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Geometry/Edges: Still an issue after all these years

Image representation, approximation, compression,
denoising =⇒ geometry/edges make them tougher

Object detection, object description, shape analysis
=⇒ geometry/edges are indispensable
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Purpose of This Tutorial

Introduce a few recent methods that deals with edges
and geometry proactively

Not include wedgelets, ridgelets, curvelets (already
covered by Donoho-Candès) bandlets (will be
discussed by Mallat in WS 1), surflets (will be
discussed by Baraniuk tomorrow?), and others
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Gibbs Phenomenon around Discontinuities

Linear Approximation using 16% of the coefficients
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Gibbs Phenomenon around Discontinuities . . .
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Essentially-Non-Oscillatory (ENO) Wavelets of Chan & Zhou

Objective: Approximate discontinuous functions
without oscillations near the discontinuities without too
much computational burden

Strategy: Avoid computing the wavelet coefficients
using data from both sides of the discontinuities
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ENO Wavelet Transform Algorithm

Step 0: Set j = J (the finest scale)

Step 1: Apply the standard wavelet transform to
compute the coefficients at scale j − 1 using the low
frequency coefficients at scale j

Step 2: Detect discontinuities of the low frequency
coefficients at scale j using high frequency coefficients
scale j − 1

Step 3: Extrapolate the scale j − 1 coefficients and
modify them around the edges

Step 4: Set j ← j − 1; if j = j0 (desired coarsest level),
then stop; otherwise go to Step 1

Step 5: Apply this for a 2D image via tensor product
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ENO Wavelets: Setup

Let H = {h`}
L−1
`=0 , G = {g`}

L−1
`=0 be the pair of conjugate

mirror of the standard Daubechies wavelet with
p = L/2 vanishing moments.

Let j be the scale (level) with j = J > 0 is the finest
scale and j = j0 < J is the coarsest scale.

Let αj,k, βj,k be the low and high frequency wavelet
coefficients at scale j, respectively. Let

αj,k =

L−1
∑

`=0

h`αj+1,2k+`, βj,k =

L−1
∑

`=0

g`αj+1,2k+`,

with j = J − 1, J − 2, · · · , j0, and αJ,k = f(k/2J).Sep. 2004 – p.10



ENO Wavelets: Discontinuity Detection

Let Ij,k be an interval at scale j + 1 where αj,k and βj,k

are computed. Note Ij,k−1 ∩ Ij,k 6= ∅ if L ≥ 4.

In the smooth region, we have

|βj,k| = (1 + O(∆xj))|βj,k−1|,

where ∆xj = 2−j.

If the filter stencil contains a discontinuity in f (m)(x) for
some m in [0, p), then

|βj,k| = |f
(m)(x0+)− f (m)(x0−)|O(∆xm

j ).
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ENO Wavelets: Discontinuity Detection . . .

Thus, the detection algorithm should be:

If Ij,k−1 does not contain any discontinuity and
|βj,k| ≤ τj|βj,k−1| for some τj > 1, then Ij,k does not
contain any discontinuity either.

Otherwise, Ij,k contains discontinuities.

Discontinuities cannot be too closely located; must be
at least (L + 1)∆xj+1 apart.
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ENO Wavelets: Extrapolation of Coefficients

At each discontinuity, need to extrapolate the coarse
scale coefficients from left to right and from right to left.

For the wavelet with p vanishing moments, use a
polynomial degree p− 1 to extrapolate those from one
side of the discontinuity to the other side.

Can use either the exact fit or the least square fit
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Why Extrapolate Coarse Scale? . . .

Naïve approach: extrapolate the original function or
finer scale low frequency coefficients directly. Suppose
the discontinuity is located between αj+1,K`

and
αj+1,Kr

, where K` = 2k + L− 3, Kr = 2k + L− 2.

Using the left side info {αj+1,m}
K`

m=K`−p+1, extrapolate
into the right side to get {α̂j+1,m}

Kr+L−2
m=Kr

.

Using the right side info {αj+1,m}
Kr+p−1
m=Kr

, extrapolate
into the left side to get {ᾱj+1,m}

K`

m=K`−L+2.

Then we can compute {α̂j,m, β̂j,m} and {ᾱj,m, β̄j,m} both
for k ≤ m ≤ k + p− 2.
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ENO Wavelets: Extrapolation of Coefficients . . .
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Why Extrapolate Coarse Scale? . . .

