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Plan

1. Multiresolution analysis, telescopic expansion of operators, non-standard form, selection
of bases for numerical algorithms, examples.

2. Separated representations and multiresolution algorithms in high dimensions

3. Examples of separated multiresolution representations: the Poisson kernel and the
projector on the divergence free functions in R

3; a brief description of the Fast Adaptive
Poisson solver in R

3 as time permits.
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Multiresolution Analysis

Chain of subspaces:
. . . ⊂ V0 ⊂ V1 ⊂ V2 ⊂ . . .

⋂

j Vj = {0} and
⋃

j Vj = L2(Rd) .

Examples: piecewise-constant functions, Daubechies’ scaling functions, polynomials up to
degree m − 1 on a collection of intervals.

Detail spaces Wj : Vj+1 = Vj ⊕Wj

Orthonormal bases in Vj and Wj are defined by the scaling function φ and wavelet ψ.

Examples: Haar basis, Daubechies’ wavelets, multiwavelets.

Projectors: Pj onto Vj, Qj onto Wj.
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Choice of basis

The original goal of wavelets was a smooth generalization of the Haar basis.

Although they appear natural, smooth wavelets have a number of practical difficulties and
limitations

These difficulties appear in signal processing but they are much more pronounced in
numerical analysis.

Issues:

• boundary conditions

• interpolating property

• representation(s) of differential operators
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Boundary conditions

Smoothness leads to overlapping supports.

To adapt such bases to bases on an interval necessarily involves boundary operators.

The condition number of these boundary operators grows rapidly with the order of the
bases. As a result, such constructions in numerical analysis work satisfactorily only for low
order schemes.

In signal processing this problem appears where it is necessary to process finite data, for
example, near the edge of an image.

The problem is much more difficult if high precision is required.
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Interpolating property

PDEs often involve pointwise multiplication of functions and so interpolating scaling
functions are very convenient.

Let the subspace of a multiresolution analysis be defined as a linear span of functions
{φ(x− n)}n∈Z, such that φ(n) = δn0. Then if f ∈ V0, we have

f(x) =
∑

n

f(n)φ(x− n).

However, the combination of smoothness, orthogonality and interpolating property leads
to the non-compact support of the scaling functions.

Interpolating bases are available, (e.g., Butterworth wavelets) but do not have a compact
support, so it becomes even more difficult to adapt them to life on an interval.
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Representations of differential operators

The smoothness of basis functions limits the availability of scale consistent derivative
operators.

The coefficients of representation of d/dx are defined by

rl =

∫ ∞

−∞
φ(x− l)

d

dx
φ(x) dx,

and, for sufficiently smooth scaling functions, these integrals are absolutely convergent.

Such a representation is a “central” difference operator and, because of the uniqueness,
there are no“forward”or“backward”differences.

Example: Daubechies’ wavelets with two vanishing moments,

{rl}l=−2,...,2 = {−1/12, 2/3, 0,−2/3, 1/12}.

Naively, this does not appear as an inconvenience, but in numerical analysis forward and
backward difference operators are really useful.
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Polynomial bases on intervals

Instead of a smooth generalization of the Haar basis, let us proceed in a different direction,
towards multiwavelet bases.

Remark on terminology: We will consider only non-overlapping multiwavelets and use
the term only for such bases.

Multiwavelet bases:

• are useful for representing integral operators.

• are well suited for the high-order adaptive solvers of partial differential equations
(perhaps counter intuitively).

• can accommodate the boundary conditions for high-order methods

• can be orthonormal and interpolating

There is a family of scale consistent derivative operators which may be viewed as weak
(non-unique) representations. Non-uniqueness is an advantage.
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Telescopic expansion: the non-standard form

Consider T : L2(R
d) → L2(R

d)

Define Tj = PjTPj, Aj = QjTQj, Bj = QjTPj Cj = PjTQj, for j ∈ Z.

We have the telescopic expansion,

Tn − T0 =
n

∑

j=1

(PjTPj − Pj−1TPj−1) =
n

∑

j=1

(Tj − Tj−1) =
n

∑

j=1

(Aj +Bj + Cj).
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Rate of decay

For Calderon-Zygmund operators the entries (or blocks entries) of Aj, Bj, and Cj decay
away from the diagonal according to the number of vanishing moments of the basis. Let
the kernel satisfy

|K(x, y)| ≤ C0

|x− y|, and |∂M
x K(x, y)|, |∂M

y K(x, y)| ≤ C1

|x− y|1+M
,

for some M ≥ 1. Then by choosing a wavelet basis with M vanishing moments the
entries of Aj, Bj, and Cj satisfy the estimate

|αj
i,l|, |β

j
i,l|, |γ

j
i,l| ≤

CM

1 + |i− l|M+1

for all |i− l| ≥ 2M .
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Multiwavelet bases

On each scale the scaling functions are orthogonal polynomials of degree up to m− 1 on
subintervals.

