Astronomical Data Analysis

J.-L. Starck Dapnia/SEDI-SAP, Service d'Astrophysique CEA-Saclay, France.

j<u>starck@cea.fr</u> http://jstarck.free.fr

M81 - Spiral Galaxy

Visible: DSS

Spitzer

- -Detection of Galaxies in ISOCAM infrared images
- Search for exo-planet in infrared images: Deconvolution
- Weak lensing observation and mass map reconstruction
- Analysis of catalog of galaxies
- Analysis of the cosmological microwave background

INFRARED SPACE OBSERVATORY (ISO): ISOCAM Camera

ISOCAM Data Calibration Steps

-Dark correction

- -Flat field correction
- -Transient correction
- -Deglitching

• ``	1) • C		X			C.	13.7	
		1		1. A.	5			
		1					11	
			-	1		1		
					1210		18.1	
					÷			
		1			-	-		_

ISOCAM

Dark Image

Flat Image

I = (Data - Dark)/Flat

Cosmic Rays

A glitch is the result of an energy deposit from a charged particles in ISOCAM detectors. This energy deposit is spatially localised and it takes a limited period of time to the detector to recover for it.

The Multiscale Median Transform

The calibration from pattern recognition consists in searching only for objects which verify given conditions. For example, finding glitches of the first type is equivalent to finding objects which are positive, strong, and with a temporal size lower than that of the sources.

Search for exo-planet in infrared images: Deconvolution

 $s = P * \tilde{s} + N$

min Complexity_penalty(\tilde{s}), subject to $\tilde{s} \subset C$

Where C is the set of vectors which obey the linear constraints:

$\tilde{s} > 0$, positivity constraint $|(W[s] - W[P * \tilde{s}])_l| \le e$, $if(W[s])_l$ is significant

$$Complexity_Penalty = \sum_{j,k} \varphi(w_{j,k})$$

Examples of ϕ functions:

- 1. $\phi_q(x) = x^2$: quadratic function.
- 2. $\phi_{TV}(x) = |x|$: Total Variation.
- 3. $\phi_2(x) = 2\sqrt{1+x^2} 2$: Hyper-Suface (Charbonnier et al, 1997).
- 4. $\phi_3(x) = x^2/(1+x^2)$ (Geman and McClure, 1985) (Non convex.
- 5. $\phi_4(x) = 1 e^{-x^2}$ (Perona and Malik, 1990).
- 6. $\phi_5(x) = \log(1 + x^2)$ (Herbert and Leahy, 1989).

COSMOLOGY

2004: The current situation: The triumph of dark stuff in cosmology

Visible matter cannot account for dynamics; *dominated* by DM Cosmic energy budget:

 $\Omega_{\text{visible}} \sim 0.004$ $\Omega_{\text{baryon}} \sim 0.04$ $\Omega_{\text{dark matter}} \sim 0.3$ $\Omega_{\text{dark energy}} \sim 0.7$

Dark matter/energy, once accepted, works extremely well on large scales.

Weak Gravitational Lensing

Lentilles Gravitationnelles Fortes

Weak Gravitational Lens

Observation

Dark Mass Map

Original field of galaxies

Simulated Mass Map & Related Shear Mass Map

Carte de Shear

Weak Lensing by Large-Scale Structure

Distortion Matrix: $\Psi_{ij} = \frac{\partial \delta \theta_i}{\partial \theta_j} = \int dz \, g(z) \frac{\partial^2 \Phi}{\partial \theta_i \partial \theta_j}$

→ Direct measure of the distribution of mass in the universe, as opposed to the distribution of light, as in other methods (eg. Galaxy surveys)

Deep Optical Images

William Herschel Telescope La Palma, Canaries

> 16'x8' R<25.5 30 (15) gals/sq. arcmin

Relation between the shear map (γ_1, γ_2) and the dark matter map κ

Relation in Fourier space:

$$\hat{\kappa} = \hat{P}_1.\hat{\gamma_1} + \hat{P}_2.\hat{\gamma_2}$$

with :
$$\hat{P}_1(k_1, k_2) = rac{k_1^2 - k_2^2}{k^2}$$

 $\hat{P}_2(k_1, k_2) = rac{2k_1k_2}{k^2}$

Scientific Promise of Weak Lensing

From the statistics of the shear field, weak lensing provides:

1x1 deg

- Mapping of the distribution of Dark Matter on various scales
- Measurement of cosmological parameters, breaking degeneracies present in other methods (SNe, CMB)
- Measurement of the evolution of structures
- Test of gravitational instability paradigm
- Test of General Relativity in the weak field regime
- a mass-selected cluster catalog

Problem : maps are very noisy

Simulated on ground observation

Reconstructed Dark Matter Map

Analysis of catalog of galaxies

The spatial distribution of galaxies allows us to:

. Check and constraint the cosmological models.

. Study the formation of large scale structures.

2dF Galaxy Redshift Survey

MEGACAM RAW IMAGE

Data pipeline: real-time redshifts

To map out the universe:

1) Measure redshifts of lots of galaxies: $z = \Delta \lambda / \lambda$

2) Calculate speed from redshift: V = c z

- 3) Calculate distance from Hubble Law: V = H d V = velocity (in km/s) d = distance (in megaparsec = 3.08 10^19 km) H = Hubble constant (around 70 km/s per Mpc)
- 4) make a map of direction vs. distance

lots of structures

- bubbles and voids
- some structures more than 10 Mpc long
- voids at least that wide across

How do you form such huge things?

Methods

- .Two or three point correlation function
- . Genus curve
- . Voronoi Tessellation
- . Minimal spanning trees
- . Power spectrum
- . Fractals

GENUS FUNCTION

The genus of a surface G is G(T) = (number of holes) - (number of isolated regions) + 1

- Convolve the data by a Gaussian
 - Threshold all values under a threshold level T
 - G(T) = (number of holes) (number of isolated regions) + 1

For a Gaussian field, the genus curve is:

3D MULTISCALE TRANSFORMS

- 1) 3D WAVELET TRANSFORM: Isotropic Structures
- 2) 3D RIDGELET TRANSFORM: Sheet like Structures
- 3) 3D BEAMLET TRANSFORM: Filaments

=> Statistical information extraction.

Cosmic Microwave Background

The Cosmic Microwave Background (CMB) is a relic radiation (with a temperature equals to 2.726 Kelvin) emitted 13 billion years ago when the Universe was about 370000 years old.

Healpix

K.M. Gorski et al., 1999, astro-ph/9812350, http://www.eso.org/science/healpix

- Pixels = Rhombus
- Same Surfaces
- For a given latitude : regularly spaced
- Nbr of pixels :12*nside^2
- Includeds in the software:
 - Anafast
 - Synfast

Detection of non-Gaussian Cosmological Signatures

CS

Results

• Curvelets are NOT sensible to KSZ and sensitive to cosmic string

	Bi-orthogonal WT	Ridgelet	Curvelet
CMB+KSZ	1106.	0.1	10.12
CMB+CS	1813.	5.7	198.
CMB+CS+KSZ	1040.	5.9	165.

Detecting cosmological non-Gaussian signatures by multi-scale methods, Astron. and Astrophys., 416, 9--17, 2004 .

Jean-Luc Starck Fionn Murtagh

Astronomical Image and Data Analysis

