

Tutorial on Image Compression

Richard Baraniuk

Rice University dsp.rice.edu

Agenda

- Image compression problem
- Transform coding (lossy)
- Approximation

 linear, nonlinear
- DCT-based compression

 JPEG
- Wavelet-based compression
 EZW, SFQ, EQ, JPEG2000
- Open issues

Image Compression Problem

Images

- 2-D function f
- Idealized view

 $f \in ext{some function} \ ext{space defined} \ ext{over} \ [0,1] imes [0,1]$

• In practice

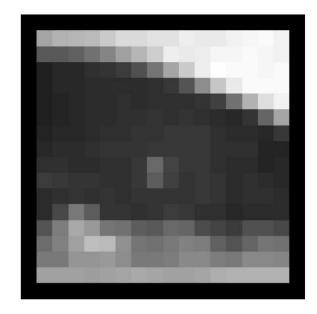
$$f \in \mathbb{R}^{N \times N}$$

ie: an $N \times N$ matrix

Images

- 2-D function f
- Idealized view

 $f \in ext{some function} \ ext{space defined} \ ext{over} \ [0,1] imes [0,1]$



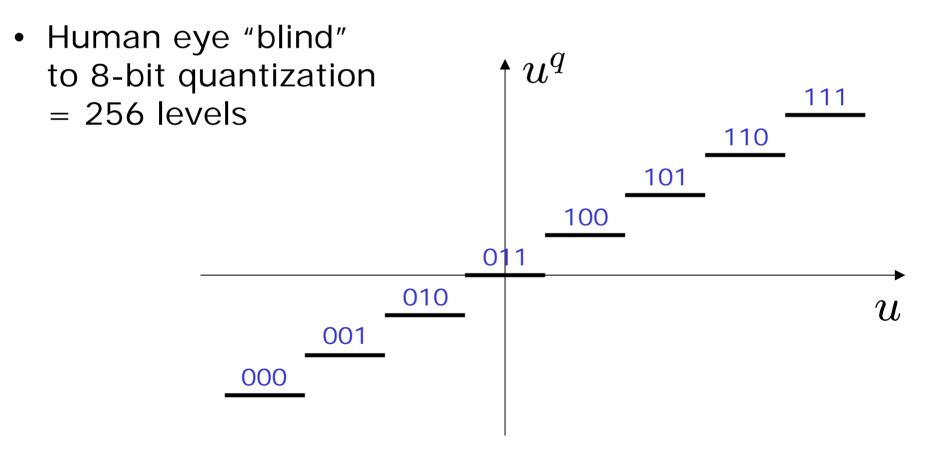
• In practice

$$f \in {\rm I\!R}^{N \times N}$$

ie: an $N \times N$ matrix (pixel average)

Quantization

- Approximate each continuous-valued pixel value u with a discrete-valued variable u^q
- Ex: 3-bit quantization = 8-level approximation



From Images to Bits

$\approx 0101110001010101\ldots$

The Need for Compression

Modern digital camera

 $f \in {\rm I\!R}^{N imes N}$ $N imes N \sim 5 imes 10^6$ megapixels

 $(N \times N) \times 3$ colors $\times 8$ bits/color = 8×10^8 bits = 10^8 bytes

How Much Can We Compress?

[M. Vetterli +]

- 2^(256x256x8) possible images ~500,000 bits [David Field]
- Dennis Gabor, September 1959 (Editorial IRE)

"... the 20 bits per second which, the psychologists assure us, the human eye is capable of taking in ..."

- Index all pictures ever taken in the history of mankind 100 years x 10¹⁰ ~44 bits
- Search the Web

google.com: 5-50 billion images online ~33-36 bits

- JPEG on Mona Lisa ~200,000 bits
- JPEG2000 takes a few less, thanks to wavelets ...

Lossy Image Compression

- Given image f approximate using R bits

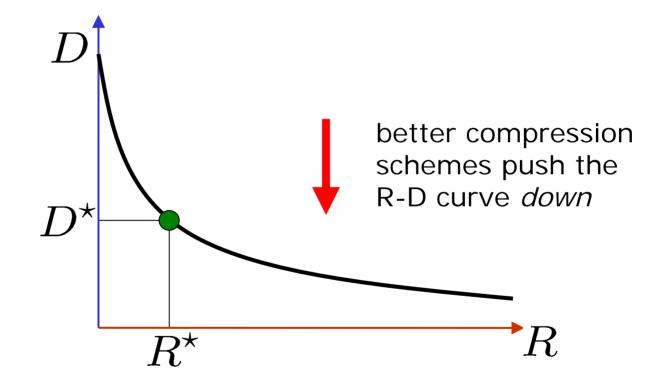
 \widehat{f}_R

• Error incurred = distortion

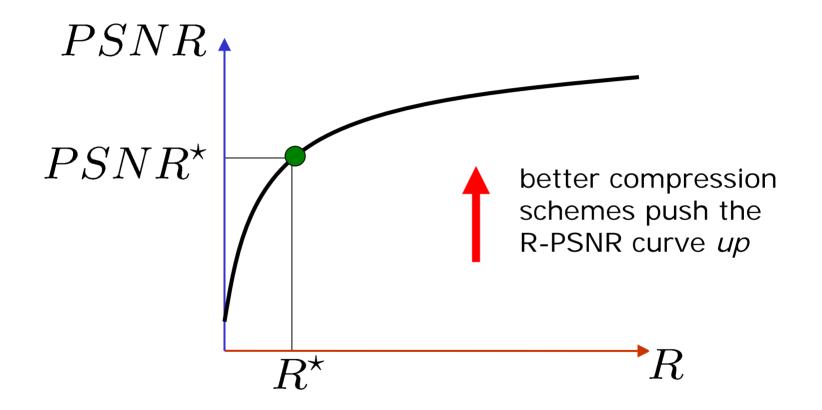
Example: squared error

$$D = \|f - \hat{f}_R\|_2$$
$$PSNR = 20 \log_{10} \left(\frac{\max f}{\|(f - \hat{f}_R)/N\|_2} \right)$$

