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Outline of talk

• Introduction .

• Building blocks:Standard sampling, Fourier and Wavelets

• Some more Fourier Analysis. Time - Frequency plane

• More about building blocks: Orthonormal bases.

• The Continuous Wavelet Transform

• Discrete wavelet transform.

• Desired properties of the wavelets.

• Different approaches in their construction.

• Multi-scale-analysis and bi-orthogonal bases, scaling equation

• Lowpass, Highpass filter, Wavelet filter-tree.

• Wavelets basis in dimension 2.
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• Wavelet packets filter-tree and wavelet packets library.

• Cost functions, Best basis and adaptiveness.

• Interpolets and sparse sampling in high dimension.
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Introduction

Wavelets= small packet of waves

Theory of wavelet offspring from:

• Mathematics: Fourier analysis / Harmonic analysis

• Signal processing: Quadratic mirror filter

Wavelet theory 1985-
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Example data on a Music CD: Use blackboard
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Expansion of functions in trigonometric series by

Jean Baptiste Joseph Fourier (1768 - 1830) around 1807

. . . . . . but
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use of approximation by trigonometric functions was used earlier by

Leonard Euler(1707-1783)

. . . . . . but
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even earlier by

Daniel Bernuolli(1700 - 1783). “He showed that the movements of

strings of musical instruments are composed of and infinite number of

harmonic vibrations all superimposed on the string.” (late 1720th)
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Building blocks of a signal

• Sampling of a signal:

representation in standard basis

• Frequency description of the signal

Fourier basis

• Wavelets an compromise between those two extremes.
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Time - frequency plane

|f(t)|2/‖f |2

is the density distribution of function in time.

|f̂(ω)|2/‖f̂ |2

is the density distribution of function in frequency.

We will look at the product as a density distribution in the

Time-Frequency plane.
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Standard sampling and Fourier representation in TF- plane

Standard sampling Fourier representation
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Heisenberg uncertainty principle:

(Assume f is normalized: ‖f‖ = 1.)

Var(function time)∗Var(function frequency) ≥ Constant
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Minimum for Gaussian function (Normal distribution)

Function:

f(t) =
1√
2π

e−x
2/2.
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(continued)

Fourier transform:

f(ω) = e−ω
2/2.
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The Gaussian function in time-frequency plane

Function f(t) = e−t
2/2

Distribution function on time-frequency plane:

ρf (t, ω) =
1

2π
e−(t2+ω2)

Level curves are circles
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Changing scale of the Gaussian function in TF-plane

Function f(t) = e−
t2

2a2 , distribution ρf (t, ω) = 1
2π e−( t2

a2 +a2ω2)
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Level curves are ellipses.
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Next few slides:

Some basic definitions and notations:

J.-O. Strömberg Slide 17 MGA Tutorial, IPAM , Sept 08, 2004



Orthonormal basis

Orthonormal family of functions

• Functions are uncorrelated: for any two different functions ϕn and

ϕm in the family (n 6= m):

(ϕn, ϕm) =

∫
ϕn(t)ϕm(t)dt = 0.

• Function are normalized: any function ϕn in the family has norm

equal to 1:

‖ϕn‖2 = (ϕn, ϕn) =

∫
ϕn(t)ϕn(t)dt = 1.
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Orthonormal basis

• An orthonormal basis for a space of functions is an orthonormal

family of functions {ϕn}n such that any function f in the space can

be written as sum

f =
∑
n

cnϕn.

• The constants cn is obtained by the inner product between the the

functions f and ϕn

cn =

∫
f(t)ϕn(t)dt.
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Bi-orthogonal basis

• A family o functions {ϕn}n in a space V and a family of functions

{ϕ̃n}n in the dual space Ṽ are bi-orthogonal bases if if they are

bases for V resp. Ṽ and

(ϕ̃n, ϕm) =

∫
ϕ̃n(t)ϕm(t)dt

 6= 0 when n = m,

= 0 when n 6= m.

Then any function f in the space V can be written as sum

f =
∑
n

cnϕn.

• The constants cn is obtained by the inner product between the the

functions f and ϕn

cn = (f, ϕ̃n)/(ϕ̃n, ϕn).
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• the dual space Ṽ may, or may not be the same as V
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Continuous versus discreet wavelet transform

• Continuous parameter family of wavelets

ψa,b(t) =
1√
b
ψ(
t− a
b

).

where a and b are real parameters, b 6= 0

• Orthonormal wavelet basis {ψkj}k,j∈Z where

ψkj(t) = 2
j
2 ψ(2j − k).
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Continuous wavelet transform

Let ψ be a function on the real line and

ψa,b(t) =
1√
|b|
ψ(
t− a
b

).