From left to right:





α̂j,k

β̂j,k



 =













L−3
∑

`=0

h`αj+1,2k+` + hL−2α̂j+1,2k+L−2 + hL−1α̂j+1,2k+L−1

L−3
∑

`=0

g`αj+1,2k+` + gL−2α̂j+1,2k+L−2 + gL−1α̂j+1,2k+L−1













=





δj,k

γj,k



+ A





α̂j+1,2k+L−2

α̂j+1,2k+L−1



 , A =





hL−2 hL−1

gL−2 gL−1



 .

Can do similarly from right to left.
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ENO Wavelets: Coarse Scale Extrapolation

Storage inefficiency (i.e., twice as many coefficients
around the discontinuities)

Solution: extrapolate the scale j coefficients and
modify them within scale j

Because A is singular for the standard Daubechies
wavelets, α̂j,k (ᾱj,k) and β̂j,k (β̄j,k) are not independent.

In fact, we have:




α̂j,k

β̂j,k



−





δj,k

γj,k



 ∈ R(A).
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ENO Wavelets: Coarse Scale Extrapolation

From this, we can determine β̂j,k if α̂j,k is known, and
vice versa.

Thus, the following strategy is used:

L→R: Extrapolate α̂j,k, then determine β̂j,k.

R→L: Set β̄j,k = 0, then determine ᾱj,k.

No need to store α̂j,k and β̄j,k, which are always
recoverable.

An indicator (binary variable) for discontinuity locations
needs to be stored for the inverse transform.
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ENO Wavelets: Approximation Theorem

Theorem: Let f(x) be a piecewise continuous function
over Ω with bounded pth derivatives in each piece of
smooth region, and let fj(x) be its jth level ENO-wavelet
projection. If the minimum distance between any two
consecutive discontinuities in f larger than (L + 1)∆xj+1,
then

‖f − fj‖Lq(Ω) ≤ C(∆xj)
p‖f (p)‖Lq(Ω\K),

where K is set of points of discontinuities in f , and q = 2,∞.
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ENO Wavelets: 1D Case
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ENO Wavelets: 2D Case (Linear)
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50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

300

350

400

450

500

(a) Original

Haar, level=3, keep 64x64 coefficients

50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

300

350

400

450

500

(b) Haar

ENO−Haar, level=3, keep 64x64 coefficients

50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

300

350

400

450

500

(c) ENO Haar

Sep. 2004 – p.21



ENO Wavelets: 2D Case (Linear)

Initial

50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

300

350

400

450

500

(a) Original

Haar, level=3, keep 64x64 coefficients

50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

300

350

400

450

500

(b) Haar

ENO−Haar, level=3, keep 64x64 coefficients

50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

300

350

400

450

500

(c) ENO Haar

Sep. 2004 – p.21



ENO Wavelets: 2D Case (Linear)

Initial

50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

300

350

400

450

500

(a) Original

Haar, level=3, keep 64x64 coefficients

50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

300

350

400

450

500

(b) Haar

ENO−Haar, level=3, keep 64x64 coefficients

50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

300

350

400

450

500

(c) ENO Haar

Sep. 2004 – p.21



ENO Wavelets: 2D Case (Nonlinear)

Initial

50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

300

350

400

450

500

(a) Original

Haar, Hard Thresholding, keep 64x64 coefficients

50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

300

350

400

450

500

(b) Haar

ENO−Haar, Hard Thresholding, level=3, keep 64x64 coefficients

50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

300

350

400

450

500

(c) ENO Haar

Sep. 2004 – p.22



ENO Wavelets: 2D Case (Nonlinear)

Initial

50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

300

350

400

450

500

(a) Original

Haar, Hard Thresholding, keep 64x64 coefficients

50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

300

350

400

450

500

(b) Haar

ENO−Haar, Hard Thresholding, level=3, keep 64x64 coefficients

50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

300

350

400

450

500

(c) ENO Haar

Sep. 2004 – p.22
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ENO Wavelets: Remarks

Difficulty of detecting edges reliably in noisy signals

Dealing 2D edges in tensor product of 1D

Averbuch & Coifman had a similar idea: image
enhancement via wavelet zoom-in, filling the missing
fine scale coefficients via estimation from coarser
scale coefficients.
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ENO Wavelets: Remarks . . .

