

Multiscale Geometric Image Compression using Wavelets and Wedgelets

Richard Baraniuk

Rice University dsp.rice.edu

Joint work with Hyeokho Choi, Justin Romberg, Mike Wakin

Multiscale Geometric Compression of Piecewise Smooth Images using Wavelets and Wedgelets Textures Cartoons

Computational Harmonic Analysis

• Representation $f = \sum_k a_k \mathbf{b}_k$

coefficients basis, frame

• Analysis study f through structure of $\{a_k\}$ $\{b_k\}$ should extract features of interest

Approximation

 \widehat{f}_N uses just a few terms N exploit *sparsity* of $\{a_k\}$

Nonlinear Approximation

$$f = \sum_k a_k \mathbf{b}_k$$

• *N-term approximation*:

use largest **a**_k independently

$$\widehat{f}_{N} := \sum_{k'=1}^{N} a_{k'} \mathbf{b}_{k'}$$
• Greedy / thresholding
$$|a_{k'}| \int_{\text{few big}} few \text{ big}$$
sorted index k'

Error Approximation Rates

$$f = \sum_{k} a_{k} \mathbf{b}_{k}$$
$$\widehat{f}_{N} = \sum_{k'=1}^{N} a_{k'} \mathbf{b}_{k'}$$

$$\|f - \widehat{f}_N\|_2^2 \ < \ C \, N^{-\alpha} \qquad \text{ as } N \to \infty$$

• Optimize asymptotic *error decay rate* α

From Approximation to Compression

• *Quantize* coefficients $\{a_k\}$, approximate with R bits

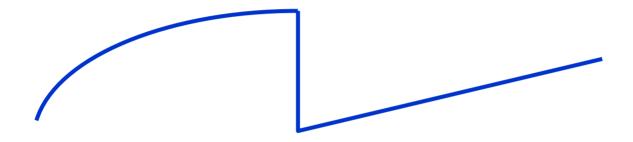
$$f = \sum_{k} a_{k} \mathbf{b}_{k}$$
$$\widehat{f}_{R} = \sum_{k} a_{k}^{q} \mathbf{b}_{k}$$

- R bits must specify both value a_k^q and location k
- Optimize Rate/Distortion decay rate $\, lpha \,$

$$D(R) = \|f - \widehat{f}_R\|_2^2 < C R^{-\alpha}$$
 as $R \to \infty$

1-D Piecewise Smooth Signals

 f smooth except for singularities at a finite number of 0-D points



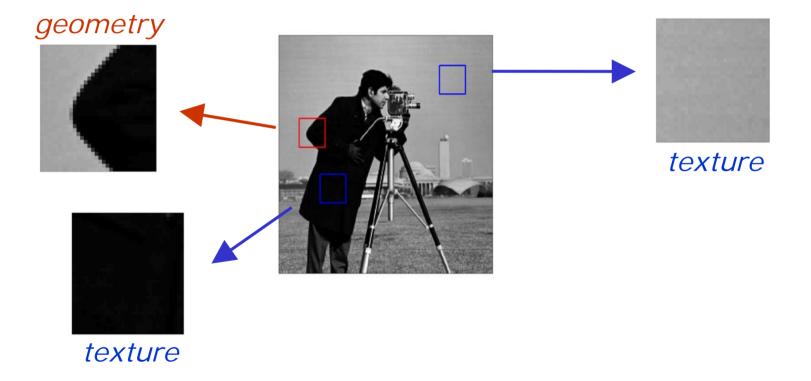
Fourier sinusoids: suboptimal greedy approximation and extraction

wavelets:

optimal greedy approximation extract singularity structure

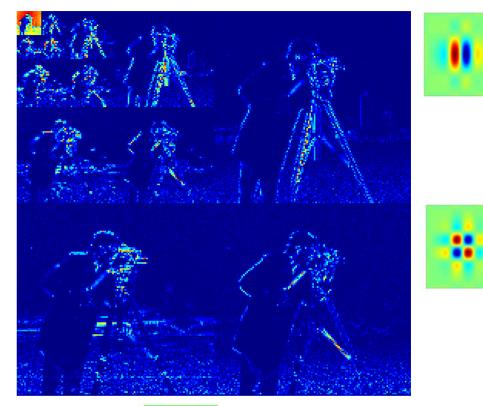
2-D Piecewise Smooth Signals

 f smooth except for singularities along a finite number of smooth 1-D curves



• Challenge: analyze/approximate *geometric* structure

Wavelet-based Image Processing



 $]a_k\mathbf{b}_k$

k

Wavelet Challenges

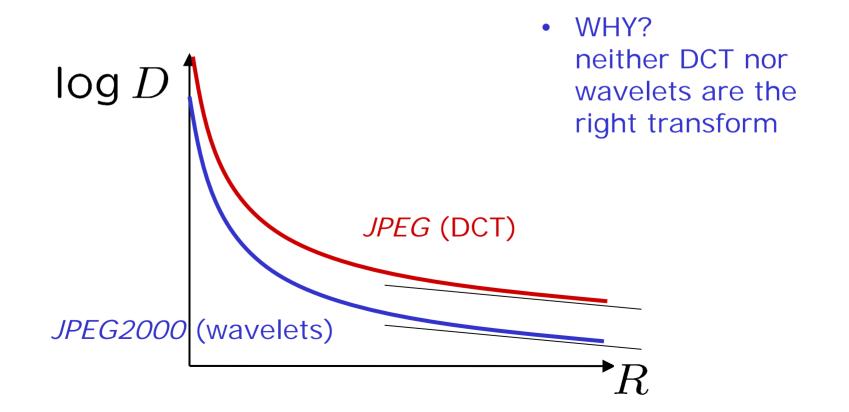
- Geometrical info not explicit
- Inefficient -

large number of large wc's cluster around edge contours, no matter how smooth

The JPEG2000 Disappointment

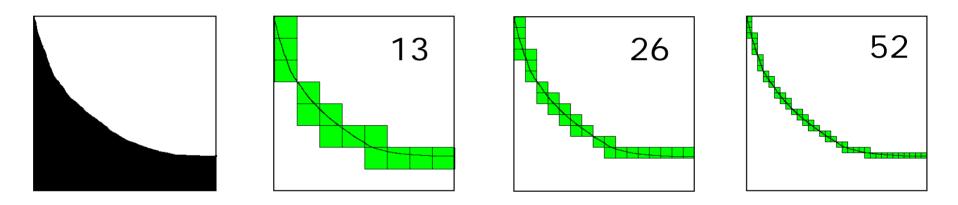
 Current wavelet methods do *not* improve on decay rate of JPEG!

$$D(R) = ||f - \hat{f}_R||_2^2 < C R^{-\alpha}$$



2-D Wavelets: Poor Approximation

• Even for a smooth C² contour, which straightens at fine scales...



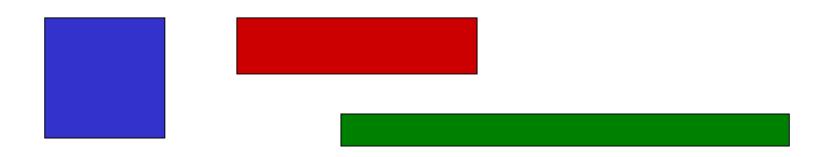
• Too many wavelets required!