Choices:

1. The Legendre polynomials

2. The Lagrange interpolating polynomials with the Legendre nodes

Useful properties

1. Vanishing moments for multiwavelets

2. Interpolating property (up to rescaling)

3. Boundary conditions do not affect the order of the approximation
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Selection of scaling functions

The scaling functions φi are the normalized Legendre polynomials on the interval [0, 1],

φi(x) =

{ √
2i+ 1Pi(2x− 1), x ∈ [0, 1]

0, x /∈ [0, 1]
,

where Pi are the Legendre polynomials on [−1, 1].

Alternatively, one can use interpolating polynomials.

Given the Gauss-Legendre nodes x0, . . . , xm−1, the Lagrange interpolating polynomials
are defined as

lj(x) =

k−1
∏

i = 0,
i 6= j

(

x− xi

xj − xi

)

, j = 0, . . . , k − 1,

and characterized by lj(xi) = δij.
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Interpolating scaling functions

Given the Gauss-Legendre nodes x0, . . . , xm−1 and the associated Gauss-Legendre
quadrature weights w0, . . . , wm−1, the functions Rj(x) = 1√

wj
lj(x) have the following

properties:

1. They are orthonormal on [−1, 1] with the inner product

〈f, g〉 =

∫ 1

−1

f(x)g(x)dx.

2. Rj is a linear combination of Legendre polynomials,

Rj(x) =
√
wj

k−1
∑

i=0

(

i+
1

2

)

Pi(xj)Pi(x).
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3. Any polynomial f of degree less than m − 1 can be represented as

f(x) =
k−1
∑

j=0

djRj(x),

with dj =
√
wjf(xj).
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Multiwavelets

Define Vj as a space of piecewise polynomial functions:

Vj =







f : a polynomial of degree less than m − 1 on the intervals
[2−jl, 2−j(l + 1)] for l = 0, 1, . . . 2j − 1

0 elsewhere

Vj is spanned by m functions obtained from φ0, . . . , φm−1 by dilation and translation,

φj
k,l(x) = 2j/2φk(2

jx− l)

where k = 0, . . . ,m − 1 and l = 0, . . . , 2n − 1.

We define the multiwavelet subspace Wj, j = 0, 1, 2, . . . as the orthogonal complement
of Vj in Vj+1,

Vj ⊕Wj = Vj+1, Wj⊥Vj .
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Multiwavelets

Therefore, the multiwavelets are piecewise polynomial functions ψ0, . . . , ψm−1

∫

ψi(x)ψk(x)dx = δik.

Since Wj⊥Vj , the first m moments of ψ0, . . . , ψm−1 vanish,

∫

ψk(x)x
idx = 0, i, k = 0, 1, . . . ,m − 1 .

Wj is spanned by m functions obtained from ψ0, . . . , ψm−1 by dilation and translation,

ψj
k,l(x) = 2j/2ψk(2

jx− l)

where k = 0, . . . ,m − 1 and l = 0, . . . , 2n − 1.
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The cross-correlation functions of scaling functions

For convolution operators we only need the cross-correlation functions of the scaling
functions, namely,

Φii′(x) =







Φ+
ii′(x), 0 ≤ x ≤ 1,

Φ−
ii′(x), −1 ≤ x < 0,
0, 1 < |x|,

where i, i′ = 0, . . . ,m − 1, m is the order of the basis, and

Φ+
ii′(x) =

∫ 1−x

0

φi(x+ y)φi′(y)dy , Φ−
ii′(x) =

∫ 0

−x

φi(x+ y)φi′(y)dy .

This implies that the functions Φii′ are piecewise polynomials of degree i + i′ + 1 with
the support in [−1, 1].
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Two scale difference equations

We have

φi(x) =
√

2
m−1
∑

k=0

(h
(0)
ik φk(2x) + h

(1)
ik φk(2x− 1)),

ψi(x) =
√

2
m−1
∑

k=0

(g
(0)
ik φk(2x) + g

(1)
ik φk(2x− 1)),

where i = 0, . . . ,m − 1. The coefficient matrices are computed from these identities.
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Non-standard representation of operators in matrix form

=

d̂2

ŝ 2

d̂ 1

ŝ 1

d̂ 0

ŝ 0

2A

2C

B 2

1B1A

1C

0B0A

0C 0T

d2

s2

d1

s1

d 0

s 0
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Examples

The Neumann to Dirichlet (N-to-D) map for the circle is given by

u(θ) =
R

2π

∫ π

−π

log(sin2 (θ − θ′)

2
)
∂

∂r
u(r, θ′)

∣

∣

∣

∣

∣

r=R

dθ′ + Const,

provided that
∫ π

−π

∂

∂r
u(r, θ′)

∣

∣

∣

∣

∣

r=R

dθ′ = 0.
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N-to-D operator
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The non-standard form of N-to-D operator
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Inverse of N-to-D operator (D-to-N)
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The non-standard form of D-to-N operator
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Problem of extending to multiple dimentions

• Multiresolution representation of operators

◦ Classes of operators represented by banded matrices acting at different scales

• Curse of dimensionality

◦ Number of entries in a banded matrix: O(bM)
◦ Cost of multiplication of two banded matrices: O(b2M)
◦ Number of entries in a banded operator in dimension d: O(bdMd)
◦ Cost of multiplication of two banded operators in dimension d: O(b2dMd)
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The Separated Representation