A. Gelb, E. Tadmor, J. Tanner: discontinuity detection,
approximation of piecewise smooth function using
filters & molifiers on the Fourier domain

G. Beylkin, NS, X. Shen, H. Xiao: Use of prolate
spheroidal wave functions for piecewise BL functions

Suggestion: organize a half day workshop on this
issue with Greg Beylkin, Jared Tanner, Hong Xiao, and
others as speakers.
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Polyharmonic Local Sine Transform (PHLST)

Want to do Fourier analysis of data locally

Want to get rid of the edge effect and Gibbs
phenomenon

Do not want any overlaps among blocks (not like local
cosines)

Want to efficiently represent regions of more general
shapes other than rectangular blocks
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Basic Ideas of PHLST

Split the domain Ω into a set of subregions (often
rectangular blocks) {Ωj}j and cut the data/function f

into pieces using the characteristic functions, fj = χΩj
f

fj is decomposed into two parts uj + vj

uj is a solution of the polyharmonic equations ∆mu = 0

with Dirichlet/Neumann boundary conditions

vj is a residual fj − uj, which are expanded into the
multiple Fourier series (either complex exponentials,
sines, or cosines)

Sines and cosines are eigenfunctions of the Laplacian
on a rectangular box
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1D Case

In 1D, each uj is a low order algebraic polynomial (e.g.,
line, cubic poly.)

vj is a trigonometric polynomial

These two compensate the shortcomings of each
other:

High order algebraic polynomial =⇒ Runge
phenomenon

Trigonometric polynomial on an interval =⇒ Gibbs
phenomenon
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1D Example: Compression Ratio ≈ 6
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Polyharmonic Global Sine Transform on a Rectangle

Consider a function f ∈ C2m(Ω), where m = 1, 2, . . .,
and Ω ⊂ R

n (e.g., Ω = [0, 1]n), but not periodic.

Decompose this function into the following two
components:

f(x) = u(x) + v(x),

u(x) satisfies the following polyharmonic equation:

∆mu = 0 in Ω.
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PHGST on a Rectangle . . .

The boundary condition for u is:

∂p`u

∂ νp`
=

∂p`f

∂ νp`
on Γ = ∂Ω, ` = 0, . . . ,m− 1,

where p` is the order of the normal derivatives to be
specified (p0 ≡ 0⇔ u = f on Γ).

Now set v(x) = f(x)− u(x), which we will call the
residual component with

∂p`v

∂ νp`
= 0 on Γ, ` = 0, . . . ,m− 1.
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A Specific Example: m = 1 (Laplace) Case







∆u = 0 in Ω,

u = f on Γ.

Variational formulation =⇒ minimum gradient interpolation:

min
u∈H1(Ω)

∫

Ω

|∇u|2 dx subject to the above boundary condition.

Note that in 1D, this is simply a line.
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A Specific Example: m = 2 (Biharmonic) Case







∆2u = 0 in Ω,

u = f,
∂2u

∂ ν2
=

∂2f

∂ ν2
on Γ.

Variational formulation =⇒ minimum curvature
interpolation:

min
u∈H2(Ω)

∫

Ω

(

∆u + 2
∑

j 6=k

∂j∂ku

)2

dx,

subject to the above boundary condition.

Note that in 1D, this is simply a cubic polynomial.
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PHGST on a Rectangle . . .
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PHGST on a Rectangle . . .
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PHGST on a Rectangle . . .

(a) Original

(b) u component

(c) v component
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PHGST on a Rectangle . . .

(a) Original (b) u component

(c) v component
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PHGST on a Rectangle . . .

(a) Original (b) u component (c) v component
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PHGST on a Rectangle . . .

The polyharmonic component u is smooth inside the
domain Ω, and its values (and possibly its normal
derivatives) matches those of data.

The u component can be represented only by the
boundary values f |Γ. =⇒ No need to store the whole
u.

The residual component v becomes 0 at the boundary
Γ.
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PHGST on a Rectangle . . .

Therefore, the v component is suitable for Fourier
analysis. In fact, if Ω = [0, 1]n and p` = 2`,
` = 0, . . . ,m− 1, then the Fourier sine analysis should
be used to get the matching normal derivatives up to
order 2m− 1 by odd reflection at the boundaries.