 \widehat{f}_N := N-term wavelet approximation

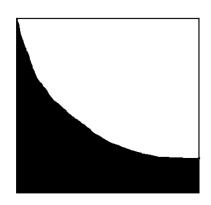
$$\|f - \hat{f}_N\|_2^2 < C N^{-1}$$
 not N^{-2}

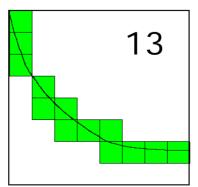
Solution 1: Upgrade the Transform

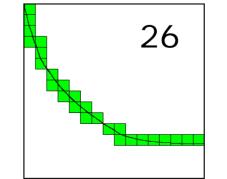
- Introduce *anisotropic transform*
 - curvelets, ridgelets, contourlets, ...

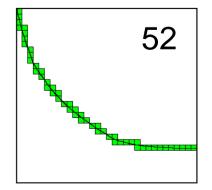


• Optimal error decay rates for cartoons +



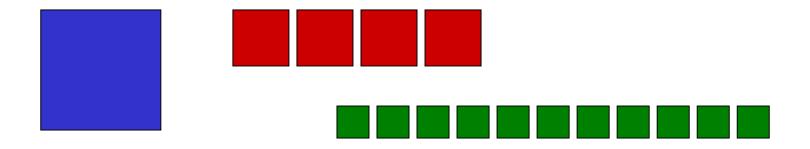


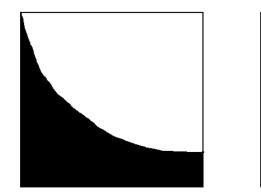


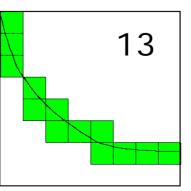


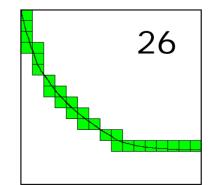
Solution 2: Upgrade the *Processing*

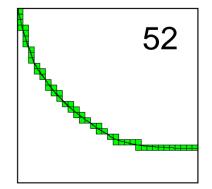
 Replace coefficient thresholding by a new wc model that captures anisotropic spatial correlations





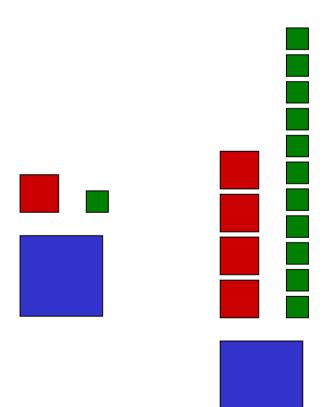






Our Goal: New Image Models

- Wavelet coefficient models that capture both geometric and textural aspects of natural images
- Optimal error decay rates for some image class

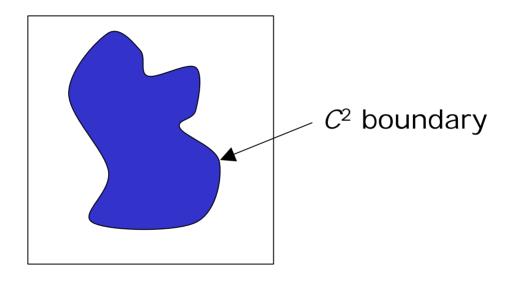


Part I

Geometric Modeling of *Cartoons* with *Wedgelets*

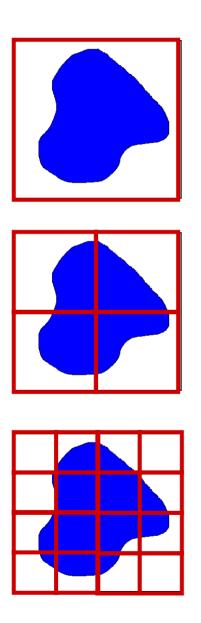
Geometry Model for Cartoons

 Toy model: flat regions separated by smooth contours



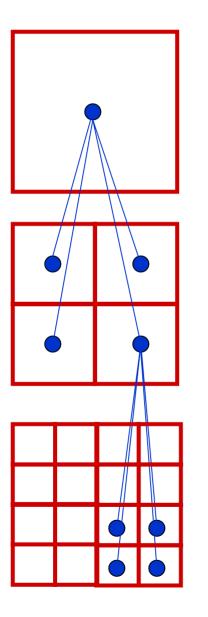
- Goal: representation that is
 - sparse
 - simply modeled
 - efficiently computed
 - extensible to texture regions

2-D Dyadic Partition



- *Multiscale* analysis
- Partition; not a basis/frame
- Zoom in by factor of 2 each scale

2-D Dyadic Partition = *Quadtree*

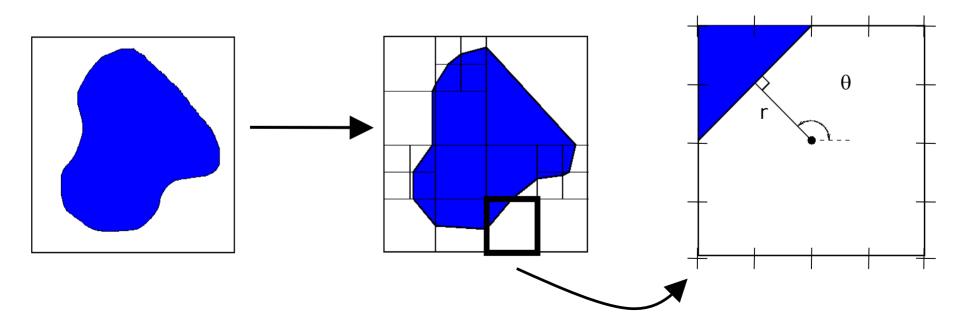


- *Multiscale* analysis
- Partition; not a basis/frame
- Zoom in by factor of 2 each scale
- Each *parent* node has *4 children* at next finer scale

Wedgelet Representation [Donoho]

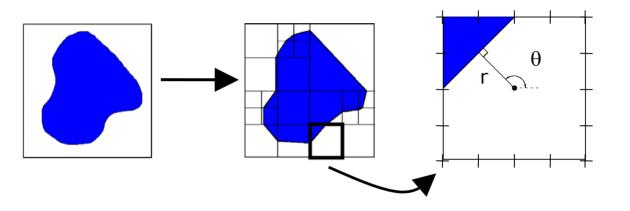
• Build a cartoon using *wedgelets* on dyadic squares

wedgelet = atomic geometric element



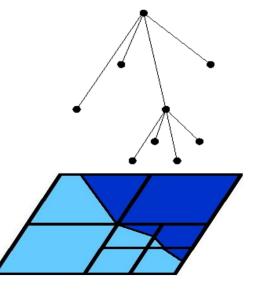
Wedgelet Representation

• Build a cartoon using *wedgelets* on dyadic squares



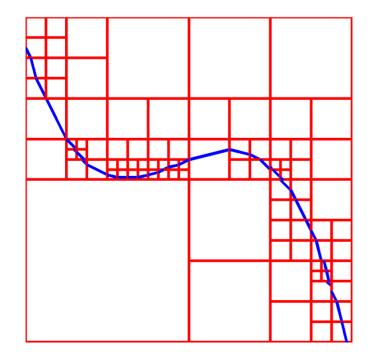
- Choose orientation (*r*, θ) from finite dictionary (toroidal sampling)
- *Quad-tree* structure

