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Plan

1. The Radon Transform

2. Algorithms for the USFFT

3. Stolt migration

4. Directional filtering of seismograms using Slant Stack (Radon) transform.

5. Various extensions (as time permits).
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The Radon Transform

Let us consider the classical Radon transform

(Ru)(s, ν) =

∫

Rd
u(x) δ(s − ν · x) dx,

where s ∈ R and ||ν|| = 1 and its dual

(R∗v)(y) =

∫

||ν||=1

v(s, ν)|s=ν·y dν.

Inversion of the Radon transform using the projection slice theorem: we have

∫ ∞

−∞

(Ru)(s, ν) eispds =

∫

Rd
u(x) eipν·x dx = û(pν),

where p ∈ R and use the Fourier transform (easy on paper!).
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Radon’s inversion formula

We have (J. Radon, 1917)
R∗KR = I,

where K is a convolution with the kernel

K(s) =
1

2(2π)d

∫ +∞

−∞

|r|d−1eirs dr.

This inversion formula was derived in applications (on more than one occasion) without
knowing Radon’s result.

It is the so-called back-projection algorithm
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The generalized Radon Transform

Define

(Ru)(s, ν) =

∫

Rd
u(x) a(x, ν) δ(s − φ(x, ν)) dx,

and its dual

(R∗v)(y) =

∫

||ν||=1

b(y, ν) v(s, ν)|s=φ(y,ν) dν.

With an appropriate selection of b, we have

R∗KR = I + T,

where T is a smoothing pseudo-differential operator.
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Discretization of integrals

Consider the Fourier integral

g(ξ) =

∫ ∞

−∞

f(x)eixξdx,

or the coefficients of the Fourier series

ck =

∫ π

−π

f(x)eixkdx,

where, for some reason (e.g., discontinuities of f ), equal spacing of nodes results in a low
order approximation.
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Trigonometric sums

Using FFT requires sampling on an equally spaced grid: a significant limitation in many
applications.

The direct evaluation of trigonometric sums

ĝn =

Np
∑

l=1

gl e
−2πiNxlξn,

n = 1, . . . , Nf , where gl ∈ C, |ξn|, |xl| ≤ 1
2 requires O(Nf · Np) operations.

Typically Nf ≈ Np ≈ N and Nf · Np = O(N2). The cost in 2D is O(N4) and in 3D
O(N6) .
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USFFT

Computation of the sum may be viewed as an application of the matrix

F 0
ln = e

±2πiNxlξn,

l = 1, . . . , Np, n = 1, . . . , Nf to a vector.

A special case is the matrix

Fln = e
±2πilξn,

l = −N/2, . . . , N/2 − 1, n = 1, . . . , Nf and its adjoint.

Algorithms for the fast application of these matrices and their adjoints to vectors (as
well as their multidimensional generalizations) constitute Unequally Spaced Fast Fourier
Transform (USFFT) algorithms.
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Orthogonalization of B-splines

Let βm be the m-th order central B-spline and β̂m its Fourier transform,

β̂m(ξ) =

(

sin πξ

πξ

)m+1

.

Consider the periodic function a(m),

a(m)(ξ) =
l=∞
∑

l=−∞

|β̂m(ξ + l)|2 =
l=m
∑

l=−m

β2m+1(l) e
2πilξ,

and the Fourier transform of the Battle-Lemarié scaling function,

ϕ̂(m)(ξ) =
β̂m(ξ)

√

a(m)(ξ)
.
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An approximation of the ideal filter

For large m the Battle-Lemarié scaling function is a good approximation to the ideal filter,

ϕ̂(m)(ξ) = 1 + O(ξ2m+2),

where for the B-spline we have

β̂m(ξ) = 1 − (1 + m)π2

6
ξ2 + O(ξ4).

