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• Image compression fundamentals

• Image coding with wavelets

• Coding of oscillatory texture
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Image compression fundamentals
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Image compression

What is the problem ?

1. approximation of an image for a given budget, or a given quality,

2. efficient computation : fast algorithms

Data compression techniques can be used for :

1. Discovering the structure of the data

2. Dimensionality reduction

3. Classification
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Image compression: why ?

Applications horiz × vert frame/s size ratio

Digital camera 2560 × 1920 14 MB 10
Fax 1728 × 1100 240 kB 20
CD 352 × 240 30 7.6 Mb/s 50

HDTV 1920 × 1080 30 186 Mb/s 80
VideoPhone 176 × 144 15 1.1 Mb/s 300

Digital images files are large...
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Important parameters of a compression system

• Compression efficiency: bit per pixel

• Fidelity: PSNR, visual inspection

• Complexity

• Robustness
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Transform coding

• Apply a linear transformation to the image f = ∑N−1
n=0 fnψn

• A small number of coefficients fn carry most of the energy

• Quantization of the coefficients : R → {1, · · · , Q}
• Entropy coding: code (q) ∈ {0, 1}∗, length (code): minimum

Key idea : At low bit rates, the distortion depends on the ability of
the basis to approximate the signal with a small number of vectors
[Mallat and Falzon, 1998]

min
αn

‖ f −
M

∑
n=0

αnψn‖ ; M � N (1)
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Transform coding: Karhunen-Loève transform

• X = (X0, · · · , XN−1) stochastic process, RX(i, j) = E[XiXT
j ]

• (µ0, · · · , µN−1) eigenvectors, (λ0, · · · , λN−1) eigenvalues of RX.

• KLT : orthogonal transform K =
[
µ0| · · · |µN−1

]T

• de-correlate the image values :

Y = KX (2)

• If we keep only the first M < N largest coefficients of Y, then the KLT
is the optimal orthogonal transform that minimizes the MSE.

• X Gaussian, high resolution scalar quantization, then KLT is optimal

DKL(R̄)
Dno transform(R̄)

=
(∏N−1

i=0 λi)1/N

(∑N−1
i=10 λi)/N

≤ 1 (3)
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Karhunen-Loève transform
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Some famous Karhunen-Loève transforms

• X stationary stochastic process→ Discrete Fourier transform

µk =
1√
N

[
1, · · · , e

2πikn
N , · · ·

]T

(4)

• X first order Gaussian Markov Process with high correlation (ρ → 1)

µk =
2√
N

[√
2, · · · , cos

[
(2n + 1)kπ

2N

]
· · ·

]
(5)

diagonalizes approximatively RX
→ Discrete cosine transform

• In general : KLT not practical
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JPEG Picture compression (1988)

0110010110...

compressed image

Quantizer Entropy
CoderDCT

8 x 8

8 x 8 blocks

image 

Limitations :

• size of the blocks cannot be adapted to the content of the image

• no correlation between adjacent blocks: blocking effects
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JPEG compression

Ratio = 64, PSNR=22.17dB ratio = 62, PSNR=26.20dB
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Image coding with wavelets

(from Bernouilli to Strömberg)
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Are natural images scale invariant ?

Studies of large ensemble of natural images [Huang and Mumford, 1999,
Ruderman and Blalek, 1994]:

• power spectrum (Fourier transform) ∼ Cξ−2

• Ik=average of the intensity over blocks of size k× k :
Dk

H(i, j) = Ik(i, j + 1)− Ik(i, j) does not depend on k

• suggest a self-similar process :
if X(αt) = αHX(t) then ΓX(ξ) = C|ξ|−2H−1

• Should we use a wavelet transform for image coding ?
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Two dimensional wavelet transform

m2

m1

m3 m3

m3m3

m2

1m

m0

Wavelet filters one level wavelet decomposition
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Wavelet image compression: zero tree coding [Shapiro, 1993,

Said and Pearlman, 1996]
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y y x x
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yHx
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Wavelet transform: experimental observations

• clustering of coefficients at a given scale

• small and large coefficients at a given scale propagate at a fine scale:

– cartoon model [Mumford, 1994]:
image= smooth regions + edges

– experimental findings from image ensembles:
coefficients have similar statistics at all scale
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Wavelet image compression: zero tree coding [Shapiro, 1993,

Said and Pearlman, 1996]

Three symbols to characterize the quantized coefficients

1. ZTR: root of a zerotree: all children are quantized to zero,

2. POS: significant positive

3. NEG: significant negative

4. IZ, isolated zero: the coefficient is quantized to zero, but there exists
some nonzero offspring

ZTR: codes zero jointly (vector quantization)

IPAM, MGA 2004 Image Compression 19



Details: choice of the filters

• linear phase vs orthogonality

• Size vs out of band rejection

• smoothness

• vanishing moments
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Wavelet based compression: asymptotia ?