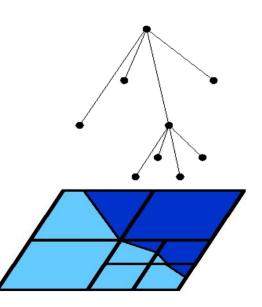
deeper in tree \Rightarrow finer curve approximation



Wedgelet Representation

- Prune wedgelet quadtree to approximate local geometry (adaptive)
- **Decorate** leaves with (r, θ) parameters



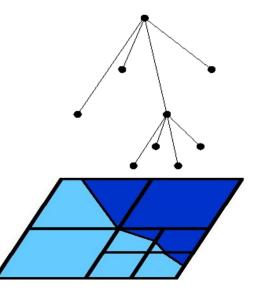


Wedgelet Inference

 Find representation / prune tree to balance a fidelity vs. complexity trade-off

$$\min_{W} \|f - \widehat{f}_W\|_2^2 + \lambda \operatorname{Comp}(W)$$

- For Comp(W) need a model for the wedgelet representation W (quadtree + (r, θ))
- Donoho: Comp(W) = #leaves

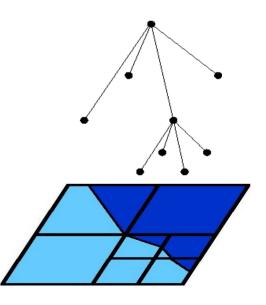


Wedgelet Inference

 Find representation / prune tree to balance a fidelity vs. complexity trade-off

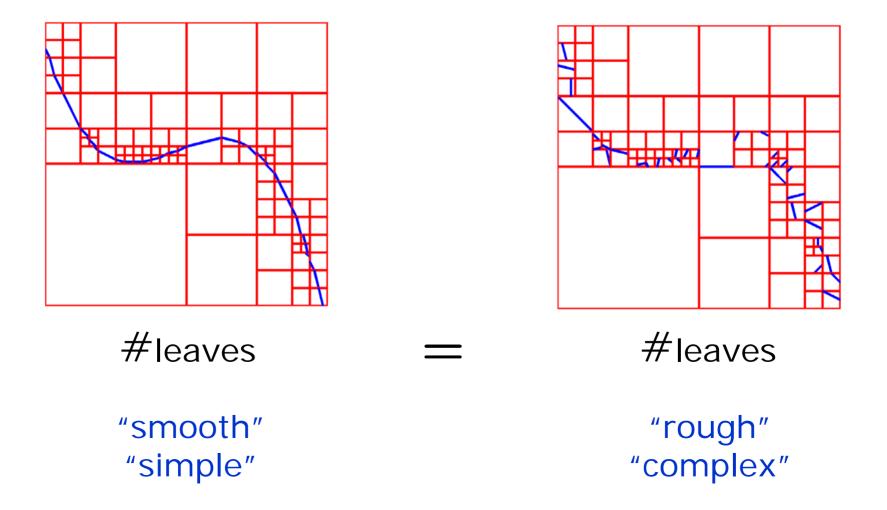
$$\min_{W} \|f - \widehat{f}_W\|_2^2 + \lambda \, [\text{\#leaves}]$$

- *O*(*N*) *dynamic programming* solution (bottom-up recursion)
- Optimal *approximation* $L_2 \text{ error} \sim (\# \text{leaves})^{-2}$
- Near-optimal rate/distortion decay $D(R) \sim (\log R)^2 R^{-2}$

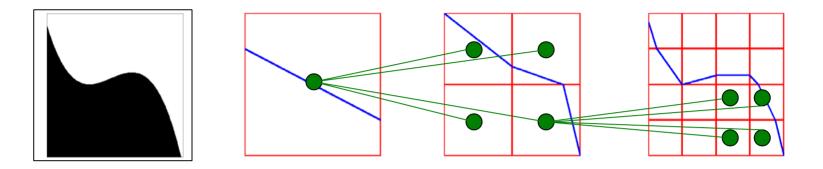


#Leaves Complexity Penalty

 Accounts for wedgelet partition *size*, but not wedgelet *orientation*



Multiscale Geometry Model (MGM)



- Decorate *each* tree node with orientation (r, θ) and then *model dependencies thru scale*
- Insight: Smooth curve ⇒
 Geometric innovations small at fine scales
- Model: Favor small innovations
 over large innovations

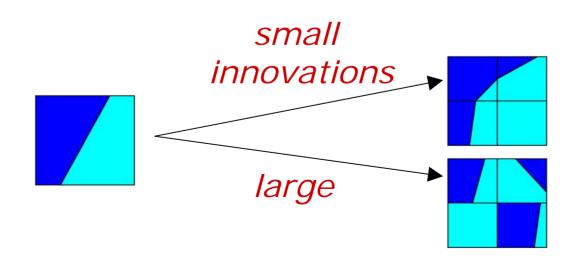
(statistically)

Multiscale Geometry Model (MGM)

• Wavelet-like geometry model:

coarse-to-fine prediction

model parent-to-child transitions of orientations



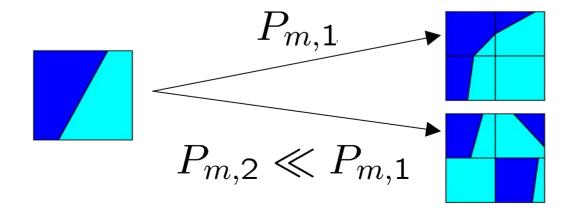
MGM

• Wavelet-like geometry model:

coarse-to-fine prediction

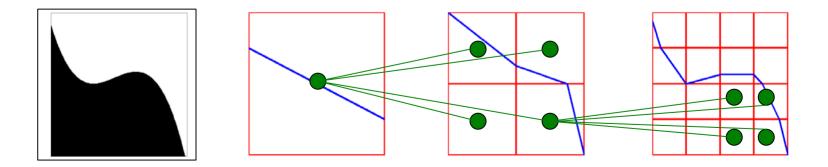
- model parent-to-child transitions of orientations
- Markov-1 statistical model
 - state = (r, θ) orientation of wedgelet
 - parent-to-child state transition matrix

 $P_{mn} = P(\text{child orientation} = n | \text{parent orientation} = m)$

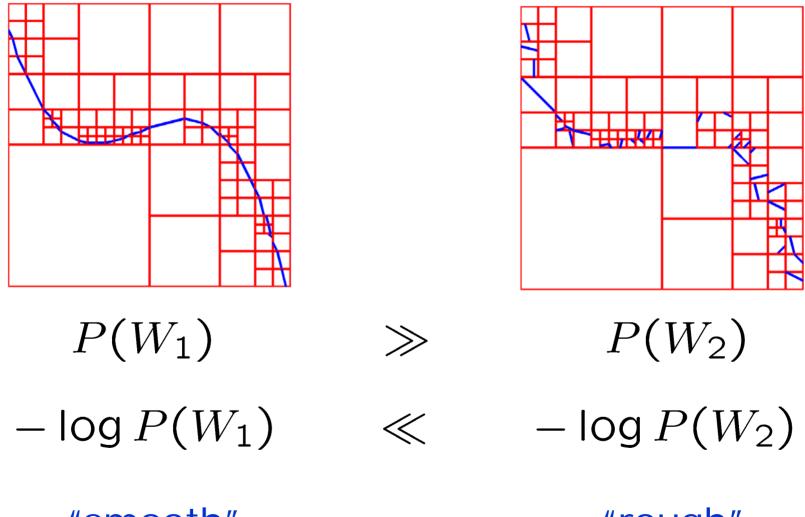


MGM

- Markov-1 statistical model $P_{mn} = P(\text{child orientation} = n | \text{parent orientation} = m)$
- Joint wedgelet Markov probability model: P(W)
- Complexity = Shannon codelength = log P(W)
 = number of bits to encode W