11



Example
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The Fourier transform of the Battle-Lemarié scaling function of order m = 23.
Shown are functions ϕ̂(m)(ξ), ϕ̂(m)(ξ + 1) and ϕ̂(m)(ξ − 1).
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The main points

• We compute a bandlimited version of the function that preserves frequencies within the
band, i.e., we multiply the Fourier Transform of the function by an approximate ideal
filter

• In the original domain the filter has a large support

• Key point: the filter is applied partially in the original domain and partially in the
Fourier domain

• The convolution with B-splines in the original domain is the projection on B-splines; it
accounts for the numerator of the approximate ideal filter

• The denominator is applied in the Fourier domain and amounts to orthogonalization
of the expansion (the basis changes from the B-splines to the Battle-Lemarié scaling
functions)
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Theorem

Let E∞ be the error in approximating the Fourier transform of the generalized function f

by a periodic function 2j/2 F (ξ)√
a(m)(ξ)

, for some j < 0,

E∞ = sup
|ξ|≤α

|2j/2 F (ξ)
√

a(m)(ξ)
− f̂(2−jξ)| / sup

|ξ|≤α

|f̂(2−jξ)|,

where F is the Fourier series,

F (ξ) =
∑

k∈Z

fke
−2πikξ,

with coefficients fk =
∫ ∞

−∞
f(x) βm

kj(x) dx.

If |f̂(ξ)| ≤ C(1 + |ξ|)σ, σ < m, then for any ε > 0 we can choose m, the order of
the central B-spline, and the parameter α > 0 so that for |ξ| ≤ α

E∞ ≤ ε
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Algorithm that uses only one FFT (no oversampling)

Let us find gl, l = −n, · · · , n, such that

ĝk =
n

∑

j=−n

fje
2πikxj =

n
∑

l=−n

gle
2πikl/(2n+1).

We have (N = 2n + 1))

gl =
1

N

n
∑

k=−n

e−2πikl/N
n

∑

j=−n

fje
2πikxj =

n
∑

j=−n

fj
1

N

n
∑

k=−n

e2πik(xj−
l
N ),

or

gl =
n

∑

j=−n

Dn(xj −
l

N
) fj.
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The Dirichlet kernel

The periodic Dirichlet kernel,

Dn(x) =
1

N

n
∑

k=−n

e2πikx =
sinNπx

N sinπx
,

where N = 2n + 1, can be written as

Dn(x) = Gn(x) + Gn(1 − x) ,

where

Gn(x) =
sin(Nπx)

Nπ

∑

k≥0

(−1)k

x + k
=

∑

k≥0

sin(Nπ(x + k))

Nπ(x + k)
.
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Approximation via exponentials

We approximate Gn in [0, 1],

|Gn(x) −
M
∑

m=1

ρmetmx| ≤ ε ,

where weights and nodes are complex and |etm| < 1. The number of terms grows
logarithmically with the accuracy and with n, M = O(log n) + O(log ε).

As a result we obtain the approximation for the Dirichlet kernel,

|Dn(x) −
M
∑

m=1

ρmetmx −
M
∑

m=1

ρmetm(1−x)| ≤ 2ε .
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Approximation via exponentials: example
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Approximation via exponentials: example
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The error (log10) of 44-term approximation of D50.
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A fast algorithm

We need to compute the sum

g(xn) =
L

∑

l=1

K(xn − yl)f(yl).

Using M -term exponential approximation of the kernel, an elegant algorithm of Rokhlin
computes the sum with accuracy ε in O(2M · (L + N)) operations, where M is the
number of terms in

|K(s) −
M
∑

m=1

ρmetms| ≤ ε for s ∈ [0, 1].

(Assuming that the kernel K is an even function, K(−s) = K(s). If not, then
approximate on [−1, 0] separately).
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Recursion

Split the sum as

g(xn) =
∑

0≤yl≤xn

K(xn − yl)f(yl) +
∑

xn≤yl≤1

K(xn − yl)f(yl),

approximate the first term as
∑M

m=1 wmqn,m, where qn,m =
∑

0≤yl≤xn
etm(xn−yl)f(yl).

and, similarly, the second term. We observe that

qn+1,m = etm(xn+1−xn)
∑

0≤yl≤xn

etm(xn−yl)f(yl) +
∑

xn<yl≤xn+1

etm(xn+1−yl)f(yl),

and, thus, qn,m is computed via the recursion

qn+1,m = etm(xn+1−xn)qn,m +
∑

xn<yl≤xn+1

etm(xn+1−yl)f(yl).
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Stolt migration for seismics (and SAR)

