j-1,m}(t) = \rho^{(l)}_{j,k}(t - 2^{j-1} S^{(l)}_{k} n).
\]

Theorem (Contourlet Frames) [DoV:03].
\(\{\rho^{(l_j)}_{j,k,n}\}_{j \in \mathbb{Z}, \ 0 \leq k < 2^j, \ n \in \mathbb{Z}^2}\) is a tight frame of \(L^2(\mathbb{R}^2)\) for finite \(l_j\).
Sampling Grids of Contourlets

(a) \(w \)

(b) \(l \)

(c) \(w/4 \)

(d) \(l/2 \)

3. Contourlets and directional multiresolution analysis
Connection between Continuous and Discrete Domains

Theorem [DoV:04] Suppose \(x[n] = \langle f, \phi_{L,n} \rangle \), for an \(f \in L^2(\mathbb{R}^2) \), and

\[
\begin{align*}
x & \xrightarrow{\text{discrete contourlet transform}} (a_J, d_{j,k}^{(l_j)})_{j=1,\ldots,J; k=0,\ldots,2^{l_j}-1} \\
\end{align*}
\]

Then

\[
\begin{align*}
a_J[n] &= \langle f, \phi_{L+J,n} \rangle \quad \text{and} \quad d_{j,k}^{(l_j)}[n] &= \langle f, \rho_{L+j,k,n}^{(l_j)} \rangle
\end{align*}
\]

Digital images are obtained by:

\[
\tilde{x}[n] = (f * \bar{\phi})(Tn) = \langle f, \varphi(\cdot - Tn) \rangle
\]

For \(T = 2^L \), with **prefiltering** we can get \(x[n] \) from \(\tilde{x}[n] \)
Contourlet Features

• Defined via iterated filter banks ⇒ fast algorithms, tree structures, etc.

• Defined on rectangular grids ⇒ seamless translation between continuous and discrete worlds.

• Different contourlet kernel functions \((\rho_{j,k})\) for different directions.

• These functions are defined iteratively via filter banks.

• With FIR filters ⇒ compactly supported contourlet functions.
Outline

1. Motivation

2. Discrete-domain construction using filter banks

3. Contourlets and directional multiresolution analysis

4. Contourlet approximation and directional vanishing moments

5. Applications
Contourlets with Parabolic Scaling

Support size of the contourlet function $\rho_{j,k}^{l_j}$: width $\approx 2^j$ and length $\approx 2^{l_j+j}$

To satisfy the parabolic scaling: width \propto length2, simply set: the number of directions is doubled at every other finer scale.
Supports of Contourlet Functions

Key point: Each generation doubles spatial resolution as well as angular resolution.
Contourlet Approximation

Desire: Fast decay as contourlets turn away from the discontinuity direction

Key: Directional vanishing moments (DVMs)
Geometrical Intuition

At scale 2^j ($j \ll 0$):

- width $\approx 2^j$
- length $\approx 2^{j/2}$
- #directions $\approx 2^{-j/2}$

\[
|\langle f, \rho_{j,k,n} \rangle| \sim 2^{-3j/4} \cdot d_{j,k,n}^3
\]

\[
d_{j,k,n} \sim 2^j / \sin \theta_{j,k,n} \sim 2^{j/2} \tilde{k}^{-1} \quad \text{for} \quad \tilde{k} = 1, \ldots, 2^{-j/2}
\]

\[
\Rightarrow |\langle f, \rho_{j,\tilde{k},n} \rangle| \sim 2^{3j/4} \tilde{k}^{-3}
\]

4. Contourlet approximation and directional vanishing moments
How Many DVMs Are Sufficient?

Sufficient if the gap to a direction with DVM:

\[\alpha \lesssim d \sim 2^{j/2} \tilde{k}^{-1} \quad \text{for} \quad \tilde{k} = 1, \ldots, 2^{-j/2} \]

This condition can be replaced with fast decay in frequency across directions.

It is still an open question if there is an FIR filter bank that satisfies the sufficient DVM condition.

4. Contourlet approximation and directional vanishing moments
Examples of Frequency Responses

8 directions: along the line $\omega_2 = \pi/2$

16 directions: along the line $\omega_2 = \pi/2$

Left: PKVA filters (size 41×41). Middle: New filters (size 11×11). Right: CD filters (size 9×9)

4. Contourlet approximation and directional vanishing moments
Experiments with Decay Across Directions using Near Ideal Frequency Filters

4. Contourlet approximation and directional vanishing moments
Under the (ideal) sufficient DVM condition

$$\langle f, \rho_{j, \tilde{k}, \mathbf{n}} \rangle \sim 2^{3j/4} \tilde{k}^{-3}$$

with number of coefficients $N_{j, \tilde{k}} \sim 2^{-j/2} \tilde{k}$. Then

$$\| f - \hat{f}_M^{(\text{contourlet})} \|^2 \sim (\log M)^3 M^{-2}$$

Note: $\| f - \hat{f}_M^{(\text{Fourier})} \|^2 \sim O(M^{-1/2})$ and $\| f - \hat{f}_M^{(\text{wavelet})} \|^2 \sim O(M^{-1})$
Non-linear Approximation Experiments

Image size = 512 × 512. Keep $M = 4096$ coefficients.