MGM and Edge Smoothness



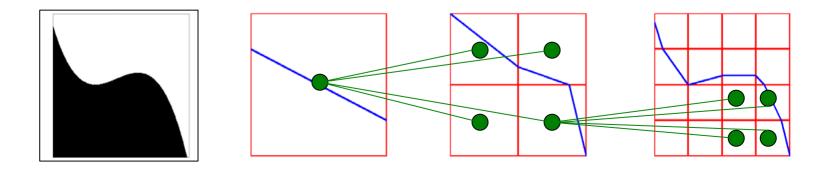
"smooth" "simple" "rough" "complex"

MGM Inference

 Find representation / prune tree to balance the fidelity vs. complexity trade-off

$$\min_{W} \|f - \widehat{f}_W\|_2^2 + \lambda \left[-\log P(W)\right]$$

• Efficient O(N) solution via dynamic programming

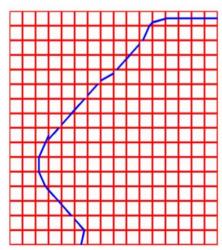


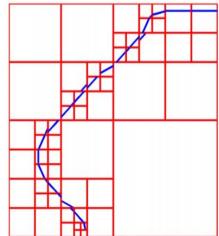
MGM Approximation

 Find representation / prune tree to balance the fidelity vs. complexity trade-off

$$\min_{W} \|f - \widehat{f}_W\|_2^2 + \lambda \left[-\log P(W)\right]$$

• Optimal L² error decay rate for cartoons $(\#W)^{-2}$





multiscale

Wedgelet Coding of Cartoon Images

• Choosing wedgelets = rate-distortion optimization

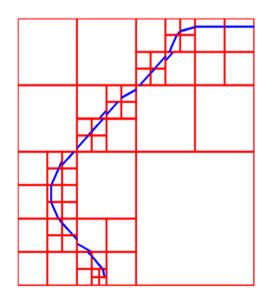
$$\min_{W} ||f - \hat{f}_{W}||_{2}^{2} + \lambda [-\log P(W)]$$
Shannon code length
$$\min_{W} \text{Distortion} + \lambda \text{Rate (bits)}$$

$$\lim_{W} \text{to encode } (r, \theta, m_{1}, m_{2})$$

Wedgelet Coding of Cartoon Images

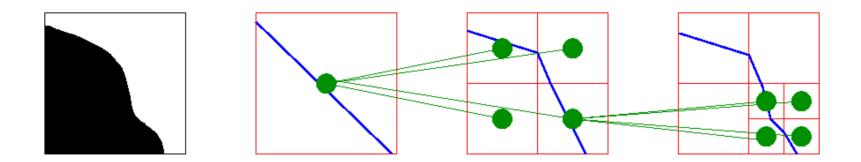
• Choosing wedgelets = rate-distortion optimization

$$\min_{W} \frac{\|f - \widehat{f}_W\|_2^2}{\|f - \widehat{f}_W\|_2^2} \quad \text{s.t. } (\#\text{bits}) \le R^*$$



- ~130 bits coded independently
- ~25 bits coded with MGM

Predictive Wedgelet Coding is Optimal

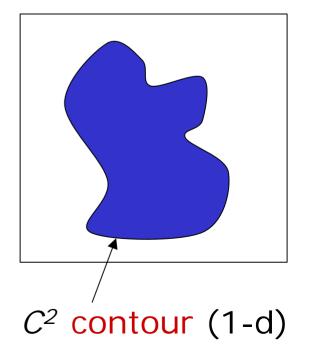


Optimal rate-distortion performance $D(R) \sim R^{-2}$

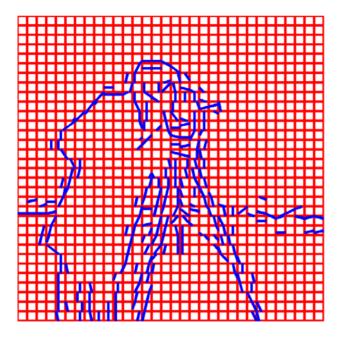
compared to

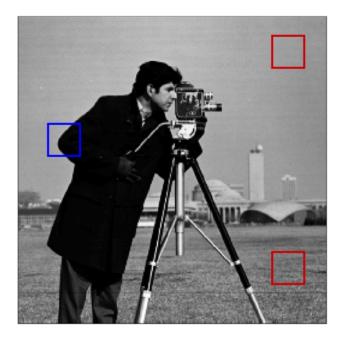
 $(\log R)^2 R^{-2}$

for leaf-only encoding



Joint Texture/Geometry Modeling





- Dictionary $D = \{wavelets\} \cup \{wedgelets\}$
- Representation tradeoff:
 <u>texture</u> vs. geometry
- Test case: *approximation / compression*

Subtracting Doesn't Work

wedgelet approximation

residual = f - w.a.

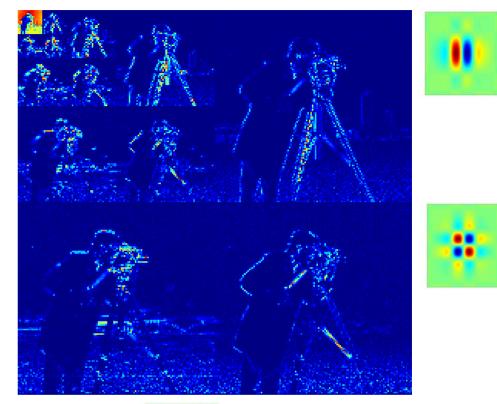


* ridge artifacts just as hard to approx/code as edges

Part II

Wedding Wedgelets with Wavelets

Wavelet Representation

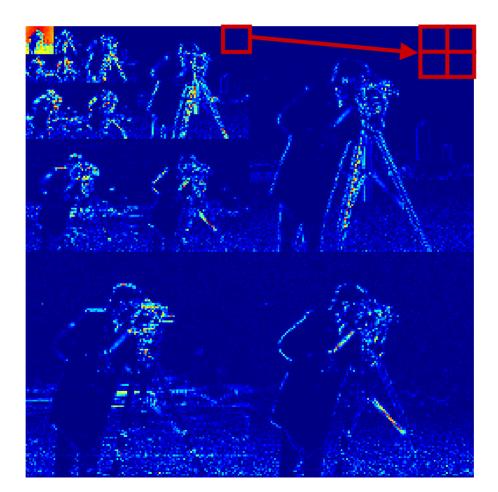


 $\left. \right\rangle \left] a_k \, \mathbf{b}_k \right]$

k

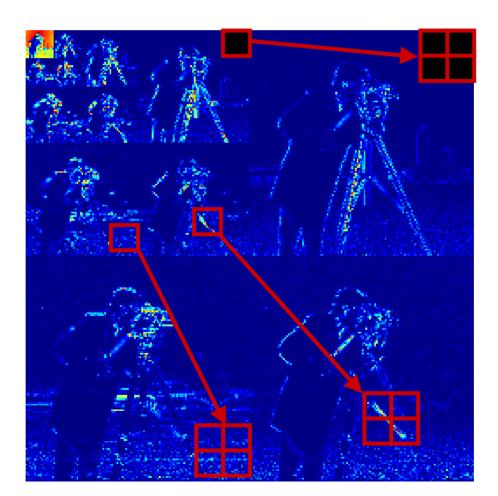
Wavelet Quadtrees

Wavelet coefficients structured on *quadtree* – each *parent* has *4 children* at next finer scale