Rate-Distortion Analysis



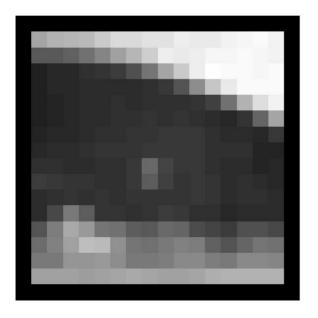
Rate-Distortion Analysis



Lossy Transform Coding

Image Compression

- Space-domain coding techniques perform poorly
- Why? smoothness
 ⇒ strong correlations
 ⇒ redundancies
 ⇒ too many bits



$\rightarrow 0101110001\ldots$

Transform Coding

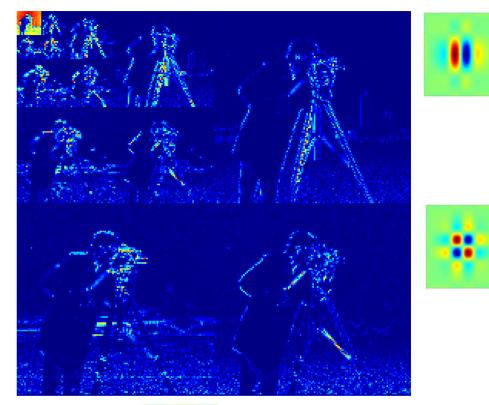
• Quantize coefficients $\{a_k\}$ of an image expansion

$$f = \sum_{k} a_{k} \mathbf{b}_{k}$$

$$\uparrow \uparrow$$
coefficients basis, frame
$$quantize \quad to \ R \ total \ bits$$

$$\widehat{f}_{R} = \sum_{k} a_{k}^{q} \mathbf{b}_{k}$$

Wavelet Transform

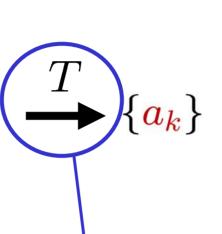


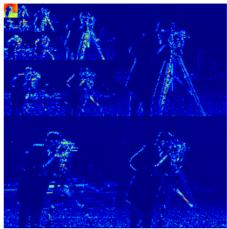
 $\sum a_k \mathbf{b}_k$

k

f

Transform Coding

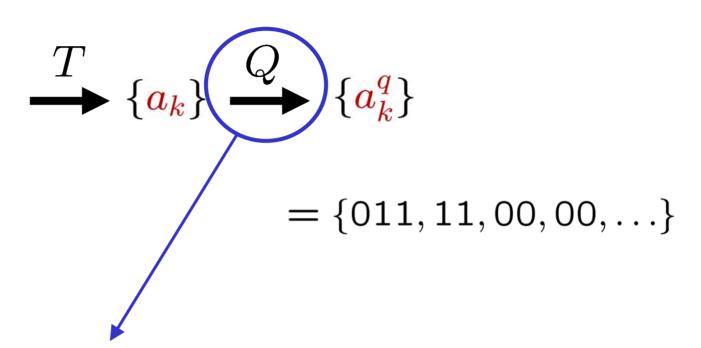




$= \{12.35, -9.11, 0.1, -0.03, \ldots\}$

Transform – *sparse* set of coefficients (many \approx 0)