The wavelet let transform is defined by

f → Wf (a, b) =

∫
f(t)ψa,b(t)dt.
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Inversion of the continuous wavelet transform

f(t)] =
1

Cψ

∫ ∫
RxR

Wf (a, b)ψa,b(t)
da db

a2
.

In contrast to the discrete wavelet transform we don’t need very special

function ψ. In general we need to have ψ̂(0) = 0 and that

Cψ =

∫
|̂ψ(ω)|2 dω

ω
<∞.
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Example: Morlet wavelets

• Real Morlet-5 wavelet:

ψ(t) = sin(5t)e−
t2

2 .
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Fourier transform

ψ̂(ω) =
1

2i
√

2π

(
e−

(ω−5)2

2 − e−
(ω+5)2

2

)
.

• Complex Morlet-5

ψ(t) =
∂

∂t
ei5te−

t2

2 .

Fourier transform

ψ̂(ω) = iωe−
(ω−5)2

2 .
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Application of Continuous Wavelet Transform

• In general not so useful when it involves reconstruction of functions,

since it is too complex.

• Good for frequence analyze of functions since it gives information

booth of time and frequency of events.

• As we saw with the scaling of the Gaussian one may easily gradually

change the focusing in the analysis between frequency and time.
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Vibration analysis of defect bear-rings
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Classification of bear-ring signals
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TF analysis of singing birds
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TF analysis of singing birds ( continued)
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Discrete wavelet transform

We have two parallel descriptions of the discrete wavelet transform

• By an orthonormal basis of wavelets and

f(t) =
∑
kj

ckjψkj(t),

and the wavelet transform of f is

f → ckj =

∫
f(t)ψkj(t)dt.

• By a low-pass filter h and a high-pass filter g which are arranged in

an algorithmic tree. The filter h g are such that they can make a

Quadratic Mirror Filter
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What properties do we want ψ to have

• good localization in time.

• good localization in frequency.

• vanishing moments, the more the better.

• smoothness properties

• easy to compute with – as filter finite.
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Three main approaches for construction

• Construction on the function side.

• Construction on the Fourier transform side.

• Construction based on construction of Quadratic Mirror filter
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Haar basis (1910)

Construction on the function side

Haar function

H(t) =


1 for 0 < t < 1

2

− 1 for 1
2 < t < 1

0 otherwise.

Haar functions have bad localization in frequency

Var(function frequency) =∞
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Shannon wavelet

The other extreme, constructed on Fourier side.

Shannon basis around 1940.

F(psi)(xi)

−pi −pi/2 pi/2 pi

Shannon wavelet

Shannon wavelets have bad localization in time Var(function time) =∞
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Franklin system - asymptotically a wavelet

• Philip Franklin (1926):Construction of orthonormal spline system of

piecewise polynomial of order m on a bounded interval. Away from

the endpoints the function is approximatively a wavelet to any

precision.

• Strömberg 1981. Transferring Franklin’s construction to spline

systems on the whole real line getting Franklin’s asymptotic limit

function as a wavelet generating an orthonormal basis. This wavelet

function is exponentially decreasing.
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Wavelet theory appear

• Yves Meyer (1985): Construction a wavelet on the Fourier side

ψ̂(ξ) = b(ξ)ei
ξ
2 ,

where b(ξ) an even function (the function χ[−π,π] smoothed out in a

special way) This wavelet is C∞ smooth, of course compactly

supported Fourier transform and it decreasing polynomially of any

order.

• Stephan Mallat (1986) Multi-scale analysis and construction of

wavelet from Quadratic Mirror-filter.

• Ingrid Daubechies (1987): Construction of wavelets with compact

support by construction wavelet filter with finite length.
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I want to go through the construction of Daubechies finite wavelet filter.

I will relate the construction more to the spaces of spline function

whereas Daubechies makes the construction of the filter on their Fourier

transform side.

We need some more notation.
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Translation operators

For integer k an f ∈ L2:

Tkf(x) = f(x− k).

For integer k and f = {f [j]} ∈ l2:

(Tkf)[k] = f [j − k].

Adjoint notation

a∗[k] = a[−k].

Inner product

< a, T kb >=
∑
j

a[j]b[j − k] = a ∗ b∗[k].
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Orthogonal complement

Definition: For h in l2 define Orthcomp(h) by

Orthcomp(h)[j] = (−1)jh[1− j].