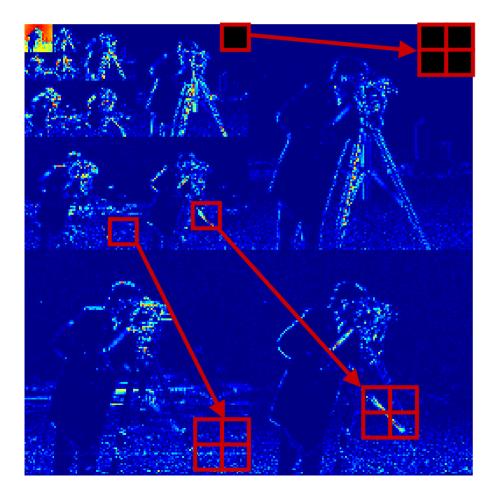
Wavelet Persistence

- *Smooth* region *small* values down tree
- *Singularity/texture large* values down tree



Zero Tree Approximation

Idea: *Prune* wavelet subtrees in smooth regions
 tree-structured thresholding



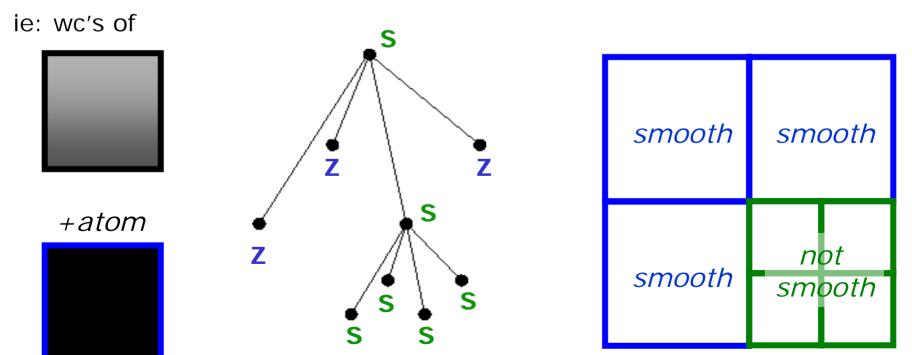
Zero Tree Approximation

Label pruned wavelet quadtree with 2 states

significant

- *zero-tree* smooth region (prune)
 - edge/texture region (keep)

Z: all wc's below=0

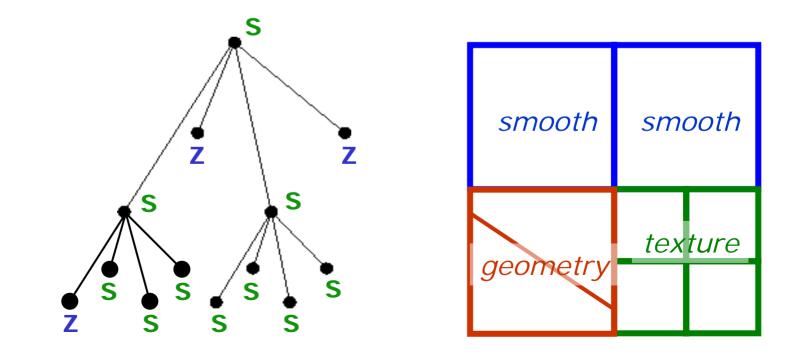


Enter Geometry

• Label pruned wavelet quadtree with 2 states

significant

- *zero-tree* smooth region (prune)
 - edge/texture region (keep)
- Suboptimal NLA/R-D decay w/ edges $D(R) \sim R^{-1}$

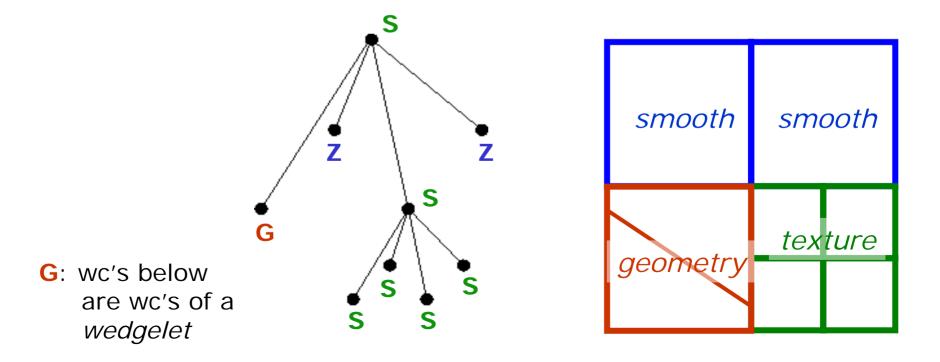


Wedgelets for Geometry

• Label pruned wavelet quadtree with 2 states

zero-tree significant

- smooth region (prune)
- edge/texture region (keep)
- Idea: use wedgelets in *geometric* edge squares



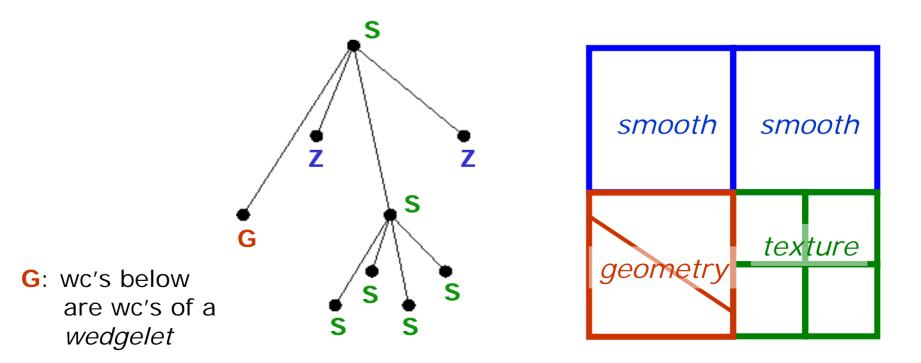
Wedgelets for Geometry

• Label pruned wavelet quadtree with 3 states

zero-tree

- smooth region
- *geometry* edge region
- *significant texture region*

(prune) (prune) (keep)