Transform Coding

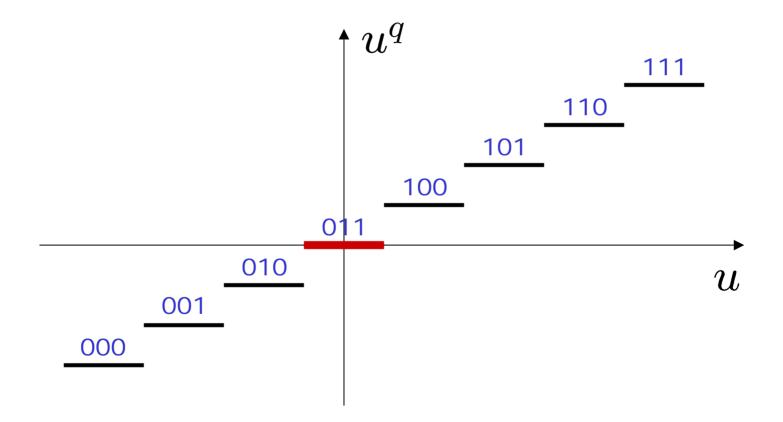


Quantize

- approximate real-valued coefficients using bits
- sets small coefficients = 0

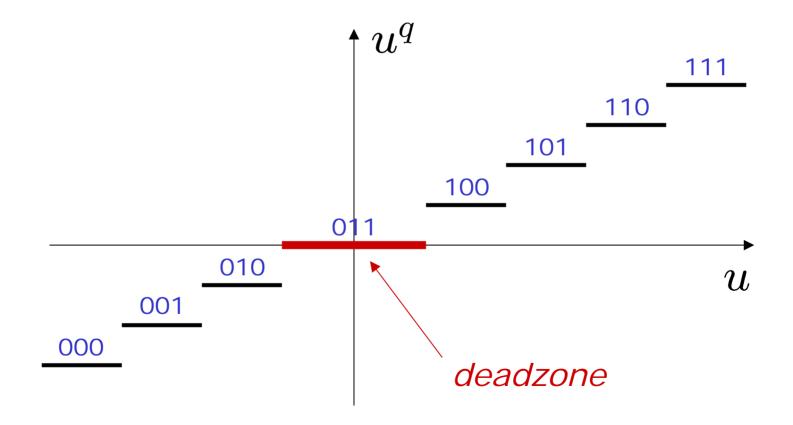
Quantization and Thresholding

Quantization thresholds *small* coefficients to *zero*

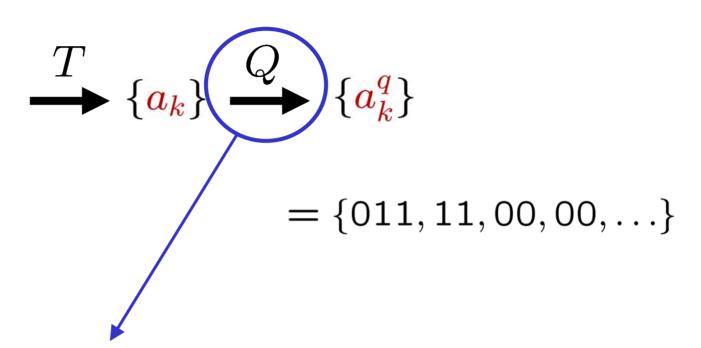


Quantization and Thresholding

Quantization thresholds *small* coefficients to *zero*

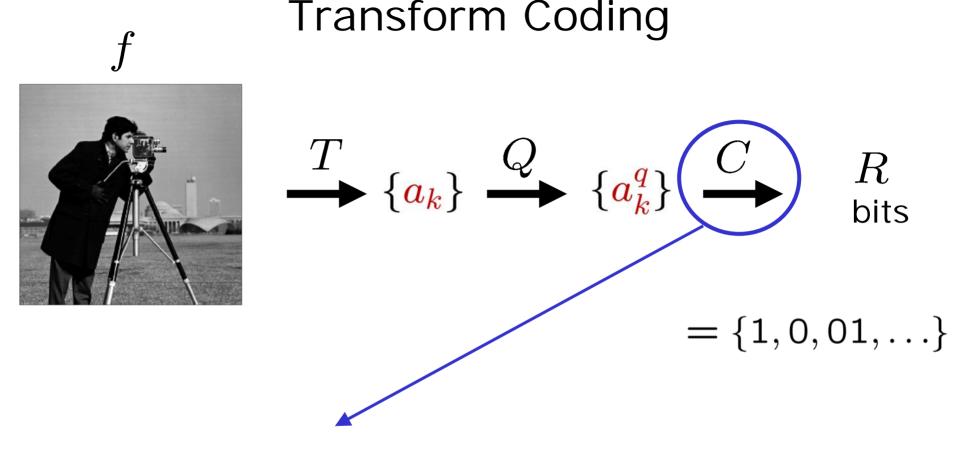


Transform Coding



Quantize

- approximate real-valued coefficients using bits
- sets small coefficients = 0



Entropy code

 reduce excess redundancy in the bitstream

Ex: Huffman coding, arithmetic coding, gzip, ...

f Transform Coding/Decoding

 $\xrightarrow{T} \{a_k\} \xrightarrow{Q} \{a_k^q\} \xrightarrow{C}$ Rbits

 \widehat{f}_R

 $\begin{array}{cccc} T^{-1} & Q^{-1} \\ \clubsuit & \{a_k\} & \clubsuit & \{a_k^q\} & \bigstar \end{array} \end{array}$ Rbits

Sparse Approximation

Computational Harmonic Analysis

• Representation $f = \sum_k \frac{a_k}{\uparrow} \frac{\mathbf{b}_k}{\uparrow}$

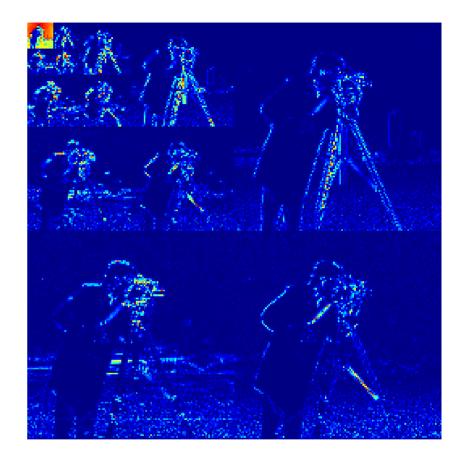
coefficients basis, frame

• Analysis study f through structure of $\{a_k\}$ $\{b_k\}$ should extract features of interest

Approximation

 \widehat{f}_N uses just a few terms N exploit *sparsity* of $\{a_k\}$

Wavelet Transform Sparsity



 $f = \sum a_k \mathbf{b}_k$ k

- Many $a_k pprox 0$
 - (blue)

Nonlinear Approximation

$$f = \sum_k a_k \mathbf{b}_k$$

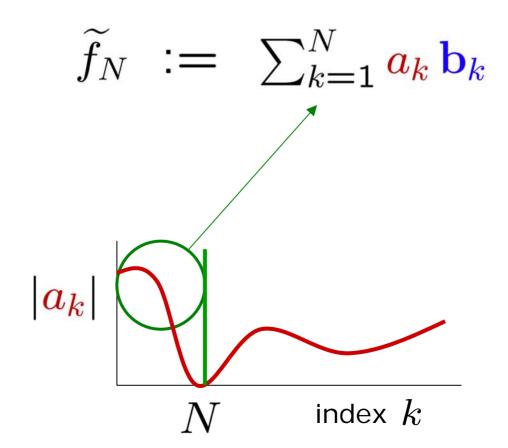
• *N*-term approximation:

use largest a_k independently

$$\widehat{f}_{N} := \sum_{k'=1}^{N} a_{k'} \mathbf{b}_{k'}$$
• Greedy / thresholding
$$|a_{k'}| \int_{N}^{few \ big} |a_{k'}| \int_{N}^{few \ big} |a_{k$$