Stolt migration (solution of the linearized inverse scattering problem within the single
scattering assumption)

U(z, x, 0) =

∫ ∞

−∞

∫ ω
c

−ω
c

e
iz

r

4ω2

c2
−k2

x+ixkx
Û(0, kx, ω) dkxdω,

where Û(0, kx, ω) is obtained by taking the Fourier transform of measured data U(0, x, t),

Û(0, kx, ω) =
1

2π

∫ ∞

−∞

∫ ∞

−∞

U(0, x, t) e−iωt e−ikxx dx dt.

Stolt migration is based on the change of variables ω → kz,

kz =

√

4ω2

c2
− k2

x.

To discretize kz using equal spacing we need Û(0, kx, ω) at non-equally spaced nodes.
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Slant Stack

Consider functions with the support elongated in one direction (e.g. time)

Algorithm for inversion in the Fourier domain involves

1. USFFT

2. Solving linear systems with positive definite (badly conditioned) self-adjoint Toeplitz
matrices.

Since the inverse of a Toepitz matrix can be applied in O(N log N) operations (actually,
6 FFTs for the self-adjoint Toeplitz ), we obtain Fast Radon Transform

A similar algorithm for the electron microscope tomography (Sandberg, Mastronarde,
Beylkin 2003)
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Filter design

Frequency

dB
Spline (m=7) vs. weighted Sinc
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Hanning-Sinc (9 taps)
Order m=7 spline (6 taps)

Comparison of Sinc filter with spline (USFFT) design (9 vs. 6 taps).
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Filter design

Frequency

dB
Spline (m=13) vs. Parks-McClellan 
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Parks-McClellan filter  (10 taps)
Order m=13 spline (8 taps)

Comparison Parks-McClellan filters with spline (USFFT) design (10 vs. 8 taps).
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Inverse USFFT

Solve the linear system

g(xk) =

N/2
∑

l=−N/2

fl e
±2πilxk,

or

g(xk, yk) =

Nx/2
∑

l=−Nx/2

Ny/2
∑

l′=−Ny/2

fll′ e
±2πilxk e±2πil′yk,

for fl or fll′ ∈ C, where k = 1, 2, . . . , Np.

Points xk, yk ∈ [−1/2, 1/2] and values g(xk), g(xk, yk) are given.
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Inverse USFFT

In order to solve

gl =

k=N/2
∑

k=−N/2

fk e2πikxl

where points xl, |xl| < 1/2, l = 1, . . . , L, N < L, are not necessarily equally spaced,
consider

g(x) =

k=N/2
∑

k=−N/2

fk e2πikx.

We have

fk =
1

2π

∫ 2π

0

g(x)e−2πikx,

and view gl as values of g(x) at points xl.

Let us find quadrature coefficients cl at nodes xl.
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Inverse USFFT

We compute

wm =
L

∑

l=1

glcle
−2πimxl,

where

wm =
N−1
∑

k=0

fk Tk−m and Tm =
L

∑

l=1

cle
2πimxl.

From the point of view of linear algebra,

g = A f,

where Akl = e2πikxl.

We apply the diagonal matrix D = diag{cl} and then the adjoint matrix A∗,

w = A∗ Dg = A∗ D A f,

and then solve for f using Toeplitz structure of the matrix T = A∗ D A.
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Trigonometric interpolation of measured data

Consider function

g(x, y, z) =
∑

l,l′

fll′ e
ilx eil′y eiz

√
p2−l2−l′2

that solves the Helmholtz equation,

(∇2 + p2) g = 0,

or

g(x, y, z) =
∑

l,l′

fll′ e
ilx eil′y e−z

√
l2+l′2

that solves the Laplace equation,
∇2 g = 0.

If we measure quantities which satisfy these equations, and measurements are on some
unequally spaced grid, we have a setup for trigonometric (or harmonic) interpolation.

B.K. Alpert, M.H. Francis, and R.C. Wittmann, IEEE Trans., May 1998.
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