Multiscale Geometric Image Compression using Wavelets and Wedgelets

Richard Baraniuk
Rice University
dsp.rice.edu

Joint work with Hyeokho Choi, Justin Romberg, Mike Wakin
Multiscale Geometric Compression of Piecewise Smooth Images using Wavelets and Wedgelets

Textures

Cartoons
Computational Harmonic Analysis

- **Representation**
 \[f = \sum_k a_k b_k \]

 coefficients \quad basis, \, frame

- **Analysis**
 study \(f \) through structure of \(\{a_k\} \)
 \(\{b_k\} \) should extract features of interest

- **Approximation**
 \(\hat{f}_N \) uses just a few terms \(N \)
 exploit sparsity of \(\{a_k\} \)
Nonlinear Approximation

\[f = \sum_k a_k b_k \]

- \(N \)-term approximation: use largest \(a_k \) independently

\[\hat{f}_N := \sum_{k'=1}^{N} a_{k'} b_{k'} \]

- Greedy / thresholding

few big

\[|a_{k'}| \]

sorted index \(k' \)
Error Approximation Rates

\[f = \sum_k a_k b_k \]

\[\hat{f}_N = \sum_{k'=1}^{N} a_{k'} b_{k'} \]

\[\| f - \hat{f}_N \|_2^2 < C N^{-\alpha} \quad \text{as } N \to \infty \]

- Optimize asymptotic error decay rate \(\alpha \)
From Approximation to Compression

- Quantize coefficients \(\{a_k\} \), approximate with \(R \) bits

\[
f = \sum_k a_k b_k
\]

\[
\hat{f}_R = \sum_k a_k^q b_k
\]

- \(R \) bits must specify both value \(a_k^q \) and location \(k \)

- Optimize Rate/Distortion decay rate \(\alpha \)

\[
D(R) = \|f - \hat{f}_R\|_2^2 < CR^{-\alpha} \quad \text{as } R \to \infty
\]
1-D Piecewise Smooth Signals

- \(f \) smooth except for singularities at a finite number of 0-D points

Fourier sinusoids: suboptimal greedy approximation and extraction

Wavelets: \textit{optimal} greedy approximation extract singularity structure
2-D Piecewise Smooth Signals

- f smooth except for singularities along a finite number of smooth 1-D curves

- Challenge: analyze/approximate geometric structure

- Challenge: analyze/approximate geometric structure
Wavelet-based Image Processing

- Standard 2-D tensor product wavelet transform

\[f = \sum_{k} a_k b_k \]
Wavelet Challenges

- Geometrical info not explicit

- Inefficient - large number of large wc’s cluster around edge contours, no matter how smooth
The JPEG2000 Disappointment

• Current wavelet methods do not improve on decay rate of JPEG!

\[D(R) = \| f - \hat{f}_R \|_2^2 < C R^{-\alpha} \]

• WHY?
neither DCT nor wavelets are the right transform
2-D Wavelets: Poor Approximation

- Even for a smooth C^2 contour, which straightens at fine scales...

- **Too many wavelets required!**

\[
\hat{f}_N \quad : \quad N\text{-term wavelet approximation}
\]

\[
\|f - \hat{f}_N\|_2^2 < C N^{-1} \quad \text{not} \quad N^{-2}
\]
Solution 1: Upgrade the *Transform*

- Introduce *anisotropic transform*
 - curvelets, ridgelets, contourlets, ...

- Optimal error decay rates for cartoons +
Solution 2: Upgrade the Processing

- Replace coefficient thresholding by a new \textit{wc model} that captures \textit{anisotropic spatial correlations}
Our Goal: New Image Models

- Wavelet coefficient models that capture both \textit{geometric} and \textit{textural} aspects of natural images
- Optimal error decay rates for some image class
Part I

Geometric Modeling of Cartoons with Wedgelets
Geometry Model for *Cartoons*

- **Toy model:** flat regions separated by smooth contours

- **Goal:** representation that is
 - sparse
 - simply modeled
 - efficiently computed
 - extensible to texture regions

\[C^2 \text{ boundary} \]
2-D Dyadic Partition

- **Multiscale** analysis
- *Partition*; not a basis/frame
- Zoom in by factor of 2 each scale
2-D Dyadic Partition = \textit{Quadtree}

- \textit{Multiscale} analysis
- \textit{Partition}; not a basis/frame
- Zoom in by factor of 2 each scale
- Each \textit{parent} node has \textit{4 children} at next finer scale
Wedgelet Representation

• Build a cartoon using *wedgelets* on dyadic squares

wedgelet = atomic geometric element
Wedgelet Representation

- Build a cartoon using **wedgelets** on dyadic squares

- Choose orientation \((r, \theta)\) from finite dictionary (toroidal sampling)

- **Quad-tree** structure

 deeper in tree \(\Rightarrow\) finer curve approximation
Wedgelet Representation

- *Prune* wedgelet quadtree to approximate local geometry (adaptive)