Linear Approximation $f = \sum_{k} a_{k} \mathbf{b}_{k}$

• N-term approximation: use "first" a_k



Error Approximation Rates

$$f = \sum_{k} a_{k} \mathbf{b}_{k}$$
$$\widehat{f}_{N} = \sum_{k'=1}^{N} a_{k'} \mathbf{b}_{k'}$$

$$\|f - \widehat{f}_N\|_2^2 < C N^{-lpha}$$
 as $N \to \infty$

- Optimize asymptotic *error decay rate* $\, lpha \,$
- Nonlinear approximation works better than linear

Compression is Approximation

 Lossy compression of an image creates an approximation

$$f = \sum_{k} a_{k} \mathbf{b}_{k}$$

$$\uparrow \uparrow$$
coefficients basis, frame
$$quantize \quad to R \text{ total bits}$$

$$\widehat{f}_{R} = \sum_{k} a_{k}^{q} \mathbf{b}_{k}$$

NL Approximation is not Compression

 Nonlinear approximation chooses coefficients but does not worry about their *locations*

$$f = \sum_{k} a_{k} \mathbf{b}_{k}$$
 $\downarrow threshold$
 $\widehat{f}_{N} = \sum_{k'=1}^{N} a_{k'} \mathbf{b}_{k'}$

Location, Location, Location

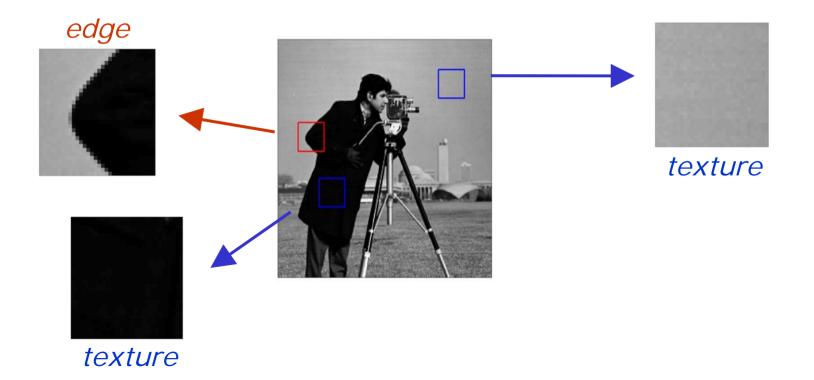
 Nonlinear approximation selects N largest ak to minimize error (easy – threshold)

 Compression algorithm must encode *both* a set of *a_k and* their locations (harder)

Local Fourier Compression JPEG

JPEG Motivation

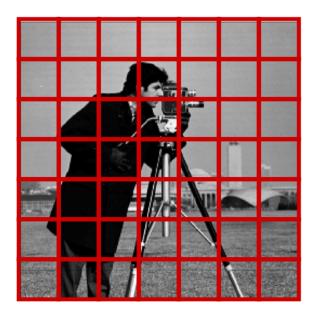
- Image model: images are *piecewise smooth*
- Transform: *Fourier* representation sparse for smooth signals



JPEG Motivation

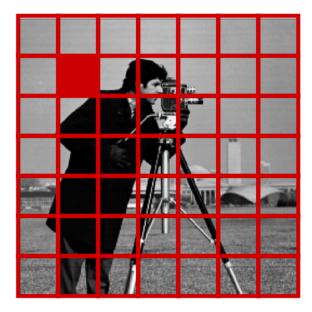
- Image model: images are *piecewise smooth*
- Transform: *Fourier* representation sparse for smooth signals
- Deal with edges:

local Fourier representation (DCT on 8x8 blocks)



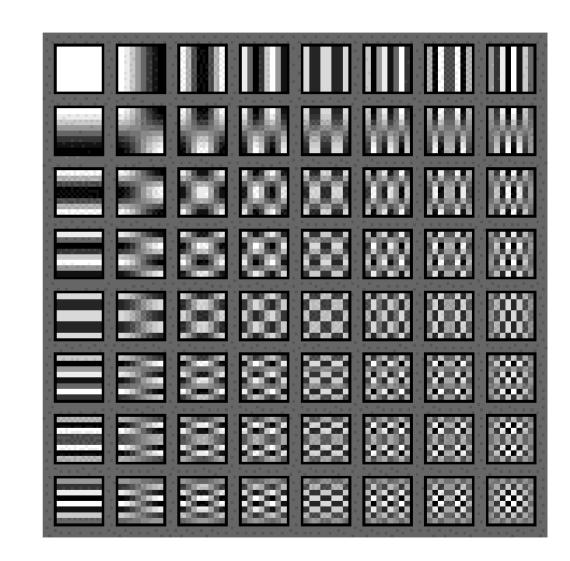
JPEG and DCT

- Local DCT (Gabor transform with square window or wavelet packets)
- Divide image into 8x8 blocks
- Take Discrete Cosine Transform (DCT) of each block



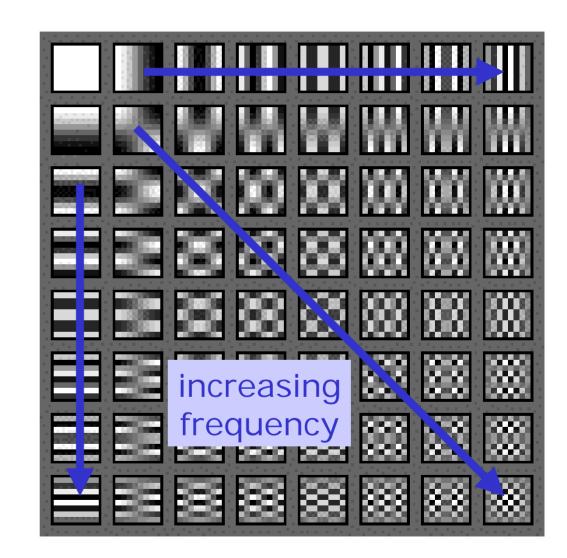
Discrete Cosine Transform (DCT)