Lemma: If h in l2 and g = Orthcom(h). Then {T2kh}k is orthogonal to

{T2kg}k.
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Multi-scale analysis

I will first do the MS-analysis i a bi-orthogonal setting
•

{0} ← . . . Vj−1 ⊂ Vj ⊂ Vj+1 . . .→ L2(R).

•

f(x) ∈ Vj iff f(2x) ∈ Vj+1.

• V0 har an bi-orthogonal-basis {ϕ(x− k)}k∈Z with dual bassis

{ϕ̃(x− k)}k in the dual space Ṽ0
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Box spline function

Let

B(0) = Dirac delta function,

B(m)(x) = B(m−1) ∗ χ[0,1](x),

For fixed m > 0 let ϕk(x) = B(m)(x− k).

We define V (m)0 to be the closure of span(ϕk).

V (m)0 is the space of functions in Cm−2 which are piecewise polynomial

of degree less or equal to m− 1 on intervals (n− 1, n)
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The scaling equations

ϕ(x) = c
∑
k

h[k]ϕ(2x− k),

ψ(x) = c
∑
k

g[k]ϕ(2x− k).
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The cascade algorithm

Take the limit ϕ (if it exist) of the sequence ϕ(m) given by iteration

formula

ϕ(m)(x) = c
∑
k

h[k]ϕ(m−1)(2x− k),

where c is a suitable normalization constant, the starting function ϕ(0)

could be almost any function with
∫
ϕdt 6= 0

Observe: It is commutes with with convolutions:

if sequence h generates ϕ and g generates ψ with the sequence h ∗ g
starting with ϕ(0) ∗ ψ(0) the outcome of the cascade algorithm is ϕ ∗ ψ
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h = [1, 1] ⇒ ϕ = χ[0,1](x)

h = [1, 1]2 = [1, 2, 1] ⇒ linear box-spline B(2)(x)

h = [1, 1]4 = [1, 4, 6, 4, 1, ] ⇒ cubic box-spline B4(x),

and so on

h = [1, 1]m = ⇒ m order box-spline B(m)(x)
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Decomposition of V0

Suppose that the space V0 has a bi-orthogonal basis {ϕ1(x− k)} with

dual functions {ϕ̃1(x− k)} in the dual space Ṽ0

We will find a complement W−1 of V−1 in the space V0

• with a bi-orthogonal basis {ϕ(x− 2k)} of V−1 with dual functions

{ϕ̃(x− 2k)} in a dual space Ṽ−1

• with a bi-orthogonal basis {ψ(x− 2k)} of W−1 with dual functions

{ψ̃(x− 2k)} in a dual space W̃−1

• and where the functions {ϕ(x− 2k)} ∪ {ψ(x− 2k)} is an
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bi-orthogonal basis of V0 with dual basis {ϕ̃(x− 2k)} ∪ {ψ̃(x− 2k)}
in Ṽ0
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Transferring the problem to l2.

Using the bases of V1 and Ṽ1 we can transfer to the similar problem

where V0 is a subset of V1 = l2 and Ṽ1 = l2.

Observe: It might happen that the dual space V0 and Ṽ0 may be

different spaces and also that W0 and W̃0 are different spaces
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Basis representation and filters

(Assuming we have normalized so that < ϕ, ϕ̃ >=< ψ, ψ̃ >= 1) we

have the representation of function f ∈ V0

f(x) =
∑
k

< f, T 2kϕ̃ > T 2kϕ(x) +
∑
k

< f, T 2kψ̃ > T 2kψ(x).
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Quadratic Mirror Filter

Low * pass

input reconstruction

Down 2 Up 2

Low pass

High pass

Down2 Up 2

High* pass

Remark: To be Mirror filters the filters should be orthonormal i.e h̃ = h

and g̃ = g.
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• When m is even will find the bi-orthogonal filters: h with dual h̃ for

V−1 bi-orthogonal. Ṽ0

g with dual g̃ for W−1 respectively. W̃0

• (Assuming we have normalized the filter such that

< h, h̃ >=< g, g̃ >= 1 we have for data set f ∈ l2

f [j] =
∑
k

< f, T 2kh̃ > T 2kh[j] +
∑
k

< f, T 2kg > T 2kg[j].
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Quadratic Mirror Filter

Low * pass

input reconstruction

Down 2 Up 2

Low pass

High pass

Down2 Up 2

High* pass

Remark: To be called Mirror filters the filters should be orthonormal i.e

h̃ = h and g̃ = g.
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• Filter h = [1, 1]m is given from the scaling equations.

• Filter g̃ = Orthcomp(h).

• Once filter h̃ is known we set g = Orthcomp(h̃).

• h has length m+ 1 we will find h̃ of length m− 1 by straightforward

orthogonalization in Rm−1 against restriction of T 2kh to Rm−1.