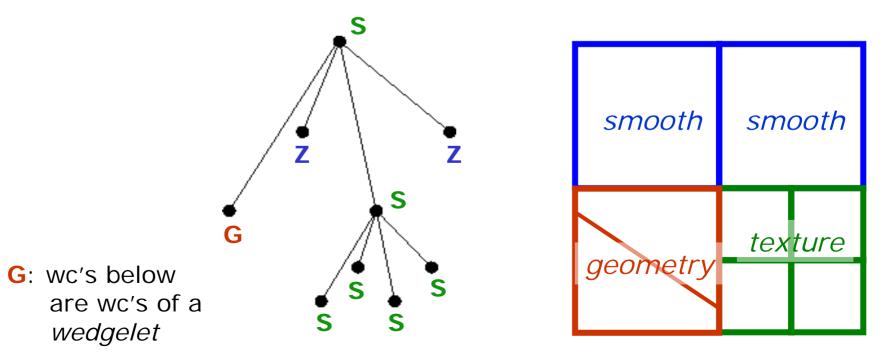


Wedgelets for Geometry

Label pruned wavelet quadtree with 3 states

zero-tree

- smooth region
- *geometry* edge region
- *significant texture region*
- (prune) (prune)
- (keep)
- Optimize placement of Z, G, S by dyn. programming



Wedgelet Trees for Geometry

Label pruned wavelet quadtree with 3 states

zero-tree *geometry* - edge region

- smooth region
- *significant texture region*

(prune) (prune)

- (keep)
- Optimize placement of Z, G, S by dyn. programming

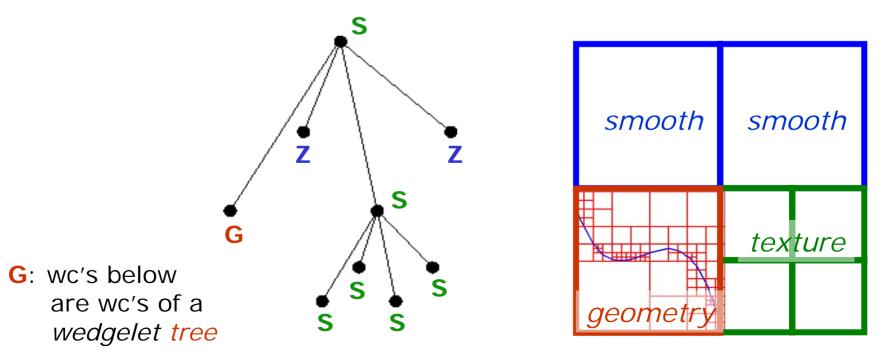


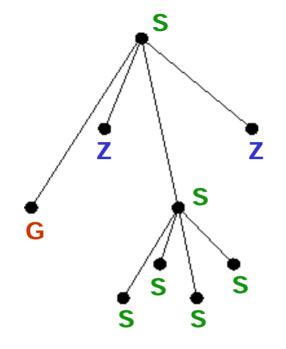
Image Approximation

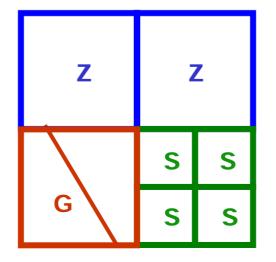
G: wc's below are wc's of a *wedgelet*

ie: wc's of

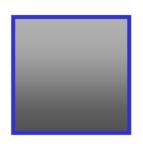
+atom

"wedgeprint"

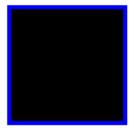




Z: all wc's below=0
ie: wc's of



+atom

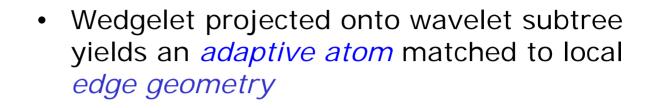


"smoothprint"

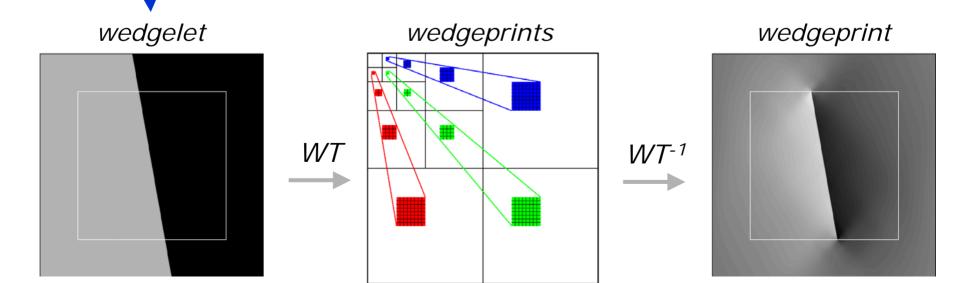
S: describe (code) wc's

Wedgeprints

geometry



- *Wedgeprint* collapses many wc's (entire subtree) into a *single* oriented atom
- Akin to wavelet vector quantization



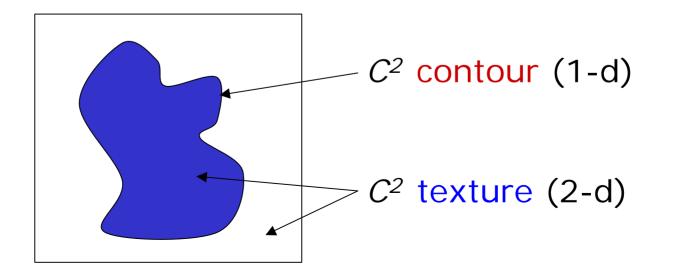
Optimality of Wedgeprints

• Theorem

For *C²* / *C²* images, *optimal* asymptotic *L*² error decay

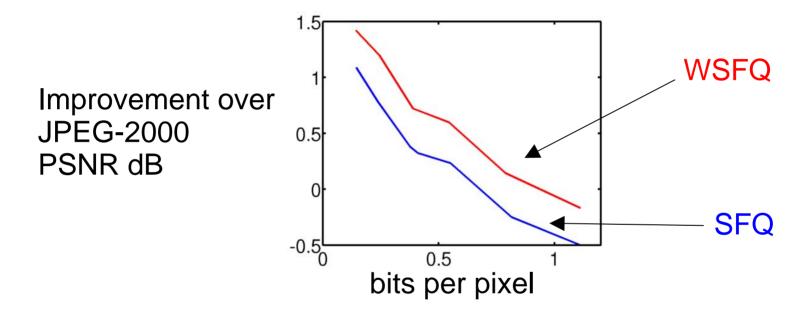
$$||f - \hat{f}_N||_2^2 < C N^{-2}$$

and *near-optimal* rate-distortion $D(R) = \log(R)^2 R^{-2}$



Practical Image Coder

• Wedgelet-SFQ (WSFQ) coder builds on SFQ coder [Xiong, Ramchandran, Orchard]

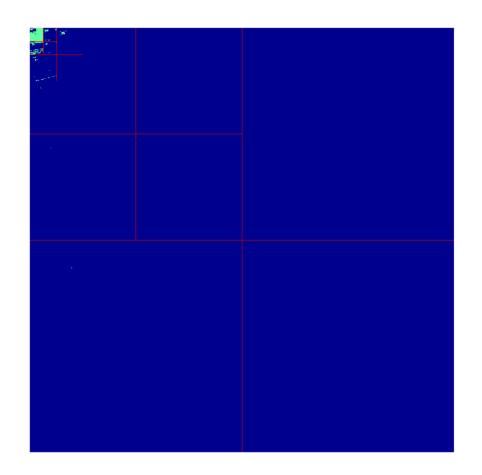


- At low bit rates, often significant improvement in visual quality over SFQ and JPEG-2k (much sharper edges)
- Bonus: WSFQ representation contains
 explicit geometry information

