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What Do Image Processors Do for Living?

Compression: At 158:1 compression ratio...
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What Do Image Processors Do for Living?

Denoising (restoration/filtering)

Noisy image Clean image
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What Do Image Processors Do for Living?

Feature extraction (e.g. for content-based image retrieval)

Feature
extraction

Feature
extraction

Images

Query

Similarity Measurement

Signatures

N best matched images
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Fundamental Question: Efficient Representation of

Visual Information

A random image A natural image

Natural images live in a very tiny part of the huge “image space”
(e.g. R

512×512×3)
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Mathematical Foundation: Sparse Representations

Fourier, Wavelets... = construction of bases for signal expansions:

f =
∑

n

cnψn, where cn = 〈f, ψn〉.

Non-linear approximation:

f̂M =
∑

n∈IM

cnψn, where IM = indexes of M most significant components.

Sparse (efficient) representation: f ∈ F can be (nonlinearly)

approximated with few components; e.g. ‖f − f̂M‖2
2 ∼M−α.
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Wavelets and Filter Banks
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The Success of Wavelets

• Wavelets provide a sparse representation for piecewise smooth signals.

• Multiresolution, tree structures, fast transforms and algorithms, etc.

• Unifying theory ⇒ fruitful interaction between different fields.
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Fourier vs. Wavelets

Non-linear approximation: N = 1024 data samples; keep M = 128
coefficients
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Using wavelets (Daubechies−4): SNR = 37.67 dB
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Using Fourier (of size 1024): SNR = 22.03 dB
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Is This the End of the Story?
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Wavelets in 2-D

• In 1-D: Wavelets are well adapted to abrupt changes or singularities.

• In 2-D: Separable wavelets are well adapted to point-singularities (only).

But, there are (mostly) line- and curve-singularities...
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The Failure of Wavelets

Wavelets fail to capture the geometrical regularity in images.
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Edges vs. Contours

Wavelets cannot “see” the difference between the following two images:

• Edges: image points with discontinuity

• Contours: edges with localized and regular direction [Zucker et al.]
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Goal: Efficient Representation for Typical Images

with Smooth Contours
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boundary
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Key: Exploring the intrinsic geometrical structure in natural images.

⇒ Action is at the edges!
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And What The Nature Tells Us...

• Human visual system:

– Extremely efficient: 107 bits −→ 20-40 bits (per second).
– Receptive fields are characterized as localized, multiscale and oriented.

• Sparse components of natural images (Olshausen and Field, 1996):

16 x 16 patches

from natural images

Search for
Sparse Code
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Wavelet vs. New Scheme

Wavelets New scheme

For images:

• Wavelet scheme... see edges but not smooth contours.

• New scheme... requires challenging non-separable constructions.
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Recent Breakthrough from Harmonic Analysis:

Curvelets [Candès and Donoho, 1999]

• Optimal representation for functions in R
2 with curved singularities.

For f ∈ C2/C2 : ‖f − f̂M‖2
2 ∼ (logM)3M−2

• Key idea: parabolic scaling relation for C2 curves:

width ∝ length2

u
v

l

w

u = u(v)
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“Wish List” for New Image Representations

• Multiresolution ... successive refinement

• Localization ... both space and frequency

• Critical sampling ... correct joint sampling

• Directionality ... more directions

• Anisotropy ... more shapes

Our emphasis is on discrete framework that leads to
algorithmic implementations.
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Challenge: Being Digital!

Pixelization:

Digital directions:
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Proposed Computational Framework: Contourlets

In a nutshell: contourlet transform is an efficient directional multiresolution
expansion that is digital friendly!

contourlets = multiscale, local and directional contour segments

• Contourlets are constructed via filter banks and can be viewed as an
extension of wavelets with directionality
⇒ Inherit the rich wavelet theory and algorithms.

• Starts with a discrete-domain construction that is amenable to efficient
algorithms, and then investigates its convergence to a continuous-domain
expansion.

• The expansion is defined on rectangular grids
⇒ Seamless transition between the continuous and discrete worlds.
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Discrete-Domain Construction using Filter Banks

Idea: Multiscale and Directional Decomposition

• Multiscale step: capture point discontinuities, followed by...