The frequency content (in particular, mid to high
frequency range) of the original is retained in the
residual =⇒ textures remain in v; shading is captured
by u.

We can get the decay rate as follows:
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Theorem

Let Ω = [0, 1]n, and f ∈ C2m(Ω), but non-periodic. Assume
further that ∂2m+1

i f , i = 1, . . . , n, exist and are of bounded
variation. Furthermore, let f = u + v be the PHLST
representation where the polyharmonic component u is the
solution of the polyharmonic equation of order m with the
boundary condition

∂2`u

∂ ν2`
=

∂2`f

∂ ν2`
on Γ, ` = 0, . . . ,m− 1.

Then, the Fourier sine coefficient bk of the residual v is of

O
(

‖k‖−2m−1
)

for all k 6= 0, where k = (k1, . . . , kn), and ‖k‖

is the usual Euclidean (i.e., `2) norm of k.
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Polyharmonic Local Sine Transform

Now, consider a decomposition of Ω into a disjoint set of
subdomains {Ωj}, i.e., Ω = ∪J

j=1Ωj. A typical example is
Ω = (0, 1)n, and Ωj is a dyadic subcube. Then, restrict f on
Ωj, i.e., for each j, we decompose f locally as follows:

fχΩj
= fj = uj + vj,

where we follow the same recipe locally as in the global
case. We call this decomposition of f into {uj , vj}

Polyharmonic Local Sine Transform (PHLST).
For m = 1: Laplace Local Sine Transform (LLST);

For m = 2: Biharmonic Local Sine Transform (BLST).
Sep. 2004 – p.38



Polyharmonic Local Sine Transform . . .
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Polyharmonic Local Sine Transform . . .

No spatial overlaps

Decay of the Fourier sine coefficients are fast if Ωj

does not contain any singularity

Can distinguish intrinsic singularities from the artificial
discontinuities at Γj imposed by χΩj

A fast and accurate (no finite difference approximation
of the Laplace operator) algorithm (for both 2D and 3D)
exists via FFT if Ω and Ωj are dyadic cubes (Averbuch,
Braverman, Israeli, and Vozovoi, 1998)
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Approximation Test: Smooth Function
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Approximation Test: Piecewise Smooth Function
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Approximation Test: Oscillatory Function
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Approximation Test: Oscillatory Function with Discontinuity
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Remarks on PHLST

Need to store the boundary values =⇒ can compress
them using the lower dimensional version of PHLST

Can use complex exponentials, wavelets, etc., instead
of sines with potentially slower decay

Can do in the frequency domain =⇒ better wavelet
packets

Can be generalized to other geometries (e.g., circles,
spheres, star shapes) =⇒Workshop I

Useful for interpolation and local feature computation
(e.g., gradients, directional derivatives, etc.)
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Multiscale Inpainting Transform (Cohen, Capricelli, Masnou, Romberg)

In the case of LLST of Saito et al., the functional to be
minimized is J(u) =

∫

Ω
|∇u|2 dx.

Instead, this approach uses the nonlinear inpainting
algorithm using the functional J(u) =

∫∞

−∞
F (∂Et[u]) dt,

where Et[u] is the level set of u at level t. Possible
choices of F :

Level curve length: F (∂Et[u]) =
∫

∂Et[u]
ds.

Level curve length + curvature:
F (∂Et[u]) =

∫

∂Et[u]
(1 + µ|κ(s)|p) ds. If p = 1, then the

level curves of the solution are straight lines.

Unfortunately, the solution is not unique and unstable.
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Multiscale Inpainting Transforms . . .

Use the nonlinear inpainting algorithm to compute u

components at each scale (prediction) ≈ Ami Harten’s
discrete MRA.

v components are the prediction errors, which are
further processed by 1D multiscale transforms using
linear lifting scheme.
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Multiscale Inpainting Transforms . . .
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Multiscale Inpainting Transforms . . .
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Summary

Reviewed geometry/edge-conscious techniques

Many approaches deal with edges proactively

This is a “meeting ground” of image processing,
harmonic analysis, PDEs, and shape optimization

A large possibility for prediction operators from
boundary

Reliability of boundary information and noise is an
issue
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