- 8x8 block
- Project onto 64 different basis functions (tensor products of 1-D DCT)
- Real valued
- Orthobasis



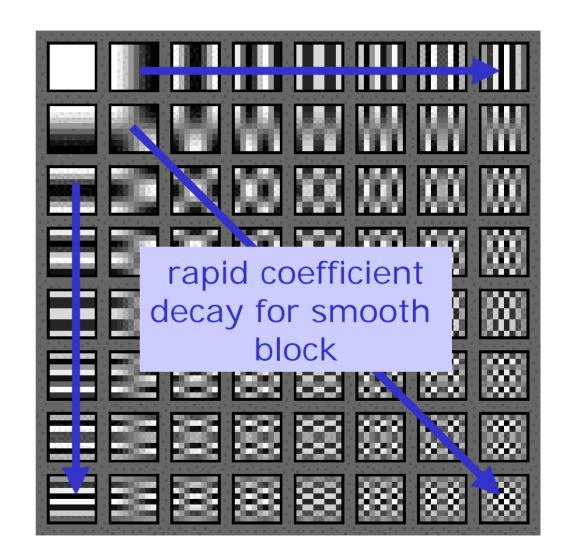
Discrete Cosine Transform (DCT)

- 8x8 block
- Project onto 64 different basis functions (tensor products of 1-D DCT)
- Real valued
- Orthobasis

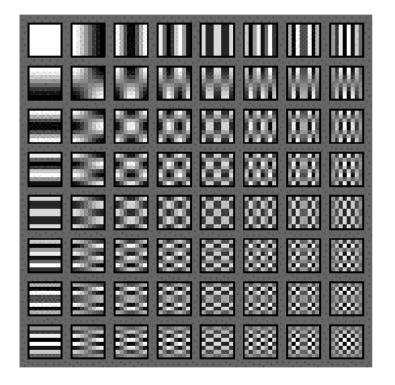


Discrete Cosine Transform (DCT)

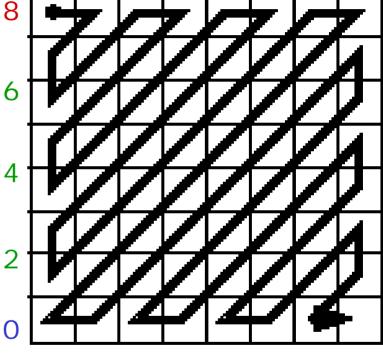
- 8x8 block
- Project onto 64 different basis functions (tensor products of 1-D DCT)
- Real valued
- Orthobasis



JPEG Quantization

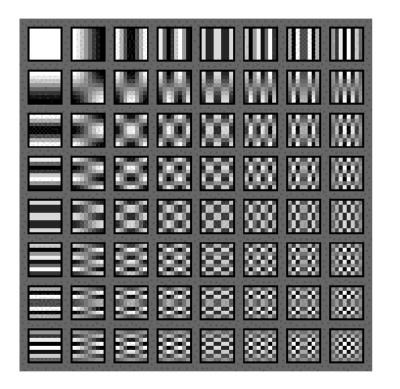


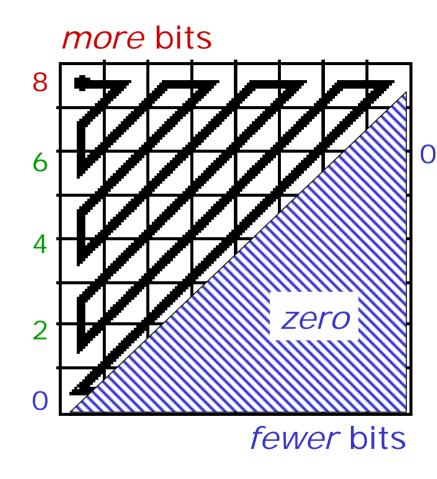
more bits



fewer bits

JPEG Quantization





Quasi-linear approximation in each block (fixed scheme)

JPEG Compression

256x256 pixels, 12,500 total bits, 0.19 bits/pixel

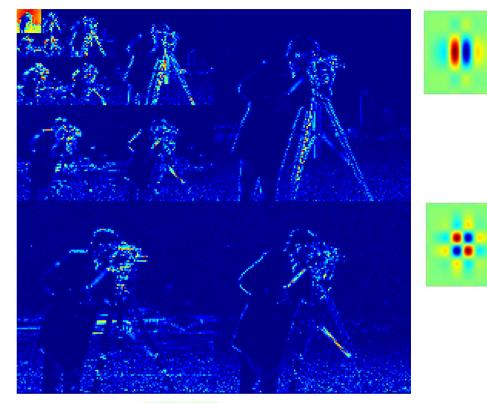
JPEG Compression

• Worldwide coding standard

- Problems
 - local Fourier representation not sparse for edges so poor approximation at low rates
 - blocking artifacts
 (discontinuities between 8x8 blocks)

Wavelet Compression

Enter Wavelets...