• Directional step: link point discontinuities into linear structures.
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Analogy: Hough Transform in Computer Vision

Input image Edge image “Hough” image

=⇒ =⇒

Challenges:

• Perfect reconstruction.

• Fixed transform with low redundancy.

• Sparse representation for images with smooth contours.

2. Discrete-domain construction using filter banks 23



Multiscale Decomposition using Laplacian Pyramids

decomposition reconstruction

• Reason: avoid “frequency scrambling” due to (↓) of the HP channel.

• Laplacian pyramid as a frame operator → tight frame exists.

• New reconstruction: efficient filter bank for dual frame (pseudo-inverse).
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Directional Filter Banks (DFB)

• Feature: division of 2-D spectrum into fine slices using tree-structured
filter banks.

3
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• Background: Bamberger and Smith (’92) cleverly used quincunx FB’s,
modulation and shearing.

• We propose:

– a simplified DFB with fan FB’s and shearing
– using DFB to construct directional bases
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Multidimensional Sampling

Example. Downsampling by M : xd[n] = x[Mn]

↓ R3 ↓ Q1

R3 =

(
1 0
−1 1

)

Q1 =

(
1 1
−1 1

)

= R0D0R3
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Simplified DFB: Two Building Blocks

• Frequency splitting by the quincunx filter banks (Vetterli’84).

+x

y0

y1

x̂

Q

Q

Q

Q

• Shearing by resampling
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Multichannel View of the Directional Filter Bank

+x
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Use two separable sampling matrices:

Sk =







[

2l−1 0

0 2

]

0 ≤ k < 2l−1 (“near horizontal” direction)

[

2 0

0 2l−1

]

2l−1 ≤ k < 2l (“near vertical” direction)

2. Discrete-domain construction using filter banks 28



General Bases from the DFB

An l-levels DFB creates a local directional basis of l2(Z2):

{

g
(l)
k [· − S

(l)
k n]

}

0≤k<2l, n∈Z2

• G
(l)
k are directional filters:

• Sampling lattices (spatial tiling):

2

2

2l−1

2l−1
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Discrete Contourlet Transform

Combination of the Laplacian pyramid (multiscale) and directional filter
banks (multidirection)

image

subbands
directional
bandpass

directional
subbands

bandpass

(2,2) ω1

ω2 (π, π)

(−π,−π)

Properties: + Flexible multiscale and directional representation for images
(can have different number of directions at each scale!)

+ Tight frame with small redundancy (< 33%)

+ Computational complexity: O(N) for N pixels
thanks to the iterated filter bank structures
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Wavelets vs. Contourlets
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Examples of Discrete Contourlet Transform
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Critically Sampled (CRISP) Contourlet Transform

[LuD:03]
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• Directional bandpass: 3 × 2n (n = 1, 2, . . .) directions at each level.

• Refinement of directionality is achieved via iteration of two filter banks.
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Contourlet Packets

• Adaptive scheme to select the “best” tree for directional decomposition.

ω1

ω2 (π, π)

(−π,−π)

• Contourlet packets: obtained by altering the depth of the DFB
decomposition tree at different scales and orientations

– Allow different angular resolution at different scale and direction
– Rich set of contourlets with variety of support sizes and aspect ratios
– Include wavelet(-like) transform
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Nonsubsampled Contourlet Transform [Zhou, Cunha, ...]
H0(z)

H1(z)

G0(z)

G1(z)

H0(z)

H1(z)

G0(z)

G1(z)

Less stringent filter bank condition → design better filters.

(z^D)


(z^D)


(z^D)


(z^D)


H0

H0

H0

H1

H1

H1

X

Key: “à trous” algorithm = efficient filtering “with holes” using the
equivalent sampling matrices
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Multiresolution Analysis

w1

w2

Vj

Wj

Vj−1

Vj−1 = Vj ⊕Wj,

L2(R2) =
⊕

j∈Z

Wj.

Vj has an orthogonal basis {φj,n}n∈Z2, where

φj,n(t) = 2−jφ(2−jt − n).