The standard separation of variables: f(x1, x2, . . . , xd) = φ1(x1) ·φ2(x2) · . . . ·φd(xd)

Definition: For a given ε, we represent a matrix A = A(j1, j
′
1; j2, j

′
2; . . . ; jd, j

′
d) in

dimension d as
r

∑

l=1

slA
l
1(j1, j

′
1)A

l
2(j2, j

′
2) · · ·Al

d(jd, j
′
d),

where sl is a scalar, s1 ≥ · · · ≥ sr > 0, and A
l
i are matrices with entries Al

i(ji, j
′
i) and

norm one. We require the error to be less than ε:

||A −
r

∑

l=1

sl A
l
1 ⊗ A

l
2 ⊗ · · · ⊗ A

l
d|| ≤ ε.

We call the scalars sl separation values and the rank r the separation rank.

The smallest r that yields such a representation for a given ε is the optimal separation
rank.
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An example of separated representation

We have
˛

˛

˛

˛

1

||r||
−

M
X

m=1

wme−pm||r||2
˛

˛

˛

˛

≤ ε

||r||
,

for δ ≤ ||r|| ≤ 1, where pm, wm > 0 and M = O(− log δ).
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-12
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-2

Error (log10) of approximating the Poisson kernel for 10−9 ≤ ||r|| ≤ 1, M = 89.
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Adaptive subdivision
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Adaptive representation of a function
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Another example

Consider the characteristic function of a disk
Nnod = 8, ε = 1.0e − 02, Nblocks = 1276Nnod = 8, ε = 1.0e − 02, Nblocks = 1276
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The Poisson kernel

Due to the homogenuity of the Poisson kernel, we have

tn; l
ii′,jj′,kk′ = 2−2n tlii′,jj′,kk′ ,

where

tlii′,jj′,kk′ = tl1,l2,l3
ii′,jj′,kk′ =

1

4π

∫ 1

−1

∫ 1

−1

∫ 1

−1

1

||x + l|| Φii′(x1) Φjj′(x2) Φkk′(x3) dx,

and

Φii′(x) =

∫ 1

0

φi(x+ y)φi′(y)dy , i, i′ = 0, . . . , k − 1 ,

are the cross-correlation functions of the scaling functions of the multiwavelet basis.
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Separated representation of the Poisson kernel

Theorem: For any ε > 0 the coefficients tlii′,jj′,kk′ have an approximation with a low
separation rank,

rlii′,jj′,kk′ =
M
∑

m=1

wm

b
Fm,l1

ii′ Fm,l2
jj′ Fm,l3

kk′ ,

such that

|tlii′,jj′,kk′ − rlii′,jj′,kk′| ≤ 2ε

π
max

i
|li| ≥ 2

|tlii′,jj′,kk′ − rlii′,jj′,kk′| ≤ Cδ2 +
2ε

π
max

i
|li| ≤ 1

Fm,l
ii′ =

∫ 1

−1

e−pm/b2(x+l)2 Φii′(x) dx ,

b =
√

3 + ||l||, and δ, M = O(− log δ) + O(− log ε), pm, wm, m = 1, . . . ,M are
from the separated representation of the kernel.
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Estimates of decay

Let us consider Tj − Tj−1. We need to estimate

G =
∑

m

wmF
m,l1Fm,l2Fm,l3 −

∑

m

wmF̃
m,l1F̃m,l2F̃m,l3.

We have

||G|| ≤
∑

m

wm||Fm,l1 − F̃m,l1|| ||Fm,l2|| ||Fm,l3||

+
∑

m

wm||F̃m,l1|| ||Fm,l2 − F̃m,l2|| ||Fm,l3||

+
∑

m

wm||F̃m,l1|| ||F̃m,l2|| ||Fm,l3 − F̃m,l3||

Thus, we need Fm,l
ii′ only for |l| ≤ lmax (e.g. lmax = 5).
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Separated representation for the projector on the

divergence-free functions

We have
˛

˛

˛

˛

1

||r||3
−

M
X

m=1

wme−pm||r||2
˛

˛

˛

˛

≤ ε

||r||2
,

for δ ≤ ||r|| ≤ 1, where pm, wm > 0 and M = O(− log δ).
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Error of the approximation with 110 terms over the domain 10−7 ≤ ||r|| ≤ 1.
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Electron structure computations: elements, small molecules

A series of papers with R. Harrison, G. Fann, T. Yanai and Z. Gan (ORNL) in Journal of
Chemical Physics

Adaptive subdivision of space for the benzene molecule C6H6

35



Timing results for 3D adaptive Poisson solver

Platform: Pentium 4-2.8 GHz with 1 GB of RAM for which flops.c gives ∼
950 MFLOPS for add-multiply code.

Initial timings made for ε = 5 × 10−3

Nnod 6 8 10 12

Nblocks 512 120 120 64
t (s) 36 12.1 19.3 10.4

MFLOPS 171 317 430 505

Current timings

Nnod 12

Nblocks 64
t (s) 1.3

MFLOPS 911
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