 $a_k \mathbf{b}_k$

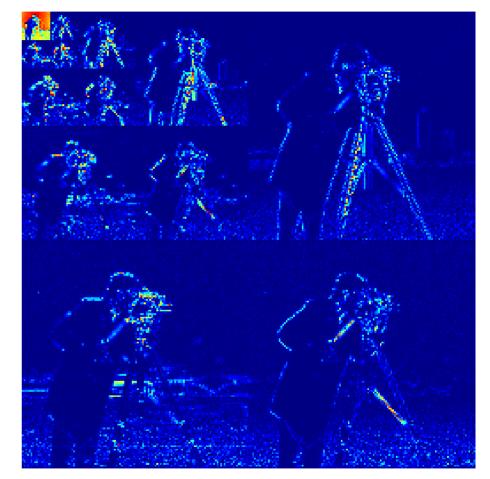
k

f

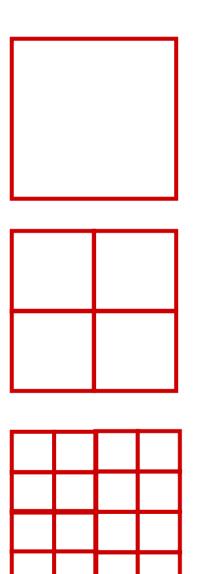
Location, Location, Location

Nonlinear approximation selects N largest ak to minimize error (easy – threshold)

 Compression algorithm must encode *both* a set of *a_k and* their *locations* (harder)

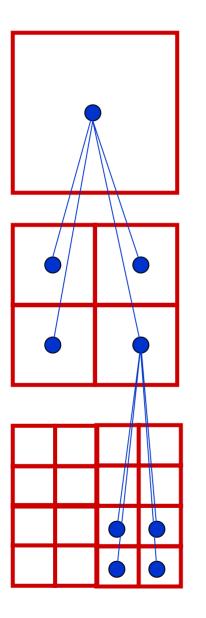


2-D Dyadic Partition



- *Multiscale* analysis
- Zoom in by factor of 2 each scale

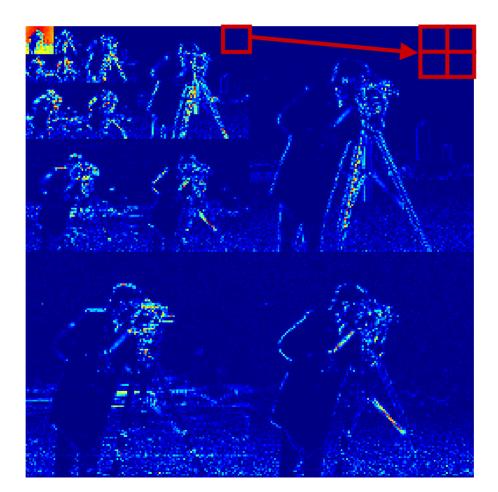
2-D Dyadic Partition = *Quadtree*



- *Multiscale* analysis
- Zoom in by factor of 2 each scale
- Each *parent* node has *4 children* at next finer scale

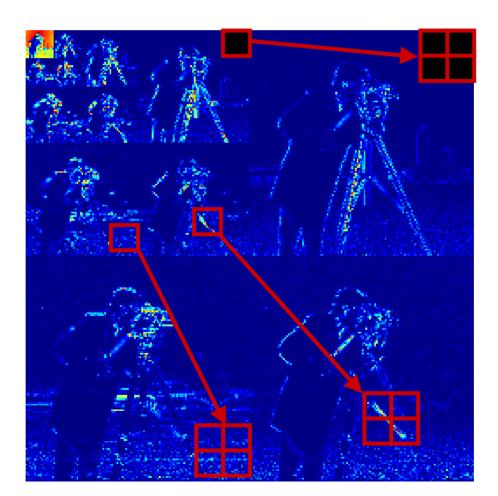
Wavelet Quadtrees

Wavelet coefficients structured on *quadtree* – each *parent* has *4 children* at next finer scale



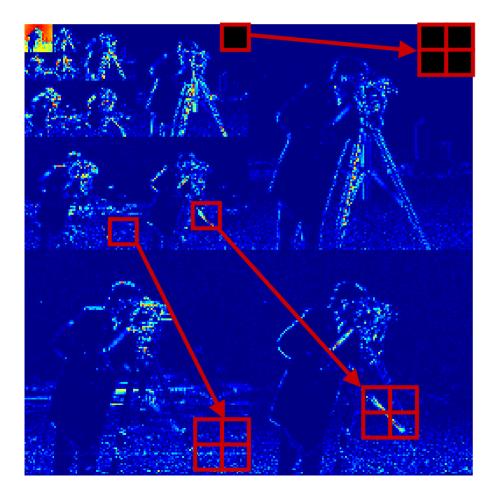
Wavelet Persistence

- *Smooth* region *small* values down tree
- *Singularity/texture large* values down tree



Zero Tree Approximation

Idea: *Prune* wavelet subtrees in smooth regions
 tree-structured thresholding



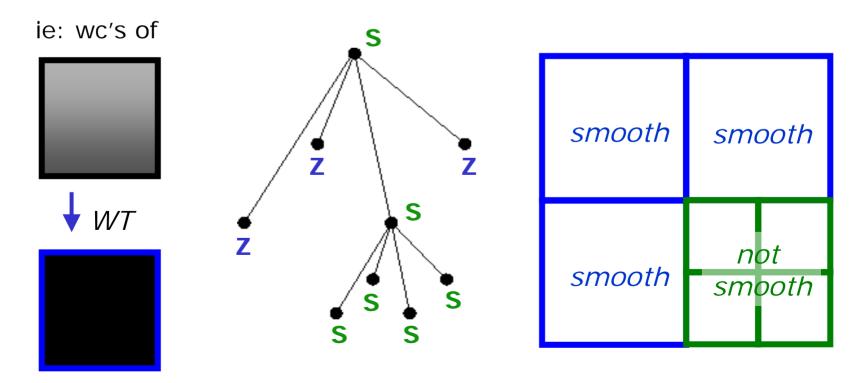
Zero Tree Approximation

• Prune wavelet quadtree in smooth regions

zero-tree significant

- smooth region (prune)
- edge/texture region (keep)