Wj has a tight frame {µj−1,n}n∈Z2 where

µj−1,2n+ki
= ψ

(i)
j,n, i = 0, . . . , 3.
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Directional Multiresolution Analysis

Wj =
L2

lj−1
k=0 W

(lj)

j,k
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Vj−1

W
(lj)

j,k

ω1

ω2

2j

2j+lj−2

ρ
(lj)

j,k,n

W
(lj)

j,k has a tight frame
{

ρ
(l)
j,k,n

}

n∈Z2
where

ρ
(l)
j,k,n(t) =

∑

m∈Z2

g
(l)
k [m − S

(l)
k n]

︸ ︷︷ ︸
DFB basis

µj−1,m(t)
︸ ︷︷ ︸

LP frame

= ρ
(l)
j,k(t − 2j−1S

(l)
k n).

Theorem (Contourlet Frames) [DoV:03].
{

ρ
(lj)

j,k,n

}

j∈Z, 0≤k<2
lj , n∈Z2

is a tight frame of L2(R2) for finite lj.
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Sampling Grids of Contourlets

(a) (b)

(c) (d)

w

w
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Connection between Continuous and Discrete Domains

Theorem [DoV:04] Suppose x[n] = 〈f, φL,n〉, for an f ∈ L2(R2), and

x
discrete contourlet transform

−→ (aJ , d
(lj)

j,k )
j=1,...,J; k=0,...,2

lj−1

Then
aJ [n] = 〈f, φL+J,n〉 and d

(lj)

j,k [n] = 〈f, ρ
(lj)

L+j,k,n〉

Digital images are obtained by:

x̃[n] = (f∗ϕ̄)(Tn) = 〈f, ϕ(·−Tn)〉

For T = 2L, with prefiltering we
can get x[n] from x̃[n]
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Contourlet Features

• Defined via iterated filter banks ⇒ fast algorithms, tree structures, etc.

• Defined on rectangular grids ⇒ seamless translation between continuous
and discrete worlds.

• Different contourlet kernel functions (ρj,k) for different directions.

• These functions are defined iteratively via filter banks.

• With FIR filters ⇒ compactly supported contourlet functions.
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Contourlets with Parabolic Scaling

Support size of the contourlet function ρ
lj
j,k: width ≈ 2j and length ≈ 2lj+j

To satisfy the parabolic scaling: width ∝ length2, simply set:
the number of directions is doubled at every other finer scale.

u
v

l

w

u = u(v)

ω1

ω2 (π, π)

(−π,−π)

4. Contourlet approximation and directional vanishing moments 43



Supports of Contourlet Functions

*

Contourlet

=*

DFBLP

=

Key point: Each generation doubles spatial resolution
as well as angular resolution.
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Contourlet Approximation

see a wavelet

ΠLΠL

Desire: Fast decay as contourlets turn away from the discontinuity direction

Key: Directional vanishing moments (DVMs)
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Geometrical Intuition

At scale 2j (j ≪ 0):

width ≈ 2j

length ≈ 2j/2

#directions ≈ 2−j/2
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2j

2j/2 dj,k,n

d2
j,k,n

θj,k,n

|〈f, ρj,k,n〉| ∼ 2−3j/4 · d3
j,k,n

dj,k,n ∼ 2j/ sin θj,k,n ∼ 2j/2k̃−1 for k̃ = 1, . . . , 2−j/2

=⇒ |〈f, ρj,k̃,n〉| ∼ 23j/4k̃−3
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How Many DVMs Are Sufficient?
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Sufficient if the gap to a direction with DVM:

α . d ∼ 2j/2k̃−1 for k̃ = 1, . . . , 2−j/2

This condition can be replaced with fast decay in frequency across directions.

It is still an open question if there is an FIR filter bank that satisfies the
sufficient DVM condition
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Examples of Frequency Responses

8 directions: along the line ω2 = π/2

16 directions: along the line ω2 = π/2

Left: PKVA filters (size 41×41). Middle: New filters (size 11×11). Right:
CD filters (size 9 × 9)
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Experiments with Decay Across Directions using

Near Ideal Frequency Filters

slope = −3
slope = −3
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Nonlinear Approximation Rates
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Under the (ideal) sufficient DVM condition

|〈f, ρj,k̃,n〉| ∼ 23j/4k̃−3

with number of coefficients Nj,k̃ ∼ 2−j/2k̃. Then

‖f − f̂
(contourlet)
M ‖2 ∼ (logM)3M−2

Note: ‖f − f̂
(Fourier)
M ‖2 ∼ O(M−1/2) and ‖f − f̂

(wavelet)
M ‖2 ∼ O(M−1)
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Non-linear Approximation Experiments

Image size = 512 × 512. Keep M = 4096 coefficients.