• Fast algorithm : O(N)

• Very good quality for piecewise smooth images

• JPEG 2000

• BUT:

– imprecise for high frequencies,
– not adapted to texture (oscillatory patterns)
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Coding of oscillatory texture
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Representation of textured patterns

• simplest model of a patch of periodic texture :

w(x− x0, y− y0) ei(ξx+ηy) (6)

• local Fourier basis : most appropriate tool

• Can we fix JPEG :

– blocks overlap smoothly
– variable block size : adapted to the image content
– fast algorithm to compute the optimal segmentation
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Adaptive smooth local cosine transforms

nbnb −1
nb +1

n n n
+

n+1
−

n+1 n+1
+a a a a a a−

∀x ∈ [a−n , a+
n ], bn(x) bn−1(2an − x) + bn(2an − x) bn−1(x) 6= 0 (7)

∀x ∈ [a+
n , a−n+1] bn(x) 6= 0 (8)

bn is obtained from a prototype bell b

bn(x) = b
(

x− an

l

)
(9)
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Dual bells

Let
θn(x) =

1
bn(x) bn−1(2an − x) + bn(2an − x) bn−1(x)

(10)

then the dual bell b̃n is defined as follows:

b̃n(x) =



θn(x) bn−1(2an − x) if a−n ≤ x ≤ a+
n

1
bn(x)

if a+
n ≤ x ≤ a−n+1

θn+1(x) bn+1(2an+1 − x) if a−n+1 ≤ x ≤ a+
n+1

0 otherwise

(11)
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Biorthogonal local cosine bases

• basis functions of the DCT-IV:

Cn,k(x) =

√
2

an+1 − an
cos

[
(k + 1/2)π

x− an

an+1 − an

]
(12)

• Local cosine basis functions :

ψn,k(x) = bn(x) Cn,k(x) (13)

• dual basis functions :

ψ̃n,k(x) = b̃n(x) Cn,k(x). (14)

• ∃B > A > 0 such that,

A ∑
n,k
| fn,k|2 ≤ ‖∑

n,k
fn,kψn,k‖2 ≤ B ∑

n,k
| fn,k|2 (15)
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Choice of the bell function

• good approximation of polynomials

• reproducing p0(x) ≡ 1 with exactly one coefficient p0
k0

per interval:

∀x ∈ R, p0(x) = ∑
n

p0
k0

ψ̃n,k0(x) ; p0
n,k = p0

k0
δk,k0 (16)

• unique symmetric solution

b(x) = sin
π

2
(x + 1/2) (17)

...but bell is not differentiable at x = −1/2 and 3/2 !
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Optimized bells of Gregory Matviyenko [Matviyenko, 1996]

• good approximation of p0 ≡ 1 over [an, an+1) using the first K coeffi-
cients p0

n,k, k = 0, . . . , K − 1.

K−1

∑
k=0

p0
n,kψ̃n,k with p0

n,k =
∫

p0(x) ψn,k(x) dx (18)

• find the bell b that minimizes the residual error :

min
b

∞

∑
k=K

|p0
n,k|

2 (19)

under the constraint : b(x) + b(−x) = 1 for all x ∈ [0, 1/2].
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• Solution :

bK(x) =


1
2(1 + ∑K−1

k=0 gk sin(k + 1
2)πx) if x ∈ [−1

2 , 1
2)

1
2(1 + ∑K−1

k=0 (−1)kgk cos(k + 1
2)πx) if x ∈ [1

2 , 3
2)

0 otherwise
(20)

gk are calculated numerically in [Matviyenko, 1996].

• 0 ≤ |bK(x)| ≤ 1 0 ≤ |b̃K(x)| ≤ (
√

2 + 1)/2

• Riesz bounds : A = 1 and B = 2
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Modulated Lapped Biorthogonal Transform [Malvar, 1998]

Idea : smooth sin π
2 (x + 1/2) at both end-points : take the square.

b(x) =
[
sin

π

2
(x + 1/2)

]2
=

1− cos π(x + 1/2)
2

(21)

• MLBT :

b(x) =


1− cos[π(x + 1/2)α] + β

2 + β
if x ∈ [−1

2 , 1
2 ]

b(x) = b(1− x) if x ∈ [1
2 , 3

2 ]
(22)

• if α > 1, β = 0 then b ∈ C1
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LCT compression algorithm [Meyer, 2002]

• best basis : quadtree segmentation

• cost function: estimate of the actual rate achieved by each node

• near optimal Laplacian scalar quantizer [Sullivan, 1996]

• ordering of the coefficients : large scale correlation between blocks

• bit plane encoding
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Wood grain at 0.125 bpp (compression = 64).