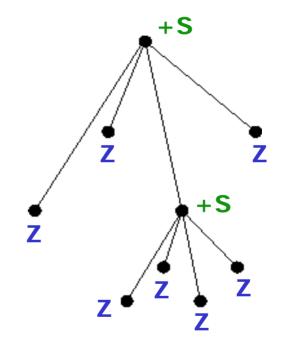
Z: all wc's below=0



EZW Compression

[Shapiro '92]

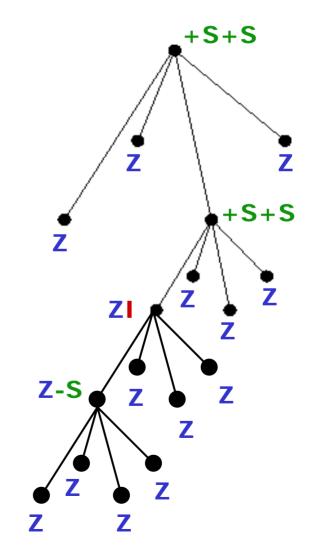
- Set threshold $\tau = \max_k \{a_k\}$
- Iterate:
 - 1. Reduce $\tau \leftarrow \tau/2$
 - 2. Threshold $\{a_k\}$
 - 3. Assign labels +**S**, **-S**, **Z**, **I**
- Encode symbols with arithmetic coder



EZW Compression

[Shapiro '92]

- Set threshold $\tau = \max_k \{a_k\}$
- Iterate:
 - 1. Reduce $\tau \leftarrow \tau/2$
 - 2. Threshold $\{a_k\}$
 - 3. Assign labels +**S**, **-S**, **Z**, **I**
- Encode symbols with arithmetic coder



EZW Compression [Shapiro '92]

- Greedy algorithm based on "persistence" heuristic
- Encodes larger coefficients with more bits
- Progressive encoding (embedded)
 - adds one bit of information to each significant coefficient per iteration
- SPIHT similar

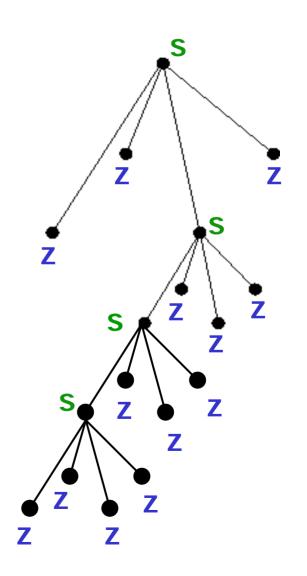
EZW Compression

256x256 pixels, 9,800 total bits, 0.15 bits/pixel

SFQ Compression

[Orchard, Ramchandran, Xiong]

- "Space Frequency Quantization"
- EZW is a greedy algorithm
- SFQ optimize placement of S and Z symbols by *dynamic programming*
- Rate-distortion "optimal"
- Not progressive



SFQ Compression

256x256 pixels, 9,500 total bits, 0.145 bits/pixel

EQ Compression

[Orchard, Ramchandran, LoPresto]

- "Estimation Quantization"
- Not tree-based

- Scans thru each wavelet subband and estimates variance of each wc from its neighbors
- Quantize wc as a Gaussian rv with this variance
- Not progressive



EQ Compression

256x256 pixels, 10,100 total bits, 0.169 bits/pixel

JPEG2000 Compression

- *Not* tree-based
- Similar to JPEG applied to wavelet transform
- Can be progressive

JPEG2000 Compression

256x256 pixels, 9,400 total bits, 0.144 bits/pixel

Discussion and Conclusions

Summary

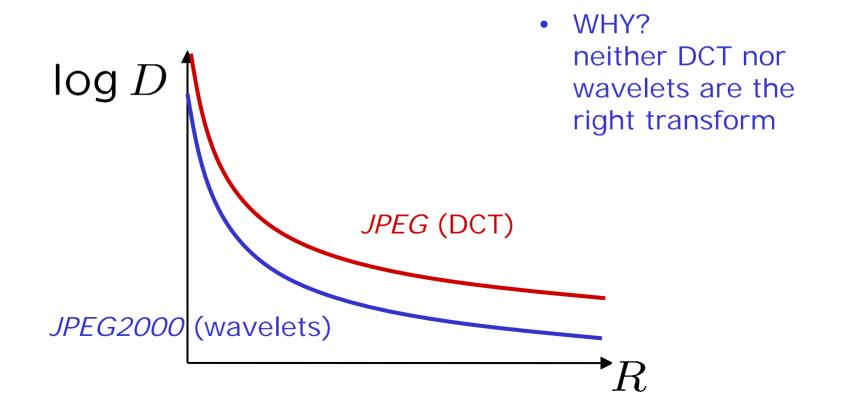
- Compression is approximation, but approximation is *not* (quite) compression
- Modern image compression techniques exploit piecewise *smooth* image model
 - smooth regions yield small transform coefficients and sparse representation

Issues

- Why L₂ distortion metric?
- Pixelization at fine scales

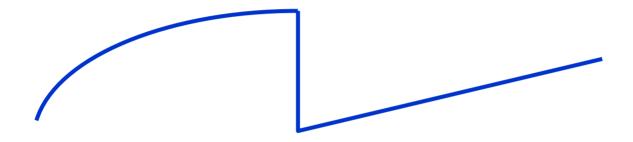
Issues

 Current wavelet methods do *not* improve on decay rate of JPEG!