Original image Wavelets: Contourlets:
PSNR = 24.34 dB PSNR = 25.70 dB
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Detailed Non-linear Approximations

Wavelets

M = 4 M = 16 M = 64 M = 256

Contourlets

M = 4 M = 16 M = 64 M = 256
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Filter Bank Design Problem

ρ
(l)
j,k(t) =

∑

m∈Z2

c
(l)
k [m]φj−1,m(t)

ρ
(l)
j,k(t) has an L-order DVM along direction (u1, u2)

⇔ C
(l)
k (z1, z2) = (1 − zu2

1 z−u1
2 )LR(z1, z2)

So far: Use good frequency selectivity
to approximate DVMs.

Draw back: long filters...
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Next: Design short filters that lead to many DVMs as possible.
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Filters with DVMs = Directional Annihilating Filters

Input image and after being filtered by a directional annihilating filter
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Two-Channel Filter Banks with DVMs

Filter bank with order-L horizontal or vertical DVM:

T0

Q

Q

Q

Q

    T1

Filters have a factor (1 − z1)
L or (1 − z2)

L

To get DVMs at other directions: Shearing or change of variables

≡

H0(ω) H0(R
T
0 ω)

R0 R1
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Design Example [CunhaD:04]

“Extended” 9-7 filters:

|H0(e
jw)| |G0(e

jw)|
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Directional Vanishing Moments Generated in Directional

Filter Banks

Different expanding rules lead to different set of directions with DVMs.
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Gain by using Filters with DVMs
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Using PKVA filters Using DVM filters
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Contourlet Embedded Tree Structure

• Embedded tree data structure for contourlet coefficients:
successively locate the position and direction of image contours.

• Contourlet tree approximation: significant contourlet coefficients are
organized in trees −→ low indexing cost for compression.
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Contourlet-domain Hidden Markov Tree Models

[PoD:04]

Direction

1

2

3

4
S

ca
le

Contourlet HMT models all inter-scale, inter-direction, and inter-location
independencies.

5. Applications 61



Texture Retrieval Results: Brodatz Database

Average retrieval rates
wavelet HMT contourlet HMT

90.87% 93.29%

Top: Wavelets do better (> 5%).
Bottom: Contourlets do better
(> 5%).
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Denoising using Nonsubsampled Contourlet Transform

(NSCT) [Cunha]:

“Hat Zoom”

Comparison against SI-Wavelet (nonsubsampled wavelet transform)
methods using Bayes shrink with adaptive soft thresholding

Noisy Lena SI-Wavelet NSCT Den
PSNR 22.13db PSNR 31.82dB PSNR 32.14dB
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Denoising Result: “Peppers”

Noisy Lena SI-Wavelet NSCT Den
PSNR 22.14db PSNR 31.38dB PSNR 31.53dB
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Image Enhancement [Zhou]

Image Enhancement Algorithm

• Nonsubsampled contourlet decomposition

• Nonlinear mapping on the coefficients

– Zero-out noises
– Keep strong edges or features
– Enhance weak edges or features

• Nonsubsampled contourlet reconstruction
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Image Enhancement Result: Barbara

(a)

(b) (c)

(a) Original image. (b) Enhanced by DWT. (c) Enhanced by NSCT.
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Image Enhancement Result: OCT Image

(a)

(b) (c)

(a) Original OCT image. (b) Enhanced by DWT. (c) Enhanced by NSCT.
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Summary

• Image processing relies on prior information about images.

– Geometrical structure is the key!
– New desideratum beyond wavelets: directionality

• New two-dimensional discrete framework and algorithms:

– Flexible directional and multiresolution image representation.

– Effective for images with smooth contours ⇒ contourlets.
– Front-end for hierarchical geometrical image representation.

• Dream: Another fruitful interaction between harmonic analysis, vision,
and signal processing.

• Software and papers: www.ifp.uiuc.edu/∼minhdo
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