- *Decorate* leaves with (r, θ) parameters
Wedgelet Inference

- Find representation / prune tree to balance a **fidelity** vs. **complexity** trade-off

\[
\min_{W} \| f - \hat{f}_W \|_2^2 + \lambda \text{Comp}(W)
\]

- For \(\text{Comp}(W) \) – need a **model** for the wedgelet representation \(W \)
 (quadtree + \((r, \theta)\))

- Donoho: \(\text{Comp}(W) = \#\text{leaves} \)
Wedgelet Inference

- Find representation / prune tree to balance a **fidelity** vs. **complexity** trade-off

\[\min_W \| f - \hat{f}_W \|_2^2 + \lambda [\# \text{leaves}] \]

- **O(N)** dynamic programming solution (bottom-up recursion)

- Optimal *approximation*
 \[L_2 \text{ error } \sim (\# \text{leaves})^{-2} \]

- *Near-optimal* rate/distortion decay
 \[D(R) \sim (\log R)^2 R^{-2} \]
#Leaves Complexity Penalty

- Accounts for wedgelet partition *size*, but not wedgelet *orientation*

\[
\text{\#leaves} \quad = \quad \text{\#leaves}
\]

- "smooth" "simple"
- "rough" "complex"
Multiscale Geometry Model (MGM)

- Decorate *each* tree node with orientation \((r, \theta)\) and then *model dependencies thru scale*

- Insight: Smooth curve \(\Rightarrow\) *Geometric innovations small at fine scales*

- Model: Favor small innovations over large innovations \((\text{statistically})\)
Multiscale Geometry Model (MGM)

- Wavelet-like geometry model: \textit{coarse-to-fine prediction}
 - model parent-to-child transitions of orientations
MGM

- **Wavelet-like geometry model:**
 - *coarse-to-fine prediction*
 - model parent-to-child transitions of orientations

- **Markov-1 statistical model**
 - state = \((r, \theta)\) orientation of wedgelet
 - parent-to-child state transition matrix
 \[P_{mn} = P(\text{child orientation} = n | \text{parent orientation} = m) \]

\[P_{m,1} \]

\[P_{m,2} \ll P_{m,1} \]
MGM

- Markov-1 statistical model
 \[P_{mn} = P(\text{child orientation} = n | \text{parent orientation} = m) \]

- **Joint wedgelet Markov probability model:** \(P(W) \)

- **Complexity** = *Shannon codelength* = \(- \log P(W)\) = number of bits to encode \(W \)
MGM and Edge Smoothness

\[P(W_1) \]
\[- \log P(W_1) \]

“smooth”
“simple”

\[\gg \]

\[P(W_2) \]
\[- \log P(W_2) \]

“rough”
“complex”
MGM Inference

- Find representation / prune tree to balance the **fidelity** vs. **complexity** trade-off

\[
\min_W \| f - \hat{f}_W \|^2_2 + \lambda [- \log P(W)]
\]

- Efficient \(O(N)\) solution via *dynamic programming*
MGM Approximation

- Find representation / prune tree to balance the **fidelity** vs. **complexity** trade-off

\[
\min_{W} \| f - \hat{f}_W \|_2^2 + \lambda \left[- \log P(W) \right]
\]

- **Optimal** L^2 error decay rate for cartoons $\left(\#W \right)^{-2}$
Wedgelet *Coding* of Cartoon Images

- Choosing wedgelets = *rate-distortion* optimization

$$\min_W \left\| f - \hat{f}_W \right\|_2^2 + \lambda \left[- \log P(W) \right]$$

Shannon code length

$$\min_W \text{Distortion} + \lambda \text{Rate (bits)}$$

to encode \((r, \theta, m_1, m_2)\)
Wedgelet Coding of Cartoon Images

• Choosing wedgelets = rate-distortion optimization

\[
\min_W \| f - \hat{f}_W \|_2^2 \quad \text{s.t. } (#\text{bits}) \leq R^*
\]

~130 bits coded independently
~25 bits coded with MGM
Predictive Wedgelet Coding is Optimal

Optimal rate-distortion performance

\[D(R) \sim R^{-2} \]

compared to

\[(\log R)^2 \ R^{-2} \]

for leaf-only encoding

\(C^2 \) contour (1-d)
Joint Texture/Geometry Modeling

- Dictionary $D = \{\text{wavelets}\} \cup \{\text{wedgelets}\}$

- Representation tradeoff: \text{texture} vs. \text{geometry}

- Test case: \text{approximation / compression}
Subtracting Doesn’t Work

wedgelet approximation residual = \(f - w.a. \)

* ridge artifacts just as hard to approx/code as edges
Part II

Wedding Wedgelets with Wavelets
Wavelet Representation

- Standard 2-D tensor product wavelet transform

\[f = \sum_{k} a_k b_k \]
Wavelet Quadtrees

- Wavelet coefficients structured on *quadtrees*
 - each *parent* has 4 *children* at next finer scale
Wavelet Persistence