• Example:

When m = 2

h = [1, 1]2 = [1, 2, 1]⇒ h̃ = [1].

When m = 4

h = [1, 1]2 = [1, 4, 6, 4, 1]⇒ h̃ = [−1, 4,−1].

When m = 6

h = [1, 1]6 = [1, 6, 15, 20, 15, 6, 1]⇒ h̃ = [3,−18, 38,−18, 3].
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interpolets

The product p = h ∗ (h̃)∗ will be an interpolation filter which will

generate what may be called interpolets.

Delaurier & Dubuc 1989.

q = g ∗ (g̃)∗ will be a ”difference filter” and q = Orthcomp(p).

The interpolating filter will be:
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When m = 2 p = [1, 2, 1], the generated intepolets i fig.:
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When m = 4 p = [−1, 0, 9, 16, 9, 0, 1]:
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When m = 6 p = [3, 0,−25, 0, 150, 256, 150, 0,−25, 0, 3]:
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Factorization of the interpolation filter

• The filter p can be split up into factors that can be combined in

many ways.

• For instance it may be written an autocorrelation filter

p = a ∗ a∗,

which means that ã = a , i.e a is is an orthonormal filter.

• If we starting the cascade algorithm with something orthonormal as

the Box-splines of order m = 1, then outcome will be a scaling

function ϕ and a wavelet function ψ that generates an orthonormal

wavelet.
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When m = 2 we get the Haar filters [1, 1] and [1,−1].

When m = 4 we get Daubechies filters of length 4, the corresponding

generated functions are in figure:

blue is wavelets and green is wavelets
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When m = 6 we get Daubechies filters of length 6
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short about the desired properties of constructed wavelets

• in general the factor [1, 1] implies in good properties of the wavelets

it generates on the Fourier transform a sinc factor ( decays like

|ξ|−1) and the other factor coming from the dual filter, kind of

destroys some of these properties, but those factors are needed to

obtain orthonormality.

The [1, 1] factors win: the longer filter the smoother wavelets

• the factors [1,−1] in the g̃ filter creates moments. The other factors

(those from g) cannot destroy it, so the number of vanishing

moments of the wavelet ψ is directly proportional to the length of

the orthogonal wavelet filter.
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Moment conditions on wavelet function

Lemma Given the function ϕ satisfying:∫
ϕ(x)ds 6= 0,

and the filter h and define the function φ by

φ =
∑

hkϕk.

Let m0, and m1 be the order of moment condition of the filter h and of

the function φ in other words:

∑
hkk

l

 = 0, l < m0,

6= 0, l = m0∫
φ(x)xldx

 = 0, l < m2,

6= 0, l = m1
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Then

m1 = m0.
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Estimate of wavelet coefficients

Let f be a m times continuous differentiable function on the line and

assume that φ satisfies all moment condition up to order m then

| < f, ψkj > | ≤ O(2−j(m+ 1
2 )).
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Wavelet basis in dimension 2

Corresponding to the wavelet functions {ψk,j} are the three sets of

tensor functions

{ϕkj(x)ψlj(y) >}k,l,j∈Z ,

{ψkj(x)ϕlj(y) >}k,l,j∈Z ,

{ψkj(x)ψlj(y) >}k,l,j∈Z ,

and corresponding to the scaling functions {ϕk,j} are the functions

{ϕkj(x)ϕlj(y) >}k,l,j∈Z .
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Wavelet-filter-tree

L H

L H

L H

L
H

L H

data

d3

d4

d5s5

s4

d1

d2

s3

s2

s1

L = low-pass filter, H = high-pass filter

d = “sum” d = “sum”
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Applications of discrete wavelet transform

• Image processing, noise reduction of signals
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Wavelet packets

We extend the wavelet-filter-tree to the full tree. With data of size

N = 2M there will be M + 1 levels in the tree including the top.(Top

node=input data).

Waveletpacket filter−tree
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wavelet packets (continued)

• There will be totally (M + 1)N different coefficients -including the

N input data values.

• Each combination of stopping at nodes in the tree corresponds to an

Orthonormal basis. There will be about 1.45N different families of

orthonormal bases.

• All coefficients may be computed with complexity MN
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Best basis

• Assume we have a linear cost function about how good a basis is.

Linear means for each basis B

CostB =
∑
cn∈B

Cost(cn).

• There is an algorithm choosing the best basis B in the libraries of

all those bases obtained from different combination of nodes.

• In the best basis we chose a few (< 10) most significant coefficients.

• The complexity the algorithm is of order MN
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