SPIHT, PSNR=16.49dB Matviyenko’s bell, PSNR = 18.55dB.
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Clown at 0.125bp (compression =64)

SPIHT, PSNR = 28.23 dB MLBT bell, PSNR = 27.43dB.
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Roof at 0.125 bpp (compression = 64).

SPIHT, PSNR=23.77 dB MLBT bell, PSNR = 24.55dB.
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Optimized bells of Kai Bittner [Bittner, 1999]

• Idea : reproduce exactly polynomials with K coefficients, BUT non
symmetric bells

• only possible with polynomial of degree ≤ 1

if p1(x) ≡ x then p1
n,k =< p1, ψn,k >= 0 for k ≥ K. (23)

n+1
a

na

ψ
n,k

1
p  (x)
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Optimized bells of Kai Bittner [Bittner, 1999]

• one unique solution to (23) with b ∈ CK−1, and supp(b) ⊂ [−1
2 , 3

2 ].

•
{

ψn,k
}

forms a Riesz basis ⇐⇒ K is odd

• Riesz bound B increases very rapidly with K

• little practical use for compression if K ≥ 5

• We use K = 3, Riesz bounds : A = 0.742 and B = 3.067
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Roof at 0.125 bpp (compression = 64).

Bittner’s bell, PSNR=24.12 dB.
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Limitations of local Fourier approaches

coarse scale
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coarse scale

fine scale

fine scale

• replace the block segmentation by a superposition of filtered versions
of the original image

• replace the octave band decomposition by a more general splitting of
the Fourier domain.

IPAM, MGA 2004 Image Compression 43



Fast Wavelet Packet image compression [Meyer et al., 2000]

1. fast 2-D convolution-decimation algorithm with factorized non-
separable 2-D filters : 4 times faster (no transpose)

2. cost function that takes into account the cost of coding the output
levels of the quantizers, and the cost of coding the significance map

3. context-based entropy coder that uses a space filling curve.
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Roof at 0.125 bpp (compression = 64).

SPIHT, PSNR=23.77 dB FWP, PSNR=25.10 dB
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Clown at 0.125 bpp (compression = 64).

SPIHT, PSNR=28.23dB. FWP, PSNR=28.49 dB
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Best basis for roof and clown at 0.125 bpp (compression = 64)

Roof Clown
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• textures : oriented with all possible directions, frequencies, and loca-
tions.

• tensor product of wavelets :

ψk(x, y) =


ϕ(x)ϕ(y) if k = 0
ϕ(x)ψ(y) if k = 1
ψ(x)ϕ(y) if k = 2
ψ(x)ψ(y) if k = 3

(24)

• wavelet filter banks m1, m2, m3 can resolve 2.5 directions
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m2

m1

m3 m3

m3m3

m2

1m

m0

• Wavelet packets : more directions...

• BUT Fourier transform of the tensor product of two real valued
wavelet packets : four symmetric peaks in the frequency plane.
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• geometric interpretation of a large wavelet packet coefficient is
problematic :
- the intensity is oscillating as a planar wave ei(ωxx+yωyy),
OR
- the intensity is oscillating with the conjugate frequency ei(ωxx−yωyy).

• remove the ghost in the conjugate direction :
steerable wavelet packets

ξ

η

m3

0m

3m
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Brushlets [Meyer and Coifman, 1997, Meyer et al., 2002]

• duality between local trigonometric bases and wavelet packets

• construction : expansion of the Fourier transform of the image into
local Fourier bases

• brushlets are complex valued functions with a phase
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Brushlets

Basis functions ψm,j ⊗ ψn,k for the frequencies (m 2π
512 , n 2π

512), with (m, n) ∈
{−48,−32,−16, 0, 16, 32, 48}2. We have hm = ln = 16, δ = 8
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Multi-layer image representation [Meyer et al., 2002]

image = sum of two layers : a “cartoon image” and a texture map.

• cartoon = salient parts, piecewise smooth changes in the illumination

• texture map = texture in the regions enclosed by edges

• cartoon and texture map should be represented with two different
sets of basis functions

• algorithm : cascade of compressions applied successively to the image
itself and to the residuals from the previous compressions

• code the residual part in a lossy way: retain only the most significant
structures of the residual part
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Multi-layer image representation

expansion
Best basis

Quantization

budgetlibraries of bases

Collection of 

entropy 
coding

quantization
inverse 

transform
inverse R

^ n

R
n

R
n+1

residual
image

coded
bit stream

original
image
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A toy example

compression by 254 with wavelets. first residual.
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A toy example (2)

compression by 36 (LCT) Second residual.
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original image compression by 150
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compression by 10 final residual
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