- **Smooth** region - *small* values down tree
- **Singularity/texture** - *large* values down tree
Zero Tree Approximation

- Idea: *Prune* wavelet subtrees in smooth regions
 - *tree-structured thresholding*
Zero Tree Approximation

- Label pruned wavelet quadtree with 2 states

zero-tree - smooth region (prune)

significant - edge/texture region (keep)

\[Z: \text{all wc's below}=0 \]

ie: wc's of

\[+\text{atom} \]
Enter Geometry

- Label pruned wavelet quadtree with 2 states

 zero-tree - smooth region (prune)
 significant - edge/texture region (keep)

- *Suboptimal* NLA/R-D decay w/ edges \(D(R) \sim R^{-1} \)
Wedgelets for Geometry

• Label pruned wavelet quadtree with 2 states
 - zero-tree: smooth region (prune)
 - significant: edge/texture region (keep)

• Idea: use wedgelets in geometric edge squares

G: wc’s below are wc’s of a wedgelet
Wedgelets for Geometry

- Label pruned wavelet quadtree with 3 states

 - **zero-tree** - smooth region (prune)
 - **geometry** - edge region (prune)
 - **significant** - texture region (keep)

\[G: wc's \text{ below are } wc's \text{ of a wedgelet} \]
Wedgelets for Geometry

• Label pruned wavelet quadtree with 3 states

 zero-tree - smooth region (prune)
 geometry - edge region (prune)
 significant - texture region (keep)

• Optimize placement of Z, G, S by dyn. programming

G: wc’s below are wc’s of a wedgelet
Wedgelet Trees for Geometry

- Label pruned wavelet quadtree with 3 states
 - zero-tree - smooth region (prune)
 - geometry - edge region (prune)
 - significant - texture region (keep)

- Optimize placement of Z, G, S by dyn. programming

G: wc’s below are wc’s of a wedgelet tree
Image Approximation

\(G \): wc’s below are wc’s of a wedgelet

ie: wc’s of +atom

\(Z \): all wc’s below = 0

ie: wc’s of +atom

\("smoothprint" \)

\(S \): describe (code) wc’s

\("wedgeprint" \)
Wedgeprints

- Wedgelet projected onto wavelet subtree yields an *adaptive atom* matched to local *edge geometry*

- *Wedgeprint* collapses many wc’s (entire subtree) into a *single* oriented atom

- Akin to wavelet *vector quantization*
Optimality of Wedgeprints

• **Theorem**

For C^2 / C^2 images, *optimal* asymptotic L^2 error decay

$$\| f - \hat{f}_N \|_2^2 < C N^{-2}$$

and *near-optimal* rate-distortion

$$D(R) = \log(R)^2 R^{-2}$$
Practical Image Coder

- **Wedgelet-SFQ (WSFQ) coder** builds on SFQ coder [Xiong, Ramchandran, Orchard]

 - At low bit rates, often significant improvement in visual quality over SFQ and JPEG-2k (much sharper edges)

- **Bonus**: WSFQ representation contains *explicit geometry information*
Wet Paint Test Image
SFQ Compressed

PSNR = 29.77dB @ 0.0103bpp
SFQ WC Code Map

green = significant blue = zero tree
SFQ Zoom
WSFQ Compressed

PSNR = 30.19dB @ 0.0102bpp
WSFQ WC Code Map

green=significant blue=zero tree red=contour tree
WSFQ Contour Trees
SFQ vs. WSFQ

SFQ

WSFQ
Extensions

zerotree

DCTprint

barprint

wedgeprint

“Coifman’s Dream”
Bars / Ridges

16x16 image block
Multiple Wedgelet Coding

80 bits to jointly encode 5 wedgelets
“Barlet” Coding

(fat edgelet/beamlet)

22 bits to encode 1 barlet
Periodic Textures
DCTprint

32x32 block = 1024 pixels
DCTprint

32x32 block = 1024 pixels

4x fewer coefficients
Extensions

zerotree

barprint

wedgeprint

DCTprint
Conclusions

• Capturing *geometrical information* in images requires new tools.

- **Wavelets**
 - Basis
 - Wedgeprints

- **Wedgelets**
 - Model

• *Optimal approximation* of C^2/C^2 function class
Isotropic Anisotropy?

• Wedgeprints+MGM achieve optimal performance of *anisotropic* curvelets

• But wavelet/wedgelet tiles are *isotropic* (based on dyadic squares, quadtree)

• Ultimately could prove a curse for closely spaced geometrical features
Related Work

• Multiresolution Fourier transform
 [Calway, Pearson, Wilson]

• “Prune and join” quadtree approximation
 [Shukla, Dragotti, Do, Vetterli]

• Platelets
 [Willett and Nowak]

• Wavelet footprints
 [Dragotti, Vetterli]

• Bandelets
 [Le Pennec, Mallat]