Wet Paint Test Image

SFQ Compressed

SFQ WC Code Map



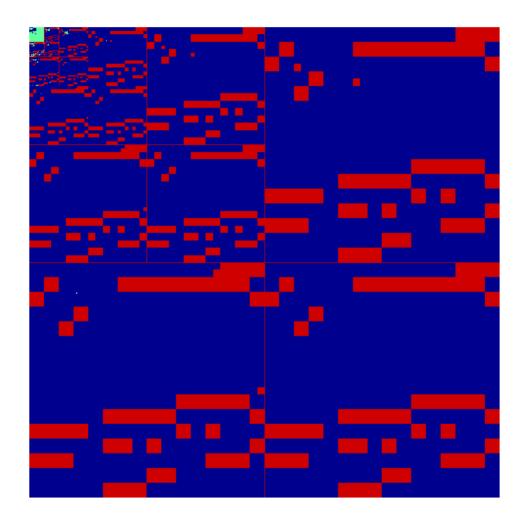
green = significant

blue = zero tree

SFQ Zoom

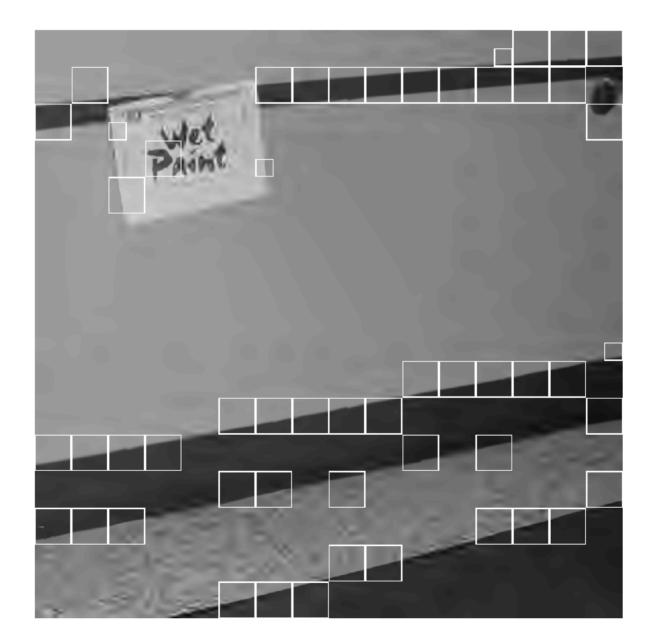
WSFQ Compressed

WSFQ WC Code Map



green=significant blue=zero tree red=contour tree

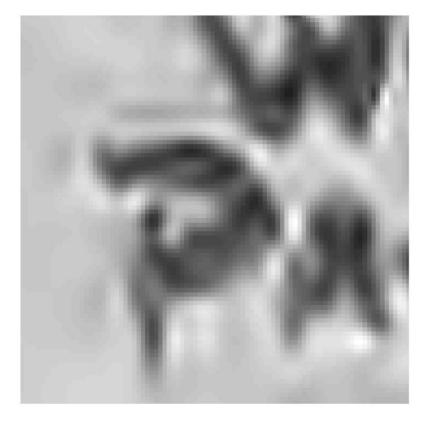
WSFQ Contour Trees



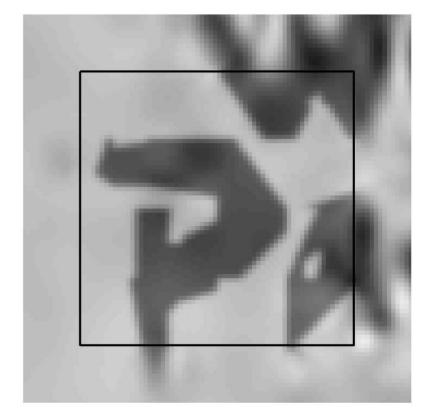
WSFQ Zoom

SFQ vs. WSFQ

SFQ



WSFQ



Extensions

S

В

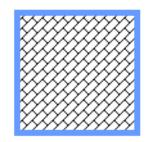
S

B

ž

W

DCTprint



barprint

wedgeprint

zerotree

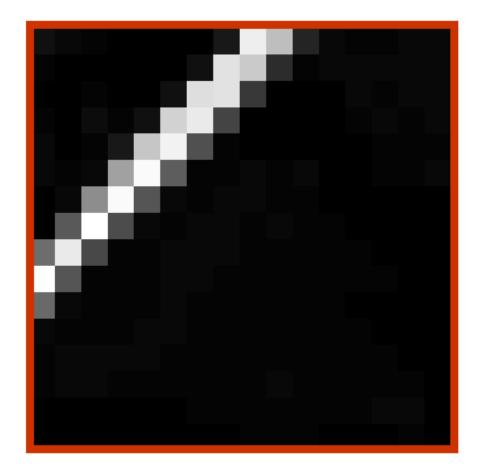


В

Β

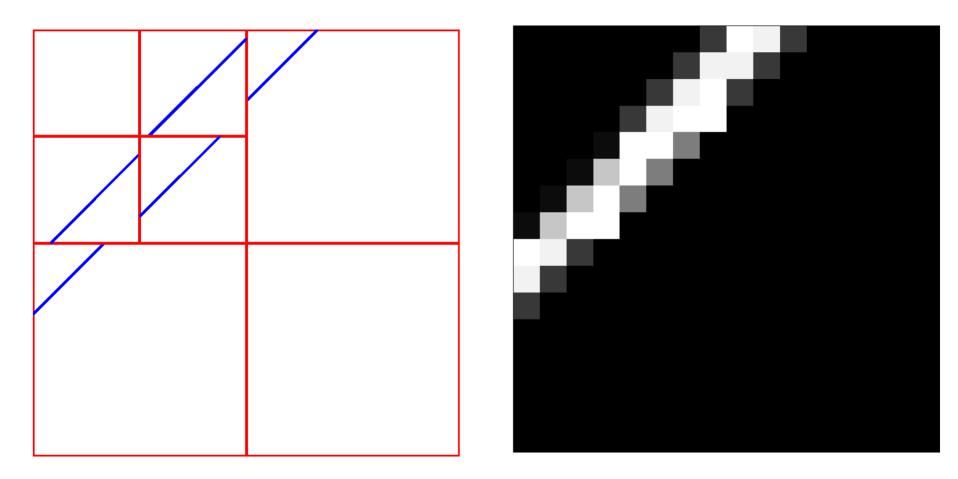
"Coifman's Dream"