Original image

Wavelets:
PSNR = 24.34 dB

Contourlets:
PSNR = 25.70 dB

4. Contourlet approximation and directional vanishing moments
Detailed Non-linear Approximations

Wavelets

M = 4
M = 16
M = 64
M = 256

Contourlets

M = 4
M = 16
M = 64
M = 256

4. Contourlet approximation and directional vanishing moments
Filter Bank Design Problem

\[\rho_{j,k}^{(l)}(t) = \sum_{m \in \mathbb{Z}^2} c_k^{(l)}[m] \phi_{j-1,m}(t) \]

\(\rho_{j,k}^{(l)}(t) \) has an \(L \)-order DVM along direction \((u_1, u_2) \)
\[\Leftrightarrow C_k^{(l)}(z_1, z_2) = (1 - z_1^{u_2} z_2^{-u_1})^L R(z_1, z_2) \]

So far: Use good frequency selectivity to approximate DVMs.

Draw back: long filters...

Next: Design short filters that lead to many DVMs as possible.
Filters with DVMs = Directional Annihilating Filters

Input image and after being filtered by a directional annihilating filter
Two-Channel Filter Banks with DVMs

Filter bank with order-L horizontal or vertical DVM:

\[T_0 \]

\[T_1 \]

Filters have a factor \((1 - z_1)^L\) or \((1 - z_2)^L\)

To get DVMs at other directions: Shearing or change of variables

\[H_0(\omega) \equiv H_0(R_0^T \omega) \]

4. Contourlet approximation and directional vanishing moments
Design Example [CunhaD:04]

“Extended” 9-7 filters:

\[|H_0(e^{jw})| \]

\[|G_0(e^{jw})| \]

\[|H_1(e^{jw})| \]

\[|G_1(e^{jw})| \]

4. Contourlet approximation and directional vanishing moments
Directional Vanishing Moments Generated in Directional Filter Banks

Different expanding rules lead to different set of directions with DVMs.
Gain by using Filters with DVMs

Using PKVA filters

Using DVM filters

4. Contourlet approximation and directional vanishing moments
Outline

1. Motivation

2. Discrete-domain construction using filter banks

3. Contourlets and directional multiresolution analysis

4. Contourlet approximation and directional vanishing moments

5. Applications
• **Embedded tree data structure** for contourlet coefficients: successively locate the *position* and *direction* of image contours.

• **Contourlet tree approximation**: significant contourlet coefficients are organized in trees → low indexing cost for compression.
Contourlet-domain Hidden Markov Tree Models [PoD:04]

Contourlet HMT models all inter-scale, inter-direction, and inter-location independencies.
Texture Retrieval Results: Brodatz Database

Average retrieval rates

<table>
<thead>
<tr>
<th></th>
<th>Wavelet HMT</th>
<th>Contourlet HMT</th>
</tr>
</thead>
<tbody>
<tr>
<td>90.87%</td>
<td>93.29%</td>
<td></td>
</tr>
</tbody>
</table>

Top: Wavelets do better (> 5%).
Bottom: Contourlets do better (> 5%).
Denoising using Nonsubsampled Contourlet Transform (NSCT) [Cunha]:

“Hat Zoom”

Comparison against SI-Wavelet (nonsubsampled wavelet transform) methods using Bayes shrink with adaptive soft thresholding.

+ Noisy Lena | SI-Wavelet | NSCT Den |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PSNR 22.13db</td>
<td>PSNR 31.82dB</td>
<td>PSNR 32.14dB</td>
</tr>
</tbody>
</table>

5. Applications
Denoising Result: “Peppers”

<table>
<thead>
<tr>
<th></th>
<th>Noisy Lena</th>
<th>SI-Wavelet</th>
<th>NSCT Den</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSNR</td>
<td>22.14db</td>
<td>31.38dB</td>
<td>31.53dB</td>
</tr>
</tbody>
</table>
Image Enhancement Algorithm

- Nonsubsampled contourlet decomposition
- Nonlinear mapping on the coefficients
 - Zero-out noises
 - Keep strong edges or features
 - Enhance weak edges or features
- Nonsubsampled contourlet reconstruction
Image Enhancement Result: *Barbara*

(a) Original image. (b) Enhanced by DWT. (c) Enhanced by NSCT.
Image Enhancement Result: OCT Image

(a) Original OCT image. (b) Enhanced by DWT. (c) Enhanced by NSCT.
Summary

• Image processing relies on *prior information* about images.
 – Geometrical structure is the key!
 – New desideratum beyond wavelets: directionality

• New two-dimensional *discrete framework and algorithms*:
 – Flexible *directional* and *multiresolution* image representation.
 – Effective for images with *smooth contours* ⇒ contourlets.
 – Front-end for *hierarchical geometrical image representation*.

• **Dream**: Another fruitful interaction between *harmonic analysis, vision, and signal processing*.

• **Software and papers**: www.ifp.uiuc.edu/~minhdo