1-D Piecewise Smooth Signals

 f smooth except for singularities at a finite number of 0-D points



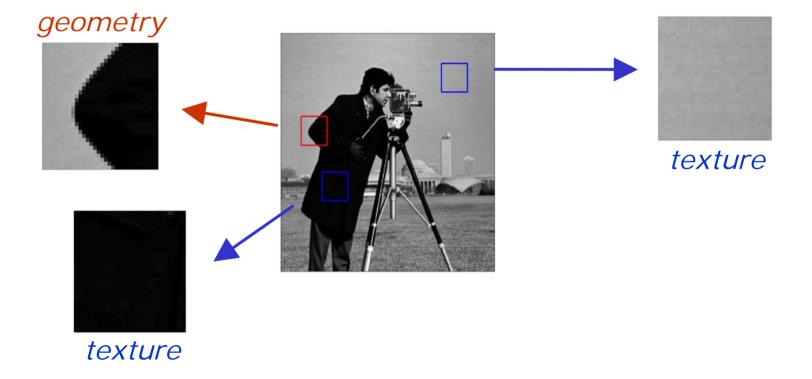
Fourier sinusoids: suboptimal greedy approximation and extraction

wavelets:

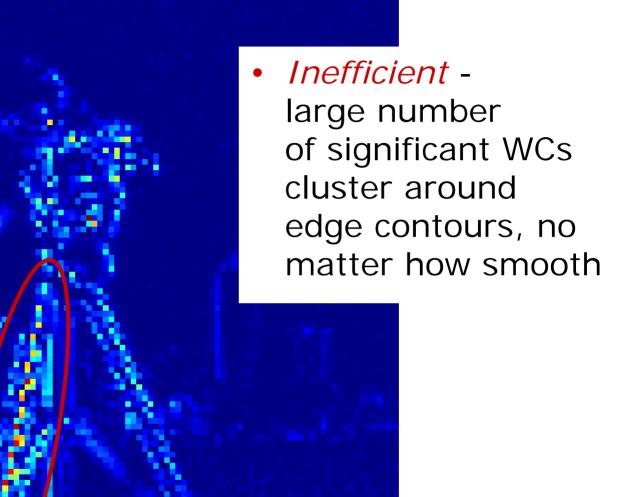
optimal greedy approximation extract singularity structure

2-D Piecewise Smooth Signals

f smooth except for singularities along a finite number of smooth 1-D curves

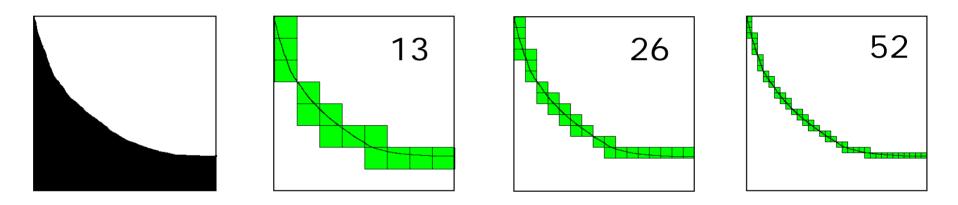


Challenge: analyze/approximate *geometric* structure



2-D Wavelets: Poor Approximation

• Even for a smooth C² contour, which straightens at fine scales...



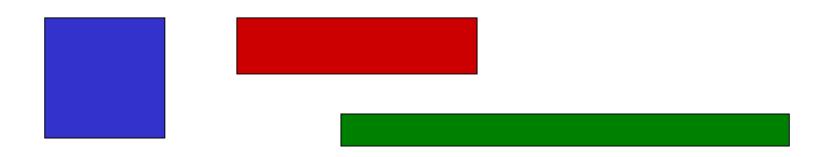
• Too many wavelets required!

 \widehat{f}_N := N-term wavelet approximation

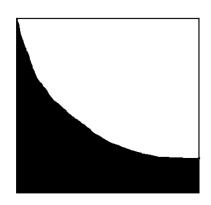
$$\|f - \hat{f}_N\|_2^2 < C N^{-1}$$
 not N^{-2}

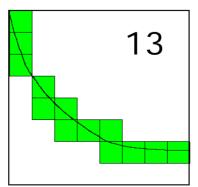
Solution 1: Upgrade the Transform

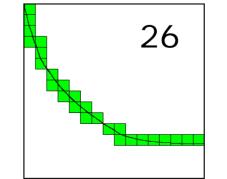
- Introduce *anisotropic transform*
 - curvelets, ridgelets, contourlets, ...

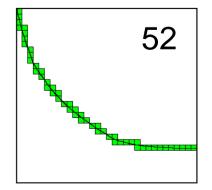


• Optimal error decay rates for cartoons +



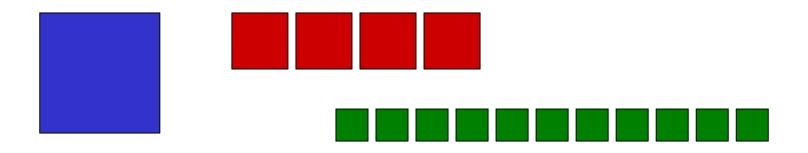


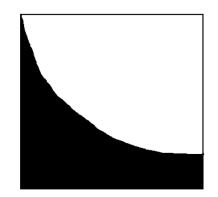


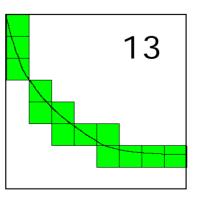


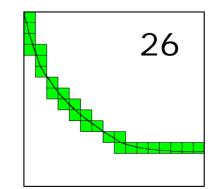
Solution 2: Upgrade the *Processing*

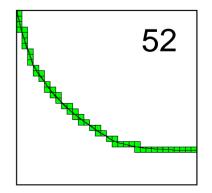
 Replace coefficient thresholding by a new wavelet coefficient *model* that captures *anisotropic spatial correlations* of wavelet coefficients











Richard Baraniuk Mike Wakin Hyeokho Choi Justin Romberg

richb@rice.edu

Web: dsp.rice.edu