Bars / Ridges



16x16 image block

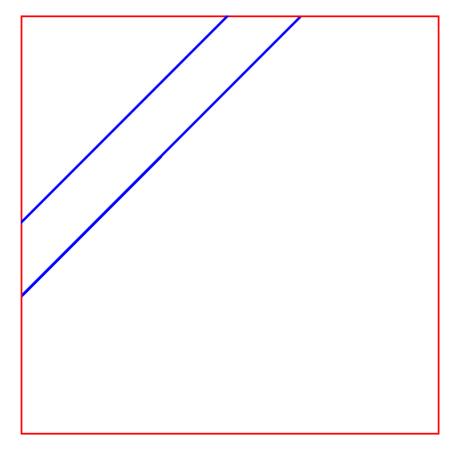
Multiple Wedgelet Coding

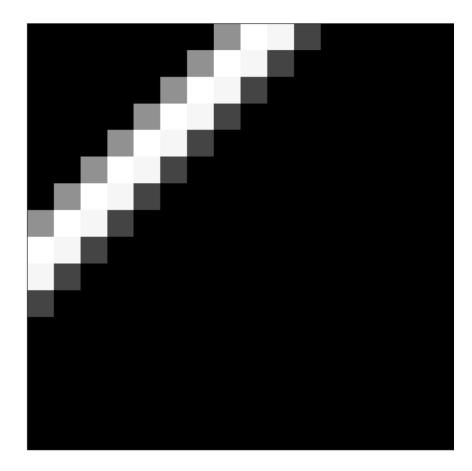


80 bits to jointly encode 5 wedgelets

"Barlet" Coding

(fat edgelet/beamlet)

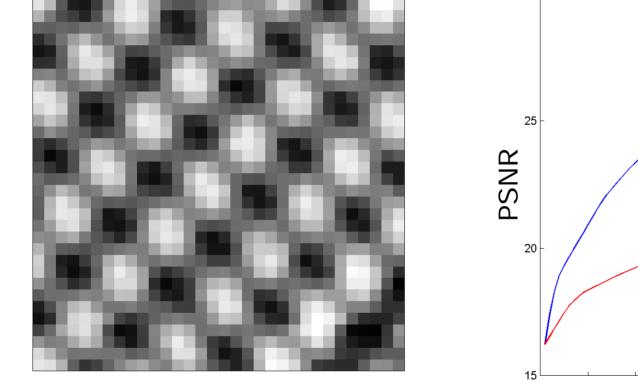




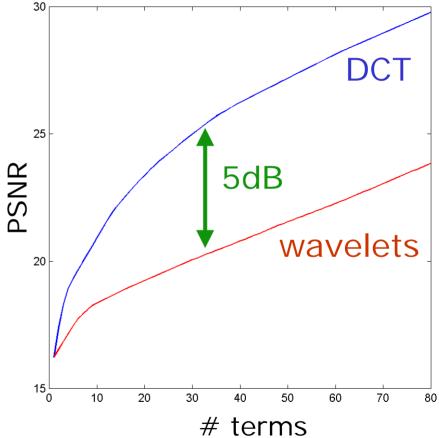
22 bits to encode 1 barlet

Periodic Textures

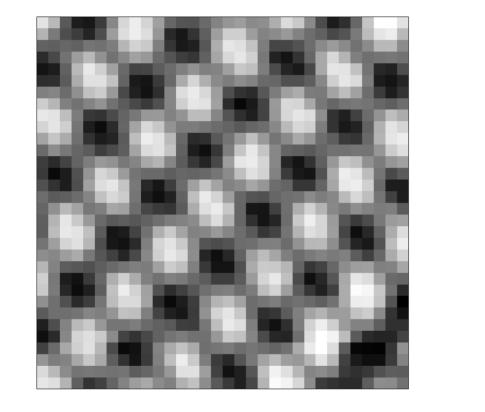
DCTprint



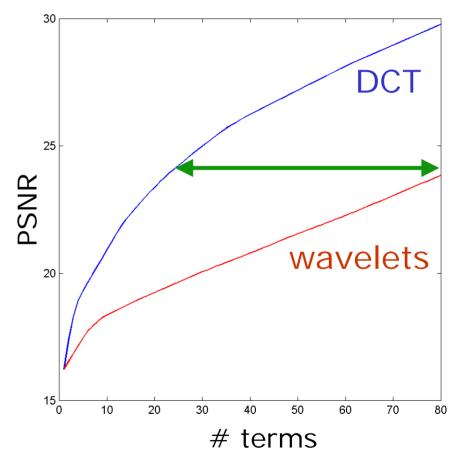
32x32 block = 1024 pixels



DCTprint

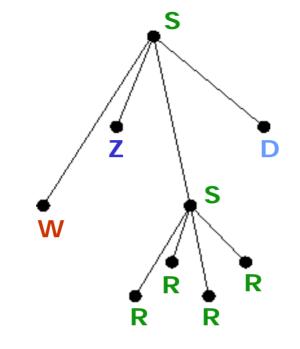


32x32 block = 1024 pixels



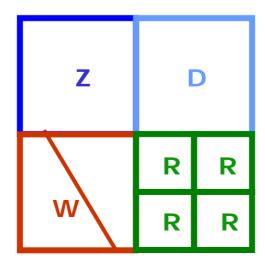
4x fewer coefficients

Extensions



barprint

wedgeprint

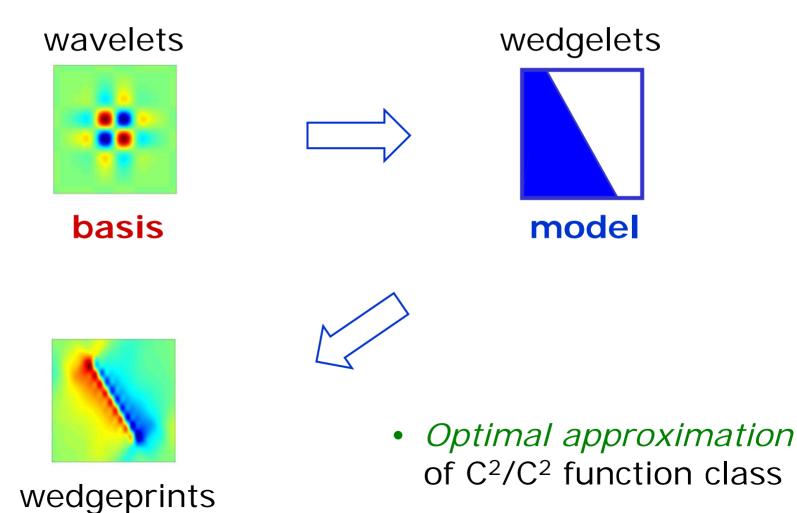


DCTprint



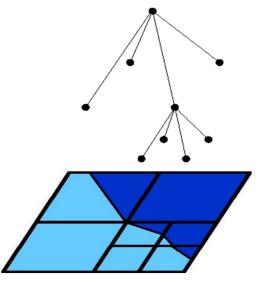
Conclusions

Capturing *geometrical information* in images requires new tools



Isotropic Anisotropy?

- Wedgeprints+MGM achieve optimal performance of *anisotropic* curvelets
- But wavelet/wedgelet tiles are *isotropic* (based on dyadic squares, quadtree)
- Ultimately could prove a curse for closely spaced geometrical features



Related Work

- Multiresolution Fourier transform
 [Calway, Pearson, Wilson]
- "Prune and join" quadtree approximation [Shukla, Dragotti, Do, Vetterli]
- Platelets
 [Willett and Nowak]
- Wavelet footprints [Dragotti, Vetterli]
- Bandelets
 [Le Pennec, Mallat]

